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By means of molecular dynamics simulations, we investigate the structural relax-

ation in disordered random copolymers and lamellar phases of gradient copolymers,

containing chemical species of very different mobilities. Two models have been in-

vestigated: a generic bead-spring system and a MARTINI coarse-grained model of a

polyester resin. The lamellar phase of the gradient copolymer is formed by domains

rich in one species and poor in the other one, which are separated by broad inter-

faces. Unlike in strongly segregated block copolymers, there is a finite probability

of finding monomers of a given species at any position within the domains rich in

the other species. A direct consequence of this feature is that monomers can probe

very different chemical environments, and because of the strong dynamic asymme-

try between the two components, their relaxation are characterized by an extreme

dynamic heterogeneity. This is confirmed by an analysis of dynamic correlators as

a function of the distance to the interface. In the case of random copolymers long-

range ordering is not possible, and local microsegregation results in a much weaker

dynamic heterogeneity. The former features are consistent with the experimental

observation of narrow glass transitions in random copolymers but extremely broad

ones in lamellar gradient copolymers.
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I. INTRODUCTION

The existence of permanent chemical links between different types of monomers (A and

B) prevents macrophase separation in binary copolymers. However microsegregation occurs.

This phenomenon is favoured by increasing the chain length and the energetic incompati-

bility of the two species. For large values of these control parameters segregation leads, for

diblock copolymers, to long-ranged ordered mesophases, with well-defined pure domains sep-

arated by narrow interfaces. Different ordered morphologies can be obtained by varying the

chain composition. These include, from asymmetric to symmetric compositions, spherical,

cylinder, gyroid and lamellar phases [1–4].

Gradient copolymers are a particular case of binary copolymers, in which the population

of each species exhibits a monotonous gradual change from one side of the chain to the

other [5–10], instead of the step-like composition of diblock copolymers. Theory [11–15],

computer simulations [16] and experiments [17–27] have shown that gradient copolymers can

also exhibit long-range ordered phases even for smooth composition profiles. The domains

are separated by broad smooth interfaces with a strong degree of A-B mixing. Unlike

in strongly segregated phases of diblock copolymers, there is a significant probability of

finding a monomer of a given species at any distance from the interface, even deep inside

a domain rich in the other species. The chains cannot adopt conformations that fully

prevent A-B contacts over long distances. This is a direct consequence of the many different

realizations, originating from the gradient-like distribution, of the composition patterns

along the backbones of all chains in the system.

Polymers are glass-formers [28]. On decreasing temperature the structural α-relaxation

time (characterizing segmental dynamics) exhibits a dramatic increase by about 14 decades

from the picosecond scale up to 100 seconds (the latter time scale being often used to define

the laboratory glass transition temperature Tg). The relaxation scenario of the homopolymer

is modified when it is linked to a block of very different mobility (very different Tg). A general

observation in ordered phases of diblock copolymers is that the α-relaxation times of the

blocks are close to those of the corresponding homopolymers, with shifts to shorter or longer

times if the other block has respectively a higher or lower mobility [26, 29–32]. In spite of

the similar values of the α-time scales, the dynamic response exhibits a strong broadening

in the low-frequency side in comparison with the corresponding homopolymer [26, 29–32].
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This feature is usually rationalized in terms of dynamic heterogeneity. It is assumed that

the segmental relaxation in the center of the domains is the same as in the corresponding

homopolymer, but it is strongly perturbed as the interface is approached, leading to gradients

of mobility . Recent simulations of lamellar, cylinder and spherical phases of bead-spring

diblock copolymers are consistent with this picture [33, 34]. The simulations also suggest

that the gradients of mobility essentially arise as an interfacial effect, the homopolymer

dynamics being recovered at about 2-4 nanometers from the interfacial plane.

A much more complex situation may be expected in the case of ordered mesophases of

gradient copolymers. As mentioned above, domains are separated by broad interfaces with

a high degree of A-B mixing, and moreover there is a significant population of both species

in the two kinds of domains (A-rich and B-rich), even at long distances from the interface.

Therefore, one might expect that the global dynamic response originates from contributions

with very different time scales, because of the rather different chemical environments that

can be probed by monomers of a same species. According to their specific position in the

interfacial region or in the domains, monomers can probe environments with similar con-

centration of both species or can be mostly surrounded by monomers of their same or the

other species. Because of the different intrinsic mobilities of both species, such different

environments can lead to extreme dynamic heterogeneity. Unlike in the case of strongly seg-

regated diblock copolymers, where gradients of mobility are essentially an interfacial effect,

in gradient copolymers dynamic heterogeneities are expected to extend over much larger

length scales. Even it might happen that the homopolymer dynamics is not recovered in

any region of the domains. The existence of an extreme dynamic heterogeneity is also sug-

gested by differential scanning calorimetry, which reveals a glass transition occurring over

an extremely broad temperature interval [10, 17, 19, 20, 23, 24, 26, 35]. For this reason

gradient copolymers have been proposed as excellent materials for shock absorption and vi-

bration damping [23]. The former observation is rather different from that in ordered phases

of diblock copolymers, which exhibit a double glass transition [10, 19, 20, 24], reflecting the

separation in the time scales of the two blocks.

Most of the investigations on gradient copolymers have focused on their structural, ther-

modynamic and mechanical properties. Only a few works have investigated their segmental

relaxation [16, 26]. It has been found that, for the same temperature and concentration,

the global response of a component in the lamellar gradient copolymer is characterized by
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relaxation times that are intermediate between those in the purely random copolymer, and

those in the lamellar diblock copolymer [16, 26]. However, solving the different contributions

to dynamic heterogeneity from the experimental spectra, which provide a global response,

and the interpretation of such global results, is an extremely complex problem. Unlike in

simple diblock copolymers [36], in gradient copolymers it is very difficult, or even impos-

sible, to implement selective methods as, e.g., isotopic labelling of a specific sector of the

chain backbone. This is due to the stochastic character, following a gradient probability

distribution, of the compositional pattern along the chain backbone.

With these ideas in mind, in this article we present large-scale molecular dynamics (MD)

simulations of lamellar phases of gradient copolymers, in order to provide valuable micro-

scopic information for the interpretation of experimental results. Due to the typical spatial

dimensions of the domains (several tens of nanometers), simulations of slow dynamics in such

phases with fully atomistic force fields is far beyond the present computational capabilities.

However such scales can be explored by coarse-grained models. Specifically, we have used a

generic bead-spring model [37] and a realistic coarse-grained model of a common polyester

resin. For the latter we have used the MARTINI force field, within the coarse-graining

scheme proposed by Rossi et al. in Ref. [38]. Initially developed for lipids and surfactants

[39, 40], MARTINI has been extended to other systems including proteins [41, 42] and com-

mon polymers [43–47]. Likewise, we have performed MD simulations of random copolymers

with the same macroscopic concentration as the gradient copolymers, by using the same

bead-spring and MARTINI models. Because of the random compositional pattern along the

backbone, purely random copolymers cannot be arranged to form ordered mesophases, but

still can exhibit some degree of microsegregation in order to minimize A-B contacts [48–53].

Therefore, the variety of local environments that can be probed by the monomers in random

copolymers is strongly reduced in comparison with the case of gradient copolymers. For this

reason, a strong reduction of the dynamic heterogeneity is also expected. Indeed a narrow

glass transition is found in calorimetric experiments [19, 20, 23, 24, 26], in comparison with

the extremely broad one found in lamellar gradient copolymers.

Consistently with expectations from calorimetric experiments, the comparison between

our simulation results for random and lamellar gradient copolymers reveals an extreme

dynamic heterogeneity for the second in comparison with the first ones. Relaxation times

in the gradient copolymers can differ by many decades depending on the specific position
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along the lamellar domains. This has important consequences for the interpretation of future

experimental investigations on the dynamics of these systems. In particular we show that,

unlike in lamellar phases of diblock copolymers, in the case of the gradient copolymers the

dynamics of the respective homopolymers is not recovered even in the center of the domains,

because of the finite probability of finding monomers of the other species at any position.

Moreover we find that the dynamics in the interfacial region cannot be modelled by the

response of the random copolymer, except in a very narrow region.

The article is organized as follows. In Section II we describe the investigated models and

give simulation details. In Sections III and IV we characterize and compare static and dy-

namic properties of the random and gradient copolymers. We discuss dynamic heterogeneity

in the gradient copolymers in terms of position-dependent dynamic correlators. Conclusions

are given in Section V.

II. MODEL AND SIMULATION DETAILS

Composition profile

The simulated copolymers contain monomers of two different species α, β (see specific

notations below) along the chain backbone. Different composition profiles can be achieved

in real gradient copolymers by following different synthesis routes. In our work we have

assumed the functional form (see e.g., Ref. [54])

pα(i) =
1

2

{

1− tanh
[

C0
π

N
(i−Nα)

]}

(1)

for the probability distribution of α-monomers along the backbone, and pβ(i) = 1−pα(i) for

the counterpart β-monomers. The index 1 ≤ i ≤ N denotes the position of the monomer in

the backbone and the parameter C0 tunes the shape of the gradient profile. We have fixed

a concentration for the majority species Nα/N ≈ 0.6 (see below) and investigated the case

C0 = 1.8 for both the bead-spring system and the polyester resin. Lower values of C0 lead

to a weaker segregation of the two species (see Fig. 1). In order to estimate the effects of

the degree of segregation on the dynamics we have performed some additional simulations

for the bead-spring system with C0 = 1.2. Having said this, unless otherwise specified,

data presented in the following will correspond to the case C0 = 1.8. In the case of the

random copolymers the probability distributions pα,β(i) are constant, i.e., independent of
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the specific position in the backbone. They are just identical to the respective macroscopic

concentrations of α and β-monomers.

Once the density profiles have been defined, it must be noted that in real random and

gradient copolymers each chain has a different specific sequence of α- and β-monomers. The

quantity pα(i) represents the fraction of chains for which the ith-monomer belongs to the

α-species [55].

Bead-spring model

We have performed MD simulations of a system of Ncha = 240 bead-spring chains [37].

We denote the two species as F (‘fast’) and S (‘slow’). Each chain consists of N = 130 beads,

with NF = 80 beads of the F-species and NS = 50 beads of the S-species. The non-bonded

interaction between any two given monomers of the species α, β ∈ {F,S} is given by a shifted

Lennard-Jones potential,

Vαβ(r) = 4εαβ

[

(σαβ

r

)12

−
(σαβ

r

)6

+
1

4

]

, (2)

for r < rc and Vαβ(r) = 0 for r ≥ rc. By using a value rc = 21/6σαβ for the cut-off distance,

the potential is purely repulsive and has no local minima. Moreover, potential and forces

are continuous at rc. In addition to the Lennard-Jones potential, two connected beads in a

same chain interact through a finitely extensible nonlinear elastic potential (FENE) [37]:

V FENE
αβ (r) = −εαβKFR2

0 ln

[

1−

(

r

R0σαβ

)2
]

, (3)

with KF = 15 and R0 = 1.5. The sum of the potentials (2) and (3) yields an effective

potential between connected monomers that shows a sharp minimum at r = 0.96σαβ and

guarantees chain uncrossability [37].

We have used the same energy scale for the self-interaction, εαα = ε = 1, and imposed

a strong penalty for the cross-interaction, εFS = 9. With this value the random copolymer

forms a microsegregated disordered phase, whereas the gradient copolymer forms a stable

ordered lamellar phase (see below). For simplicity we use identical values for the monomer

masses, mF = mS = m = 1. We have checked that no significant dynamic asymmetry is

obtained by using different values, except for the unrealistic case that mF and mS differ by

more than a factor of about 10. In analogy with previous simulations of bead-spring polymer
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blends [56, 57] and comb copolymers [58], we have introduced size disparity to induce strong

dynamic asymmetry. Thus we have used σFF = σ = 1, σSS = 1.6 and σFS = 1.3 for the bead

diameters. These values lead to much faster intrinsic dynamics for the F-component than

for the S-component (see below).

In the following, temperature T , pressure P , monomer number density ρ, time t, and

distance will be given respectively in units of ε/kB (with kB the Boltzmann constant), εσ−3,

σ−3, σ(m/ε)1/2, and σ. Simulation units can be qualitatively mapped to real units as about

5-10 Å for distances and about 1-10 ps for times (see the discussion in, e.g., Refs. [37, 59]).

Because of their isotropic character, the random copolymer systems were simulated in

cubic boxes. Simulation of the lamellar phase of the gradient copolymer requires a more

elaborate procedure. Except for the case of very short chains and temperatures far above

Tg, the spontaneous formation at melt densities — starting from a disordered configuration

— of mesophases with well-defined order is unfeasible in simulation time scales. This is a

consequence of the extremely long characteristic time scales for chain diffusion [60–63]. Thus,

we follow the standard procedure prior to equilibration, and initially construct the system in

the expected lamellar geometry [33, 64–66]. Both in the bead-spring and polyester systems

we have constructed simulation boxes with six domains (three for each species, see below).

We have followed the same procedure for construction and equilibration used by some of

us in simulations of lamellar diblock copolymers [33]. Thus, equilibration is performed by

combining standard NPT dynamics in the Nosé-Hoover scheme with periodic anisotropic

rescaling of the box [64], until the three cartesian components of the internal pressure match

the imposed external pressure (P = 2.5). See Ref. [33] for details. After this, a further

equilibration run is performed at constant density with velocity scaling according to the

desired temperature. Production runs are performed in the microcanonical ensemble. The

equations of motion are integrated in the Martyna’s scheme [67] for the NPT runs and in

the velocity-Verlet scheme [68] for the other runs. We use time steps 0.005 ≥ ∆t ≥ 0.002

according to the investigated temperature, which covers the range 0.14 ≤ T ≤ 0.35.

The effective packing fraction is defined as Φ = (π/6V )Ncha(NF σ3
FF + NSσ3

SS), where V

is the volume of the simulation box. For the used pressure P = 2.5 the typical values are

Φ ≈ 0.52 at all the investigated temperatures, which are characteristic packing fractions for

similar bead-spring polymer melts [37, 59]. For comparison between the dynamics of both

components in the copolymer and in the corresponding homopolymer, we haved performed
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additional simulations of the F- and S-homopolymers at P = 2.5, with chains of N = 70

and 50 beads respectively.

Polyester resin model

We have simulated a coarse-grained model of a polyester resin [38] that finds applica-

tion in the coating industry. The basic chemical units are two dicarboxylic acids and a

diol. The acids are adipic acid ((CH2)4(COOH)2) and phthalic acid (C6H4(COOH)2), which

in the following will be denoted as A and P, respectively. The diol is neopentyl glycol

(HOCH2(CH3)2CH2OH) and will be denoted as N. Esterification of the acids with the diol

units leads to a sequence of dimers, AN and PN, along the chain backbone. Such dimers are

the two ‘species’ that we will consider in the analysis of the structure and dynamics. Ac-

cordingly, the gradient copolymer chains have been constructed so that the sequence of AN-

and PN-units along the backbone obeys the probability distribution of Eq. (1). A random

sequence obeying the macroscopic composition is used for the random copolymers.

Coarse-graining of the polyester structure is made with the MARTINI scheme proposed

in Ref. [38]. In this scheme, chemical subunits of a few atoms within the AN- and PN-

units are coarse-grained to single beads. Namely, each AN- and PN-unit contains four and

six beads respectively. The beads interact through coarse-grained potentials, which include

non-bonded, bonding and bending interactions. Details about the specific coarse-graining

scheme and the parameters of the MARTINI force field can be found in Ref. [38]. The model

has been shown to reproduce satisfactorily the properties of the polyester resin in a range

of temperatures extending from room temperature up to about 500 K. In this system, the

fast component is the one containing adipic acid, AN.

The simulated box contains 160 and 300 polyester chains for the random and gradient

copolymer systems, respectively. On average (see footnote [55]) each chain contains 18 AN-

units and 12 PN-units (with a total of 144 MARTINI beads for chains with that exact

composition). A cubic box is used for the random copolymer, whereas the lamellar phase of

the gradient copolymer is prepared by following the same procedure as in the bead-spring

system (see above). The system is equilibrated in the NPT ensemble by coupling to the

Nosé-Hoover thermostat and Parrinello-Rahman barostat [69, 70], with applied pressure

P = 1 bar. Production runs are also performed in the NPT ensemble. We use time steps of
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20 fs ≥ ∆t ≥ 10 fs according to the investigated temperature, which covers the range 270 K

≤ T ≤ 460 K. For simplicity length units for the polyester will be frequently omitted, giving

only numerical values, in particular when comparing with data of the bead-spring system.

Unless otherwise specified, distances in the polyester are given in nanometers.

All the simulations of the polyester resin have been performed by using the GROMACS

4.2.2 MD package [71, 72]. A home-made code have been used for the bead-spring simula-

tions. In the next sections we discuss static and dynamic correlators for both models. Static

correlators are averaged over 100 equispaced configurations, whereas dynamic correlators

are averaged over 20 equispaced time origins. Correlators for the AN- and PN-units in the

polyester must be understood as averaged over all the subunits contained in the former.

These subunits will be the MARTINI beads, except in the case of the bond orientational

correlators (see below), for which averages are performed over bonds connecting MARTINI

beads.

III. STATIC PROPERTIES

A. Random copolymers

Fig. 2 shows two representative snapshots of the two investigated random copolymers.

Local microsegregation of the two species can be observed. This finding is consistent with

previous observations [49–53]. Segregation is more pronounced for the polyester resin. This

can be understood from the fact that the uncompatible AN- and PN-units contain several

chemical subunits (beads), in contrast to the simple ‘monoatomic’ F- and S-units of the bead-

spring system. Thus, contact between the two species in the polyester is more unfavourable

than in the bead-spring system, which results in a stronger segregation for the polyester.

Information about characteristic length scales can be obtained by computing the partial

static structure factors,

Sαβ(q) =
1

√

NαNβ

〈

Nα
∑

i=1

Nβ
∑

j=1

eiq·[ri(0)−rj(0)]

〉

(4)

where α, β ∈ {F, S} for the bead-spring system and α, β ∈ {AN, PN} for the polyester

system. Nα is total number of α-monomers. The subscripts αβ indicate different pair cor-

relations between the chemical species. The brackets denote average over configurations,
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as well as over orientations [73] of the wavevector q. Fig. 3 shows typical results for the

partial static structure factors of the bead-spring model. Fig. 4 shows the corresponding

results for the polyester resin. All data sets show a sharp first peak. This peak is positive

for correlations between chemically identical monomers. On the contrary, a strong anticor-

relation (negative peak) is found for chemically distinct monomers. These features reflect

the microsegregation of the two species displayed in the snapshots of Fig. 2. The much

stronger intensity of the peaks in the polyester system is consistent with the higher degree

of segregation observed in the snapshot.

The characteristic size of the microdomains can be estimated from the position of the

first peak. The latter is at q ≈ σ−1 and q ≈ 1.3 nm−1, which corresponds to a characteristic

size of d = 2π/q ≈ 6σ and ≈ 5 nm for the bead-spring and polyester systems, respectively.

The second peaks, at 4.5σ−1 <
∼ q <

∼ 7σ−1 and 11 nm−1 <
∼ q <

∼ 14 nm−1, reflect correlationss

at nearest-neighbor distances. Indeed they are located at q ≈ 2π/σαβ, with σαβ the length

scale of the non-bonded α-β interaction. Finally, the oscillations at higher-q values just cor-

respond to higher-order harmonics. The domain size is esentially temperature-independent,

as illustrated in Fig. 5. Indeed the position of the peak is not significantly affected by varying

T . The growing of the intensity as temperature decreases just reflects the usual localization

arising from the lower mobility of the particles.

B. Gradient copolymers

Fig. 6 shows typical snapshots of the bead-spring and polyester gradient copolymers.

Both systems form an ordered lamellar phase that remains stable at all the simulated tem-

peratures. No drifts in the thermodynamic, structural and dynamic observables have been

found in the simulation time scale. The lamellar structure consists of domains rich in one

species and poor in the other. Unlike for the case of strongly segregated lamellar phases

of diblock copolymers, where both species only coexist in the interfacial region, monomers

of one species can be found even in the center of a domain rich in the other species. This

feature can be quantified by computing the normalized local density along the direction z

perpendicular to the lamellar plane. For the bead-spring model we compute the quantity

ρ∗α(z) = nα(z)σ3
αα/(LxLyδ), where Lx and Ly are the box sides in the directions parallel to

the lamellar planes, and nα(z) is the number of α-monomers within the slab (z, z + δ). The
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factor σ3
αα is included for a proper comparison between the density profiles of both compo-

nents. In the case of the polyester we compute the mass density, ρ
(m)
α (z) = nα(z)mα/(LxLyδ),

with mα the mass of the α-unit. We use a slab thickness of δ = 0.5σ and 0.1 nm for the

bead-spring and polyester system, respectively. Fig. 7 shows representative results for the

density profiles of both systems. The data reflect the existence of broad interfacial regions

separating the lamellar domains, and a finite probability of finding monomers of a given

species at any position, even in the center of the domains rich in the other species.

IV. DYNAMIC PROPERTIES

A. Random copolymers

Fig. 8 shows the temperature dependence of the mean squared displacement (MSD),

〈∆r2
α(t)〉, of the α-monomers in the bead-spring (α ∈ {F,S}) and polyester (α ∈ {AN,PN})

systems. In the case of the bead-spring system we have included some results for the respec-

tive homopolymers. It can be seen that, as a result of linking to a component of different

intrinsic mobility, the dynamics of the slow (S) and fast (F) monomers in the random copoly-

mer is respectively sped up and slowed down in comparison to the homopolymer. After the

initial ballistic regime, 〈∆r2
α(t)〉 ∼ t2, the MSD shows, for sufficiently low temperatures,

a plateau. The plateau extends over longer time windows as temperature decreases. This

behavior reflects the characteristic caging regime exhibited by the monomers on approach-

ing the glass transition [59, 74, 75]. However, the caging effect is much more pronounced

(stronger localization and longer duration) for the S- and PN-monomers than for the F- and

AN-monomers respectively. This dynamic asymmetry is apparently more pronounced in the

simulated bead-spring model than in the polyester. In both systems the dynamic asymmetry

increases by decreasing the temperature. Having noted this, because of the chemical links

between both species, the dynamic asymmetry is restricted to a limited length scale. Thus,

after decaging (departure from the plateau) the MSD of both species merge for displace-

ments of just a few bead diameters (〈∆r2(t)〉 ∼ 10). This feature resembles observations in

self-assembled comb copolymers [58, 76–79], for which backbones and side groups microseg-

regate in disordered domains, in a similar fashion as the random copolymers investigated

here. On the other hand, the former feature is rather different from the scenario found
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in dynamically asymmetric polymer blends. In such systems the absence of links between

both components allows for a full decoupling of their relaxation time scales (even by many

decades) and, at low temperatures, the fast component can perform large-scale diffusion

even at time scales for which the slow matrix has not completed its structural relaxation

[80–82].

Fig. 9 shows results for the T -dependence of the bond orientational correlator, Pα(t) =

〈cos(θ(t))〉, for the α-α bonds, where θ(t) is the angle between the bond vector at time

t = 0 and at the considered t. The results in Fig. 9 show similar trends to those found

in the MSD. Again the effects are more pronounced in the bead-spring model than in the

polyester. Interestingly, the caging effect in the reorientational behavior is stronger for the

AN-component than for the PN-one (see plateaux for P (t) > 0.8 in Fig. 9). This behavior

is rather different from that observed in the bead-spring system, and even in the MSD of

the same polyester system. However, the expected trend —faster relaxation of the AN-AN

bonds— is recovered at longer times; see the crossing of the solid and dashed lines for both

T = 350 and 390 K. Presumably, this crossing will also occur for T < 350K, though the

respective time scales are beyond the limit of the simulation window.

B. Gradient copolymers

Figs. 10 and 11 show results for the MSD and bond correlator in the gradient copolymer.

As observed in the random copolymer, the system exhibits dynamic asymmetry. Again, the

latter becomes more pronounced as temperature decreases. On passing, we note that in both

the random and gradient copolymers, the caging regime is not followed by the transition to

the long-time diffusive regime observed in simple glass formers. Instead, we find apparent

subdifussive behavior up to the limit of the simulation window. To illustrate this effect

we have included in Figs. 10 and 11 dashed-dotted lines representing power-law behavior,

〈∆r2
α(t)〉 ∼ tx<1, for comparison with the simulation data. It is well-known that, as a

consequence of chain connectivity, simple polymers exhibit subdiffusive Rouse-like behavior

(x = 1/2) after the segmental dynamics [83]. Even further subdiffusive regimes are observed

prior to diffusion in the case of long entangled polymers. The latter are usually explained in

terms of reptational dynamics [83, 84]. Though characterization of chain dynamics is beyond

the scope of this work, it is worth commenting that the presence of dynamic asymmetry
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might alter significantly the Rouse regime commonly observed in homopolymers. Several

works on dynamically asymmetric blends have revealed, for the fast component, strong

deviations from Rouse dynamics below the entanglement length of the homopolymer and

down to the segmental scale [56, 85–87]. Some of us have proposed [87] that the usual Rouse

assumption [83] of uncorrelation of the external forces, acting on the (fast) tagged chain, is

not valid when the latter is surrounded by a much slower matrix (the slow component in the

blend). Accordingly, memory effects, introduced through a generalized Langevin equation

[88], may account for the observed deviations from the Rouse model. Whether a related

or even more complex scenario can be found for the chain dynamics of the copolymers

investigated here —showing compositional heterogeneity at the intramolecular and even at

the large-scale structural level— is an open question for future investigations.

Coming back to the local dynamics, the data in the gradient copolymer show important

qualitative differences with results for the random copolymer. Thus, no merging of the

MSD of both components is found within the simulation time scale. Note that whereas in

the random copolymer merging occurs for values of 〈∆r2
α(t)〉 ∼ 10, the gradient copolymer

still exhibits a clear separation of time scales at such values of the MSD. More qualitative

differences are revealed by analyzing the van Hove self-correlation functions, Gs(r; t), at

the former time scales. The insets of Fig. 12 show results for the fast component (F- and

AN-monomers). The van Hove functions have been multiplied by the phase factor 4πr2.

With this correction, the data in the insets represent the histogram of displacements at the

selected times. Results for the gradient and random copolymers are shown at temperatures

and times (see caption) for which the respective MSD’s have the same value. Moreover, the

selected cases correspond to situations far beyond the caging regime in the MSD. Indeed

the latter takes values 〈∆r2
α(t)〉 ∼ 4, corresponding to average displacements of about two

monomer diameters. Despite having the same value of 〈∆r2
α(t)〉, the selected cases exhibit

very different features in the van Hove functions. Whereas a nearly Gaussian form is found

for the random copolymer, the histogram for the gradient copolymer exhibits a complex

structure (see insets of Fig. 12). This shows a well-defined peak at short distances r ≈ 0.5,

i.e, smaller than the monomer size. The peak is followed by a broad shoulder extending up

to distances of r > 5. Thus, the van Hove function reveals that there is a significant group of

monomers that remain trapped in the cage, whereas many others have moved several times

their own size. The latter are even more than in the random copolymer with the same MSD
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(compare the tails of the respective histograms in the insets of Fig. 12).

The stronger non-Gaussian character of the relaxation in the gradient copolymer can also

be demonstrated by computing the non-Gaussian parameter, α2(t) = 3〈∆r4(t)〉/(5〈r2(t)〉2).

This parameter quantifies deviations from Gaussianity in the van Hove function (α2(t) = 0

for a strictly Gaussian function). Results of α2(t) for both species in the bead-spring models

are shown in Figs. 13 and 14, for the random and gradient copolymer respectively. The

results for the random copolymer are qualitatively similar to those found in simple glass-

formers. As time increases α2(t) grows up from zero to a maximum. This maximum takes

place at the time scale of the decaging in the MSD (compare big squares in Figs. 8a and

13). At longer times, α2(t) progressively decreases up to the limit α2(t →∞) = 0 expected

for Gaussian diffusion. However, the non-Gaussian parameter for the gradient copolymer

exhibits a much more complex behavior (see Fig. 14). For the fast F-monomers a maximum is

found at the time scale of the decaging (compare big squares in Figs. 10a and 14a). However,

after this maximum α2(t) does not show the monotonic decay to zero found for the random

copolymer. Instead, it forms a minimum and shows a new increase that persists during

the whole simulation time window, even reaching values higher than the maximum at the

decaging time (see data for T > 0.15 in Fig. 14a). There is an increasing non-Gaussianity

even at times for which the average displacement is of several times the monomer size

(compare, e.g., data at T = 0.17 and t ∼ 105 for the F-momoners in Figs. 10a and 14a). In

the case of the S-monomers, the behaviour of α2(t) is even more complex. It does not form

a well-defined maximum at the time scale of the decaging in the MSD (compare big circles

in Figs. 10a and 14b). As much, an apparent plateau —note the poor statistics— is formed

in the α2(t) of the S-monomers prior to the further increase at longer times.

The complex, highly non-Gaussian, behavior of the van Hove function in the gradient

copolymer suggests that the dynamics in this phase is extremely heterogeneous, even at time

scales far beyond the caging regime of the MSD. Now we show that this feature is a direct

consequence of the gradients of composition which are present in the lamellar structure of the

gradient copolymer. Monomers of a given species can be surrounded mostly by monomers

of the same or the other species according to the domain (rich in one or the other species)

in which they are located. They can also be located in the broad interfacial region, in which

both species coexist in relevant concentrations. These different environments can lead to

very different mobilities of the monomers in the lamellar phase. In order to characterize
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the dynamic heterogeneity, we compute van Hove functions as a function of the positions

of the monomers in the domains. First, we define the slab ∆zmin < ∆z < ∆zmax where

∆z is the distance to the nearest interfacial plane. The latter is defined at the intersection

between the corresponding density profiles of the two species (see Fig. 7). Then we compute

dynamic correlators for the monomers that, at the time origin (t = 0), are located in the

former slab. We use small values for the slab thickness, ∆zmax − ∆zmin = σ and 1 nm

for the bead-spring and polyester system, respectively. These are sufficiently small to solve

fine details of the position-dependence of the dynamics, and at the same time provide good

statistics for a broad range of ∆z-values. In the following, we denote the distance ∆z to the

nearest interfacial plane with positive or negative signus if the monomers are located in the

domain rich or poor in their species, respectively. For each slab we compute the function

Gs(∆z, r; t), which measures the probability of the monomers initially located in the slab

to move a radial distance r at time t. The corresponding histograms of displacements, for

F- and AN-monomers, are shown in the main panels of Fig. 12, together with the global

functions 4πr2Gs(r; t) discussed above. The results presented for the different distances

∆z reveal a dramatic dependence of the monomer displacements on their initial positions.

For the temperatures of Fig. 12, the F- and AN-monomers initially located around the

interfacial plane, −1 <
∼ ∆z <

∼ 1, remain trapped there at the end of the simulation. This is

also true for those fast monomers located in the center of the slow (S- and PN-rich) domains,

corresponding to data for ∆z � 0 (not shown). On the contrary, fast monomers initially

located within the fast (F- and AN-rich) domains become increasingly more mobile at longer

distances (∆z � 0) from the interfacial plane. These results provide a strong connection

between the local composition in the gradient copolymer and the mobility of the monomers.

Those being surrounded preferently by F- or AN-monomers become highly mobile. Likewise,

monomers surrounded preferently by S- or PN-monomers remain localized within the cage

r <
∼ 1 formed by these.

Following a procedure analogous to that described above, we compute the slab-dependent

MSD, 〈∆r2(∆z; t)〉. Results for the two components of both the bead-spring and polyester

system are shown in Figs. 15 and 16 at selected temperatures. We remind that, for slab-

dependent correlators of the species α, values ∆z > 0 correspond to slabs in the domain

rich in α-monomers, whereas values ∆z < 0 correspond to slabs in the α-poor domain.

The results in Figs. 15 and 16 provide a direct comparison between the dynamics at the
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different slabs over the whole time window. As can be seen, a strong dynamic heterogeneity

arises already at the beginning of the caging regime. The plateau height, which reflects the

strength of the localization during the caging regime [74, 75], is strongly dependent on the

position along the lamellar structure. Fast (F- and AN-) monomers in the interfacial region

or in the slow (S- and PN-rich) domains show a much stronger localization than those in the

center of the fast (F- and AN-rich) domains. Likewise, decaging for the former ones occurs

at much longer times. Results for the slow (S- and PN-) monomers show the opposite trends.

Slow monomers become much more mobile in the center of the fast domains than in the

interface or in the center of the slow domains. By estimating slab-dependent α-relaxation

times as those for which 〈∆r2(∆z; t)〉 ∼ σ2
αα, it can be seen that these can differ by time

decades according to the specific value of ∆z. This feature can also be observed in the

slab-dependent bond correlators, P (∆z; t). Fig. 16 shows representative results for the F-F

and AN-AN bonds. Thus, whereas for the selected T = 270 K relaxation of the AN-AN

bonds in the AN-rich domain is nearly completed at 3 nm from the interfacial plane, the

corresponding bonds at the same distance, but located in the PN-rich domain, only start

to relax at the end of the simulation window. Similar trens (see Supp. Info.) are found by

computing the former observables as a function of the monomer position 1 ≤ i ≤ N along

the chain contour. Of course, the reason for this analogy is that in lamellar structures i and

∆z are strongly correlated quantities.

Results in Figs. 15 and 16 show that, for fixed temperature, relaxation times are ex-

tremely dependent on the distance to the interfacial plane. Moreover, inspection of the

slab-dependent van-Hove functions reveals that, not only the time scale, but also the nature

of the relaxation can be very different along the domains. To illustrate this, we show in

Fig. 17 the former functions at T = 0.14 for the F-monomers in two selected slabs. At

long distances from the interfacial plane (slab 7 < ∆z < 8, see panel (a)) the histogram of

displacements shows a smooth shape at all times, with the exception of a shoulder at t ∼ 103

arising at distances r >
∼ 0.5, which suggests some heterogeneity in the decaging process of

the particles at the former slab. A more complex behavior is found at shorter distances

from the interface (slab 3 < ∆z < 4, see panel (b)). A double-peak structure is observed

at intermediate times. As time increases, the first peak in the histogram decreases, whereas

the second one increases. The positions of the two peaks are nearly constant (r1 ≈ 0.3

and r2 ≈ 0.9) up to time scales of t ∼ 105. According to these observations, particles are
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trapped within a well-defined distance and escape by performing jumps with a well-defined

amplitude. This suggests a strong hopping-like character for the relaxation at slabs close to

the interface, and resembles observations in complex disordered mixtures with components

of very different mobilities and, more generally, in crowded environments [89]. The ‘discrete’

nature of the motion persists even at times for which half of the particles have moved be-

yond their own size (r > 1) —see data in Fig. 17b for t = 105, where the first peak is still

clearly visible. Only at much longer times the double-peak structure vanishes and Gaussian

behavior is recovered in the van Hove function.

In Figs. 15 and 16 we have included the global MSD’s and bond correlators (i.e., av-

eraged over all monomers and bonds of the respective species), for comparison with the

slab-dependent quantities. This comparison illustrates how the global response —the one

usually measured in experiments— arises from a extremely broad distribution of relaxation

times in the lamellar structure of the gradient copolymer. In Figs. 15a and 16a we also

include the MSD and bond correlator of the F-homopolymer at the same temperature. It

can be seen that the homopolymer dynamics is not recovered at any position of the lamellar

phase. Even in the center of the F-rich domains (∆z ∼ 8), there is a strong difference be-

tween the relaxation of the F-species in the gradient copolymer and in the F-homopolymer.

This feature is very different from the observation in strongly segregated lamellae of diblock

copolymers, in which the dynamics of the homopolymer is recovered at the center of the do-

main [33, 34]. The origin of this difference with diblock copolymers is the finite probability

of finding monomers of both species at every position in the lamellar gradient copolymer,

which modifies the original relaxation of the homopolymers.

As mentioned in Section II, the degree of segregation in the gradient copolymer can

be tuned by changing the value of C0 in eq. (1). Namely, larger values of C0 lead to a

stronger segregation. All the results presented above correspond to the case C0 = 1.8. We

have performed some additional simulations at T = 0.14 for the bead-spring model with

C0 = 1.2, corresponding to a weaker degree of segregation (see Fig. 1). In Fig. 18 we show

results, at T = 0.14, for the slab-dependent MSD and bond correlators of the F-component

in both cases C0 = 1.2 and 1.8. For comparison we also include the corresponding results

for the F-homopolymer. It can be seen that relaxation of the F-component is systematically

faster, for all values of ∆z, in the case C0 = 1.8 than in the case C0 = 1.2. The same trend is

found in the global relaxation, probed by 〈∆r2(t)〉 and P (t) (not shown), which is consistent



18

with dielectric spectroscopy experiments on gradient copolymers with different degrees of

segregation [26]. Since the system C0 = 1.8 is more strongly segregated, for fixed ∆z the

fast F-monomers are, on average, surrounded by less slow S-monomers, which facilitates

their mobility. The opposite trend is found for the S-monomers (not shown). In the system

C0 = 1.8 they are surrounded by less fast F-monomers and therefore they exhibit slower

relaxation than in the system C0 = 1.2. On the other hand, since in the system C0 = 1.8

the monomers have a lower probability of finding monomers of the other species in their

surroundings, relaxation in the center of the domains is closer to that of the respective

homopolymer (filled squares in Fig. 18).

Finally, we discuss the effect of temperature on the observed dynamic heterogeneity. We

have estimated slab-dependent relaxation times τ(∆z) as those for which the slab-dependent

bond correlator takes the value P (∆z; τ) = e−1. Fig. 19b shows the temperature dependence

of these relaxation times for the gradient copolymer. For comparison we include results for

the F- and S-component in the random copolymer, as well as for the F-homopolymer. The

latter are again obtained by using P (τ) = e−1, where P (t) is the global correlator for the

respective component, and are shown in both panels of Fig. 19. Panel (a) shows such data

for global relaxation over a broader temperature range than in panel (b), and includes the

corresponding results for the F-component in the gradient copolymer. Consistently with

previous findings by lattice simulations [16] and dielectric spectroscopy [26], the global seg-

mental relaxation in the gradient copolymer is, at fixed temperature, intermediate between

that in the homopolymer and in the random copolymer.

No data have been shown in Fig. 19 for the global response of the S-component in the

gradient copolymer, since in the investigated T -range for the gradient copolymer the former

is extremely slow and does not relax within the simulation time window. Concerning the

dynamic response of the different slabs, we observed that indeed most of the S-S bonds in

the gradient copolymer do not relax in the investigated T -range. Relaxation times at such

temperatures could only be measured for the S-S bonds located beyond the interfacial plane

(∆z < 0), in the F-rich domain. Moreover we have not included, even if some of them do

relax, data for bonds with ∆z < −4, i.e, data for bonds initially located in the domain rich

in the other species and relatively far from the interfacial plane. The reason is that, because

of the low population of such bonds, the respective correlators have poor statistics and it is

difficult to obtain reliable relaxation times.
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The representation of Fig. 19b reveals important features. Thus, the dispersion in relax-

ation times along the lamellar domains becomes stronger as temperature decreases. Actually,

the dispersion is even stronger than that shown in the figure, because of long relaxation times

beyond the simulation window that have not been included (see above). This observation is

consistent with the experimental finding of an extremely broad glass transition in lamellar

gradient copolymers [10, 17, 19, 20, 23, 24, 26, 35], in contrast to the narrow transition

observed in random copolymers [19, 20, 23, 24, 26].

A tempting picture for describing the experimental global response in lamellar gradient

copolymers might be considering the latter as a superposition of three contributions: two

contributions as those of the respective homopolymers and a third one as that of the random

copolymer. The former two might be expected to originate from relaxation in the center

of the domains, whereas the third one would arise in the interface. Data in Fig. 19 shows

that this approximation is incorrect. The dynamics of the homopolymer is approached only

in the limit of high T and long distances (∆z > 8) from the interfacial plane. For low

T , homopolymer dynamics is not recovered at any distance, and deviations become more

pronounced as temperature decreases. On the other hand, relaxation in the interfacial region

is extremely sensitive to position, and the dynamics of the random copolymer is only found

in a very narrow region of the gradient copolymer (0 < ∆z < 1 for the F-component) [90].

V. CONCLUSIONS

By means of computer simulations, we have performed a detailed investigation of struc-

tural and dynamic properties in disordered random copolymers and in lamellar phases of

gradient copolymers. The copolymers contain two kinds of monomers with very different

mobilities. Two models have been investigated: i) a generic bead-spring model and ii) a

coarse-grained model of a polyester resin, by using the MARTINI force field. We have found

that the qualitative features found for the generic bead-spring system are reproduced in the

realistic model of the polyester. This suggests that such features will be generally found in

real random and gradient copolymers.

The lamellar phase of the simulated gradient copolymers is formed by domains rich in one

of the two chemical species and poor in the other one. The domains are separated by broad

interfaces, and because of the gradient-like composition of the chains, monomers of both
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species have significant concentrations at any position of the domains. As a consequence,

monomers can probe rather different chemical environments in the lamellar gradient copoly-

mer. Because of this strong compositional heterogeneity and the strong dynamic asymmetry

between the two species, monomers of a given species can be located both in highly mobile

and in quasi-arrested environments. Hence, relaxation is characterized by an extreme dy-

namic heterogeneity, even at time scales far beyond the caging regime of the global dynamic

response. This is confirmed by an analysis of dynamic correlators as a function of the dis-

tance to the interfacial plane. In the case of random copolymers long-range ordering is not

possible, and local microsegregation results in a much weaker dynamic heterogeneity. The

former features are consistent with the experimental observation of narrow glass transitions

in random copolymers but extremely broad ones in lamellar gradient copolymers.

Our results have important consequences for the interpretation of future experimental

investigations on the dynamics of lamellar gradient copolymers. Unlike in lamellar phases

of diblock copolymers, in the case of the gradient copolymers the dynamics of the respective

homopolymers is not recovered even in the center of the domains, because of the finite

probability of finding monomers of the other species at any position. Moreover, the dynamics

in the interfacial region cannot be modelled by the response of the random copolymer, except

in a very narrow region.
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FIG. 1: Probability distribution of α- and β-monomers along the chain backbone of the gradient

copolymer, for composition Nα/N = 0.615, corresponding to the bead-spring model (see below).

The shape parameters are C0 = 1.8 (lines) and 1.2 (symbols).
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FIG. 2: Typical snapshots of the random copolymer. Top panel: bead-spring system. Bottom

panel: polyester resin. F- and AN- monomers are represented as blue beads. S- and PN-monomers

are represented as yellow beads.
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FIG. 6: Typical snapshots for the bead-spring and polyester gradient copolymers (top and bottom

panels respectively). Blue beads represent F- and AN-monomers. Yellow beads represent S- an

PN-monomers. The bead size has been reduced for the sake of clarity. In both cases the box

contains six domains. The bottom panel shows a portion of the box, in order to highlight the

gradients of composition along the domains.
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polyester at T = 320 K.
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FIG. 8: Temperature dependence of the MSD in the random copolymer, for the bead-spring (a) and

polyester (b) systems. Dashed lines correspond to F- and AN-monomers. Solid lines correspond

to S- and PN-monomers. Data sets for a same temperature are represented with same colours.

Symbols in panel (a) are results, at T = 0.60, for the F- (small open symbols) and S-homopolymer

(small filled symbols). Dashed-dotted lines represent power-law behavior ∼ tx (exponents are

indicated), and are included for comparison with the simulation data. For some data sets, we

have added big squares in panel (a) of this figure and in Fig. 13. Same codes for big squares in

both figures correspond to same times, temperatures and monomer species. Specifically, such times

correspond to the maxima of the respective non-Gaussian parameters (see Fig. 13).
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FIG. 15: Dashed-dotted lines: MSD for monomers in the gradient copolymer initially located at a

distance ∆z from the nearest interface (see legend). (a): Data for the F-monomers in the bead-

spring model at T = 0.14. (b): Data for the AN-units in the polyester at T = 270 K. (c): Data for

the S-monomers in the bead-spring model at T = 0.14. (d): Data for the PN-units in the polyester

at T = 270 K. The solid lines in all panels represent the corresponding global MSD, 〈∆r2(t)〉.

Panel (a) includes data of the F-homopolymer for comparison (symbols).
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FIG. 18: (a): Slab-dependent MSD (a) and bond correlator (b), of the F-component in the bead-

spring gradient copolymer at T = 0.14. In both panels lines and empty symbols correspond to

gradient profiles with C0 = 1.2 (more weakly segregated) and C0 = 1.8 (more strongly segregated),

respectively. Data sets with same colours correspond to the same ∆z (see legend). Results for the

F-homopolymer at the same T are included for comparison (filled squares).



44

0.2 0.3 0.4 0.5 0.6
10

1

10
2

10
3

10
4

10
5

10
6

F in random
F in gradient

F-homopolymer

S in random
S-homopolymer

T

τ

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
2

10
3

10
4

10
5

-2<∆z<-1  F
0<∆z<1    F
1<∆z<2    F
2<∆z<3    F
3<∆z<4    F
4<∆z<5    F
7<∆z<8    F
-1<∆z<0   S
-3<∆z<-2  S
-4<∆z<-3  S
F in random
F-homopolymer

T

τ

(b)

FIG. 19: (a): Temperature dependence of the relaxation times for the global correlators P (t) of

the F-F and S-S bonds in the bead-spring systems. Results are given for the gradient and random

copolymers, as well as for the homopolymers (see legend). (b): Temperature dependence of the

slab-dependent relaxation times for F-F (empty symbols) and S-S bonds (filled symbols) in the
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