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We propose a quantum interference spin-injector nanodevice consisting of a superconductor-normal

metal hybrid loop connected to a superconductor-ferromagnet bilayer via a tunneling junction. We

show that for certain values of the applied voltage bias across the tunnel barrier and the magnetic

flux through the loop, the spin-current can be fully polarized. Moreover, by tuning the magnetic

flux, one can switch the sign of the spin polarization. This operation can be performed at

frequencies within the tens of GHz range. We explore the nanodevice in a wide range of parameters,

establish the optimum conditions for its experimental realization, and discuss its possible

applications. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802953]

Generation of strongly spin-polarized currents and their

control in nanoscale circuits is highly desirable in the field of

spintronics.1 In this context, there have been a number of pro-

posals to achieve highly spin-polarized currents using differ-

ent nanodevices.2–7 Such a spin-currents can produce a

dynamical switching by means of spin-transfer torque8,9 of the

magnetization in multilayer ferromagnetic structures.10 Such a

switching procedure is used in magnetic random access mem-

ories, where the magnetic configuration is controlled by spin-

polarized currents. Usually, the source of spin-polarized cur-

rents is a ferromagnet with highly polarized conduction elec-

trons. Therefore, materials with half-metallic behavior, as for

example CrO2, are ideal candidates for spin-injectors.

However, their growth in hybrid nanocircuits still remains a

challenge. Alternatively, strongly spin-polarized currents can

be created in hybrid structures consisting of a superconductor

(S) and a ferromagnetic (F) layer11,12 tunnel-coupled to a nor-

mal metal (N). It was shown that in such hybrid structures,

fully spin-polarized currents can be induced. In particular, the

NISF structure (I denotes an insulating layer) studied in Ref.

12 allows for tuning of the sign and magnitude of the spin

polarization by changing the bias voltage.

In this letter, we propose a spintronic nanodevice that,

on the one hand, is able to provide strongly spin-polarized

currents and on the other hand allows for a switching of the

current polarization not only by means of a voltage bias but

also by an external magnetic flux. The switching time

between positive and negative current polarization can be

achieved in the nanosecond range or faster. The device con-

sists of a superconducting loop (S1) interrupted by a N wire

of length L. In addition, a SF bilayer is tunnel-coupled to N

through a junction with normal-state resistance Rt [see

Fig. 1(a)]. We assume (i) a good contact between the S and F

layers and (ii) that Rt is much larger than the SF contact re-

sistance which ensures the bilayer to be in local equilibrium.

tS (tF) labels the S (F) layer thickness, and the SF bilayer is

kept at a constant voltage V, while the other end of the struc-

ture is grounded. Except for the F layer, the setup shown in

Fig. 1(a) resembles the ones investigated in recent experi-

ments on hybrid nanostructures.13,14

Our hybrid interference spin-current injector operates as

follows: by applying a voltage bias, a finite quasiparticle cur-

rent flows through the structure. The amplitude of the result-

ing current depends on the density of states (DoS) of both

the SF bilayer and the N wire. The former shows a Zeeman-

splitting induced by the exchange field of the F layer,

FIG. 1. (a) Scheme of the proposed quantum interference spin-current injec-

tor. u is the quantum phase difference in S1, whereas U is the externally

applied magnetic flux. (b) Current vs voltage characteristics for spin-up (Iþ)

species, spin-down (I�) species, and their sum (I) for zero applied magnetic

flux. (c) The same as in panel (b) but for a half-integer flux quantum applied

through the loop. In (b) and (c), we set h ¼ 0:4D0 and T ¼ 0:2Tc, where D0

is the zero-field and zero-temperature energy gap, whereas Tc is the super-

conducting critical temperature.
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whereas the latter is modified by the proximity effect induced

from the nearby contacts with the S1 loop. As it is shown

below, the current flowing through the structure can be

strongly spin-polarized. In addition to the dc voltage bias,

the device can also be operated by an externally applied

magnetic flux. By neglecting the loop inductance, the mag-

netic flux U fixes the superconducting phase difference

across the SN boundaries according to u ¼ 2pU=U0, where

U0 is the flux quantum. Since the DoS in the N wire depends

on the phase difference,15 by varying the magnetic flux

through the loop, one can modify the DoS in N and, in turn,

the electric current and its spin-polarization. Therefore, our

device can be used as a phase-tunable spin-injector. One fur-

ther advantage of our setup with respect to a voltage tunable

spin-injector based on the results of Refs. 11 and 12 is that

the switching speed provided by the magnetic flux allows, in

principle, for a much higher operation frequency.

In order to model the spin-current injector, we consider

a SF system which may consists either of two thin S and F

layers in good electric contact or of a superconducting layer

in contact with a ferromagnetic insulator. In particular, we

consider the situation where the thickness of the S layer is

smaller than the superconducting coherence length, and the

F thickness is smaller than the length of the condensate pene-

tration into the ferromagnet. In such a case, the ferromagnet

induces a homogeneous effective exchange field (h) in S

through proximity effect which modifies the superconducting

gap (D0). h and the effective gap in S (D) are given by

h=h0 ¼ �FtFð�StSþ �FtFÞ�1
and D=D0 ¼ �StSð�StSþ �FtFÞ�1

,

respectively, where h0 is the original exchange field existing

in the ferromagnetic layer and �S (�F) is the normal-state DoS

in S (F) at the Fermi energy. If �S ¼ �F and for tF� tS it fol-

lows that D�D0 while h=h0 � tF=tS� 1. The effect of h on

the superconductor leads to a spin-dependent Bardeen-Cooper

Schrieffer (BCS)-like DoS shifted by the effective exchange

energy (similarly to what happens for a Zeeman-split super-

conductor in a magnetic field).16–19 The total DoS of the SF

layer is then given by the sum of the spin-up (�þ) and spin-

down (��) density of states which can be written as18,19

�6ðEÞ ¼
1

2
Re

E6hþ iCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE6hþ iCÞ2 � D2ðh; TÞ

q
2
64

3
75

�������

�������
; (1)

where E is the energy measured from the condensate chemi-

cal potential, and T is the temperature. The effective super-

conducting order parameter, Dðh; TÞ, depends on both the

temperature and the magnitude of the exchange field and has

to be determined self-consistently from the gap equation

lnðD0=DÞ ¼
Ð �hxD

0
deðe2 þ D2Þ�1=2½fþðeÞ þ f�ðeÞ�, where f6ðeÞ

¼ 1þ exp½ 1
kBT ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ D2

p
7hÞ�

n o�1

, D0 ¼ 1:764kBTc is the

zero-temperature order parameter in the absence of exchange

field, Tc is the superconducting critical temperature, kB is the

Boltzmann constant, and xD is the Debye frequency. The pa-

rameter C in Eq. (1) accounts for the inelastic scattering

energy rate within the relaxation time approximation.20–23

Tunneling conductance measurements on SIS junctions,24

where I is a ferromagnetic insulator, have shown the accu-

racy of the description of the DoS provided by Eq. (1).

We assume that the tunnel junction between the SF

bilayer and the normal metal is placed in the middle of the N

wire, and that the resistance of the tunneling contact Rt is

much larger than the normal-state resistance RN of the N

wire and the resistance RSN of the SN interfaces. Therefore,

the voltage drop occurs entirely at the SF/N contact.

Moreover, we assume the wire transverse dimensions to be

much smaller than L, so that it can be considered as quasi-

one-dimensional (1D) and neglect any spatial later extension

of the tunnel junction.26 For the sake of clarity in our analy-

sis, we choose identical superconductors S and S1 for the

nanodevice of Fig. 1(a).

The total quasiparticle current is given by the sum of the

spin-up and spin-down contributions I ¼ Iþ þ I� where

I6 ¼ 1

2eRt

ðþ1
�1

dE�6ðE� eVÞ�NðE;UÞ

� ½tanhðE� eV=2kBTÞ � tanhðE=2kBTÞ�; (2)

�NðE;UÞ is the DoS in the middle of the N wire, and e is the

electron charge. The exact form of �NðE;UÞ can be obtained

from the knowledge of the retarded quasiclassical Green’s

function. The latter is the solution of the 1D Usadel equation

in the N region27

@xðĝ@xĝÞ þ i
E

ETh
½s3; ĝ� ¼ 0; (3)

where ĝ is a 2� 2 matrix in the Nambu space, Eth ¼ �hD=L2

is the Thouless energy, and D is the diffusion constant in N.

All lengths are given in units of L. The DoS in the normal

wire is then determined by the real part of the (1,1)

component of ĝ. It is known that due to the proximity effect

�NðE;UÞ shows a minigap whose size depends, among

other parameters, on the phase difference across the N

wire.13,14,29,30 Thus, by varying the magnetic flux through

the loop, one can control the size of the minigap in N,

which is maximized for U ¼ 0 and vanishes for

U ¼ ð1=2ÞU0mod½2np�, where n is an integer.

Equation (3) is supplemented by boundary conditions

describing the transmissivity of the SN interfaces28

ĝ@xĝ ¼ 6
c
2
½ĝ; ĝRðLÞ�; (4)

where c ¼ RN=RSN , and ĝRðLÞ are the bulk BCS Green’s func-

tions. For simplicity, we have assumed that the normal-state

conductivity of the S and N parts of the wires is the same.

We notice that in the case of a perfectly transmissive SN

interface, RSN ! 0, and Eq. (4) imposes the continuity of ĝ at

the boundary. Furthermore, we neglect the suppression of the

order parameter in S1 at the NS1 boundaries due to inverse
proximity effect.30,31 We expect, however, this effect to be

very small in a real nanostructure by making the cross section

of the loop much larger than that of the N wire. Finally, in all

the following calculations, we set C ¼ 10�4D0 as a represen-

tative value describing realistic tunnel junctions.21–23

We first consider the case of a short N bridge satisfying

the condition ETh � D and assume perfectly transmissive

SN contacts. In this regime, the spin-current injector per-

formance is optimized since the proximity effect in N is

162406-2 F. Giazotto and F. S. Bergeret Appl. Phys. Lett. 102, 162406 (2013)
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maximized. In this case, the DoS in the middle of the wire

can be obtained analytically32

�NðE;UÞ ¼ Re
Eþ iCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEþ iCÞ2 � D2ðTÞcos2ðpU=U0Þ
q
2
64

3
75

�������

�������
: (5)

It has a BCS-like form with an effective gap, Dg ¼ DðTÞ
jcosðpU=U0Þj, whose magnitude depends on the magnetic

flux U. In particular for U ¼ ð1=2ÞU0, the minigap is com-

pletely closed. Substituting Eqs. (1) and (5) into the expres-

sion for the current, Eq. (2), we compute the spin-currents I6.

The voltage dependence of I6 and of the total current through

the device are shown in Figs. 1(b) and 1(c) for zero and half-

integer flux quantum, respectively. Within certain ranges of

voltage, the spin-up and spin-down currents can differ by sev-

eral orders of magnitude. In the zero flux case [see Fig. 1(b)],

the spin-down current dominates the transport (I� � Iþ) if

eV < 2D0 � h, whereas for eV > 2D0 � h the opposite occurs

(Iþ � I�). The thresholds for the onset of large quasiparticle

current [see panel (b)] correspond to the sum of the gaps on

both sides of the barrier (eV ¼ 2D06h), i.e., in the SF and in

the N layer. This is in analogy to the quasiparticle I-V charac-

teristic of a conventional SIS tunnel junction.33 We note that a

dc Josephson supercurrent, although somewhat small, can

flow through the device;13,14,25 however in our case, a spin-

polarized current is achieved only if a finite bias voltage (i.e.,

V 6¼ 0) is applied. For half-integer flux quantum values [see

Fig. 1(c)], the behavior is modified, i.e., Iþ is substantially

larger than I� in the whole range of voltage. As a conse-

quence, it turns out that by applying a magnetic flux through

the loop, the voltage dependence of the current polarization,

defined as

PIðU;VÞ ¼
Iþ � I�

Iþ þ I�
(6)

may change drastically. This is shown explicitly in Fig. 2(a)

where the PIðVÞ dependence is plotted for different values of

the applied flux at T ¼ 0:2Tc and h ¼ 0:4D0. We emphasize

that high spin polarization of both signs (i.e., up to

�6100%) can be achieved in the nanostructure within suita-

ble voltage bias windows and magnetic flux.

We demonstrate in this way that, in addition to the

voltage-dependent switching of the current-polarization, our

device is able to switch the magnitude and sign of PI by tun-

ing the magnetic flux through the loop. In Figs. 2(b) and

2(c), we show the PIðUÞ dependence for two different values

of the voltage bias at different temperatures. The maximum

values of PI are typically achieved at low temperatures,

T 	 0:2Tc, where the current is almost full-polarized. We

stress, however, that even for temperatures up to �0:6Tc a

sizeable polarization switching effect is still observable.

In Fig. 3, we show the flux dependence of the current

spin polarization calculated at T ¼ 0:2Tc for different values

of the effective exchange field in the SF structure [panel (a)]

and for different voltage bias applied across the junction

[panel (b)]. From these figures it follows that strong spin-

polarized currents and sign switching (i.e., around �6100%)

can be achieved for large enough values of h and for subgap

voltages. Large values of PI can also be achieved for

jeVj > 1:2D0, though the sign switching is not possible for

such large bias [see Fig. 3(b)].

All the results presented above have been obtained in

the limit of a short N wire, i.e., when ETh � D0 and for per-

fectly transmitting SN interfaces. In the case of an arbitrary

Thouless energy (i.e., for arbitrary wire length) and arbitrary

transparency of the SN interfaces, we have solved numeri-

cally Eqs. (3) and (4) in the N region for the retarded

Green’s function to obtain the DoS in the middle of the wire

and computed the currents I6 from Eq. (2). In Fig. 4, we

show the results for the dependence of the current spin-

polarization on the magnetic flux. Panel (a) shows this

dependency for different Thouless energies and a highly

transparent SN interface (RSN ! 0) assuming eV ¼ h
¼ 0:4D0. One can see that by increasing the length L, i.e., by

decreasing ETh, the range of switching is suppressed.

Nevertheless, a large spin polarization modulation amplitude

is still present up to ETh � 0:5D0. By choosing, for instance,

FIG. 2. (a) Voltage dependence of the current spin-polarization PI calculated

for different magnetic flux values at T ¼ 0:2Tc. Flux dependence of the cur-

rent polarization calculated for different temperatures at eV ¼ 0:4D0 (b) and

eV ¼ 1:2D0 (c). In all calculations, we set h ¼ 0:4D0.

FIG. 3. (a) PIðUÞ dependence calculated for different values of the effective

exchange field in the SF bilayer at T ¼ 0:2Tc and eV ¼ 0:4D0. (b) PIðUÞ de-

pendence calculated for different values of the applied voltage at T ¼ 0:2Tc

and h ¼ 0:4D0.

162406-3 F. Giazotto and F. S. Bergeret Appl. Phys. Lett. 102, 162406 (2013)
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aluminum (Al) with D0 ¼ 200 leV and silver (Ag) with

D ¼ 0:02 m2s�1 as prototypical materials to implement the

spin-current injector, this value would correspond to a realis-

tic length of N wire, L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hD=ETh

p
’ 360 nm. It is easily

understandable that if the wire is very long, i.e., for

ETh � D0, the proximity effect in the middle of the N region

is strongly weakened with the consequences that the DoS is

almost magnetic-flux independent, and the spin polarization

does not show any significant changes as a function of U.

We stress, however, that even in the case of a long wire, the

achievable current polarization may be high providing a

proper choice of the bias voltage [see, for example, the blue

curve in Fig. 4(a)].

A finite interface resistance RSN at the SN contact has a

similar effect on the magnitude and modulation amplitude of

the spin-polarization. According to Eq. (4), the strength of

the proximity effect is related to the coefficient c. For a

highly transparent SN interface (c!1), the proximity

effect in the wire is maximized and in turn the modulation of

the DoS in the metal. For finite values of RSN, the suppres-

sion of the proximity effect leads to a weaker dependence of

the DoS on the magnetic flux and, accordingly, the switching

effect is suppressed. This is shown in Fig. 4(b), where

the PIðUÞ dependence is plotted for different values of

c ¼ RN=RSN at ETh ¼ D0 and eV ¼ h ¼ 0:4D0. It can be seen

that by decreasing c, the switching occurs within a smaller

range of PI. We note again, that even for RSN of the order of

�RN , large PI values can be achieved as well for proper

applied magnetic fluxes [see the blue curve in Fig. 4(b)].

The switching of PI is therefore optimized by having

highly transparent SN interfaces and for intermediate-length

or short N wires (i.e., ETh � D0). In general, tuning of the

phase bias in the structure can be achieved experimentally

through an integrated superconducting coil providing a

suitable magnetic flux which allows, in principle, high-

frequency operation. In this context, the characteristic polar-

ization switching frequency is given by f ¼ min½ETh=ð2p�hÞ;
1=ð2p

ffiffiffiffiffiffi
LC
p

Þ; D0=ð2p�hÞ�, i.e., it is determined by the

minimum among the inverse time that the DoS requires to

follow a change in the phase difference across the N wire,

the characteristic frequency of the LC phase biasing circuit

(where L denotes the inductance and C is the total capaci-

tance), and the characteristic frequency of the superconduc-

tor. As ETh=ð2p�hÞ � 1010 Hz for intermediate-length N

wires, f can therefore easily approach values as high as

�1010 Hz for suitable L and C parameters. By contrast,

switching the spin polarization by changing the voltage bias

across the tunnel junction is normally much slower. In such

a case, f can be estimated to be of the order of �1=ð2pRtCÞ
therefore yielding at most �103–104 Hz as the relevant

switching frequency achievable in a typical cryogenic setup.

We shall finally discuss two conditions required for a

correct operation of the spin-current injector: (i) The avoid-

ance of magnetic hysteresis and (ii) the occurrence of a good

phase biasing in the structure. The first condition imposes

that 2pIJLG � U0,33 where IJ is the Josephson supercurrent

circulating along the loop, and LG is the ring geometric in-

ductance. Condition (ii) ensures that the phase difference set

by the magnetic flux drops entirely at the wire ends, allowing

a full modulation of its DoS. This condition can be expressed

as Lring
K � LN

K ,14,30 where Lring
K ’ �hRring=pD0 is the ring ki-

netic inductance33 and Rring is the loop normal-state resist-

ance, while LN
K ’ �hRN=pDg is the wire kinetic inductance.

Experiments have shown that both conditions can be fulfilled

by a proper choice of materials and a suitable geometry.14,30

In conclusion, we have proposed a hybrid quantum

interference nanodevice that can be used as an efficient spin-

current injector with controllable degree of current polariza-

tion. The device operates by combining phase-dependent

superconducting proximity effect and an effective Zeemann

splitting of the density of states induced by a ferromagnetic

layer. Under optimal conditions, it can provide strongly

polarized (i.e., up to �100%) spin-up and spin-down cur-

rents in two ways: either by tuning an externally applied

magnetic flux or by changing the voltage bias across the

structure. In the former case, switching frequencies of the

order of tens of GHz can be achieved. Conventional metals

combined with ferromagnetic insulators such as, for instance,

Eu chalcogenides layers24,34–36 appear as promising materi-

als for the implementation of this proposal.

F.G. acknowledges the FP7 program No. 228464

MICROKELVIN, the Italian Ministry of Defense through

the PNRM project TERASUPER, and the Marie Curie Initial

Training Action (ITN) Q-NET 264034 for partial financial

support. The work of F.S.B. was supported by the Spanish

Ministry of Economy and Competitiveness under Project

FIS2011-28851-C02-02. F.S.B. thanks Professor Martin

Holthaus and his group for their kind hospitality at the

Physics Institute of the Oldenburg University.
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