
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Improvement of Vickers hardness measurement on SWNT/Al2O3 composites 

consolidated by spark plasma sintering 

 

A. Morales–Rodrígueza,b*, A. Gallardo–Lópeza,b, A. Fernández–Serranoa,               

R. Poyatob, A. Muñoza and A. Domínguez–Rodrígueza 

 
a Department of Condensed Matter Physics, Universidad de Sevilla, P.O. BOX 1065, 

41080 Sevilla, Spain 
b Materials Science Institute of Sevilla (CSIC–Universidad de Sevilla), Américo 

Vespucio 49, 41092 Sevilla, Spain 

 

*Corresponding author. Tel.: +34 954556028; fax: +34 954552870; e-mail: amr@us.es 

 

Abstract 

 

Dense alumina composites with different carbon nanotube content were prepared by 

colloidal processing and consolidated by Spark Plasma Sintering (SPS). Single–wall 

carbon nanotubes (SWNTs) were distributed at grain boundaries and also into 

agglomerates homogeneously dispersed. Carrying out Vickers hardness tests on the 

cross–section surfaces instead of top (or bottom) surfaces has shown a noticeable 

increase in the reliability of the hardness measurements. This improvement has been 

mainly attributed to the different morphology of carbon nanotube agglomerates, which 

however does not seem to affect the Vickers hardness value. Composites with lower 

SWNT content maintain the Vickers hardness of monolithic alumina, whereas it 

significantly decreases for the rest of compositions. The decreasing trend with 

increasing SWNT content has been explained by the presence of higher SWNT 

quantities at grain boundaries. Based on the results obtained, a method for optimizing 

Vickers hardness tests performance on SWNT/Al2O3 composites sintered by SPS is 

proposed.  

 

Keywords: Carbon nanotubes; Alumina; Nanocomposites; Spark plasma sintering; 

Vickers hardness 
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1. Introduction   

 

Based on the exceptional combination of axial strength and resilience of high–aspect–

ratio carbon nanotubes (CNTs) [1–4], either single–wall or multi–wall (MWNTs), the 

development of composites has been significantly promoted in the last decade. Much of 

the work has been focused on CNT/Al2O3 composites, specially using MWNTs despite 

their “sword and sheath” failure type make them less structurally stable than SWNTs. A 

great variety of conflicting results are reported in literature. In some works no 

reinforcement is observed [5–7] while in others fracture toughness (K IC) increases [8–

16], but no clear trend is found when changing the amount of CNTs.  

 

The effect of CNT addition on composite hardness is not well established either. While 

several studies found the composite hardness worsens noticeably incorporating carbon 

nanotubes compared to the hardness value of monolithic alumina [7,8,10,13–15], other 

authors reported enhanced hardness for composites with CNTs [11,12,16,17]. For 

instance, Yi et al [10] found a decreasing trend in Vickers hardness of SWNT/Al2O3 

composites prepared by combustion reaction and quick pressing. By adding 0.5, 1 and 2 

wt. % SWNT, hardness values dropped 21%, 26% and 58% respectively as compared 

with alumina. Bakhsh et al [14] also found decreasing hardness values for 1, 2 and 3 wt. 

% MWNT/Al2O3 composites prepared by conventional sintering in flowing argon 

atmosphere. On the contrary, Mo et al [11] found that MWNT addition of 1.5 and 3 vol. 

% slightly enhanced the hardness of CNT/alumina composites with an increase of 5% 

and 7% respectively as compared with monolithic alumina.  

 

Regarding top views of Vickers indentation sites published elsewhere [6,10], it should 

be noted that the diagonals of indenter imprint are not observed in the composite with 

carbon nanotubes. Recently, Thomson et al. [7] have questioned the validity of the 

Vickers method to quantify the hardness in 10 vol. % SWNT/Al2O3 composites 

fabricated by Wang et al. [6] because the surface finishing was not acceptable, arguing 

that the presence of large pores impedes indents measuring. However, no considerations 

about the absence of impression of the pyramid’s edges after Vickers indentation were 

discussed.   
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Heterogeneous dispersion and distribution of CNTs in the ceramic matrix, poor 

chemical compatibility between CNTs and alumina hindering effective transfer load and 

the large differences in the scales of the matrix microstructure and the carbon nanotubes 

have been stated as main obstacles to transfer the desirable CNT mechanical properties 

to the brittle ceramic matrix [5,7,11,14,15]. Adequate dispersion of CNTs is very 

difficult owing to their tendency to form bundles in order to minimize their surface area. 

Although aqueous colloidal processing has been assessed as an efficient technique 

producing adequate dispersion of CNTs throughout ceramic matrix grain boundaries 

after sintering [18–20], the presence of agglomerates seems to be unavoidable. 

Recently, Poorteman et al [21] fabricated MWNT/alumina composites with low MWNT 

content (0.6 and 1.4 vol. %) by a colloidal processing route to optimize electrostatic 

repulsion. The suspension was rapidly frozen with liquid nitrogen followed by freeze–

drying to preserve the homogeneity of the mixture. Even those hot–pressed composites 

showed extended CNT agglomerated zones (~ 50 µm size) despite all the precautions 

taken.  

 

The presence of agglomerated CNTs, usually related to high CNT concentration, has 

been pointed out as responsible for both the decrease of the fracture toughness 

[11,14,15] and for the same decreasing trend followed by the hardness values with 

increasing CNT content [14]. Moreover, sintering of CNT/alumina composites usually 

results in reduced density with increasing amount of CNTs in the matrix [14,16]. This 

reduction in density has been attributed to the presence of agglomerates and leads to a 

reduction in mechanical properties. Recently, Sarkar and Das [16] incorporated 

MWNTs into Al2O3 from a low level (i.e. 0.15 vol. %) to minimize the effect of severe 

agglomeration. These authors found a trend of decreasing sinterability with increasing 

CNT content above 0.6 vol. % MWNT and pointed out that with only 1.2 vol. % 

MWNT, the aggregates acted as pores of similar dimensions playing a negative role in 

densification. It is assumed that agglomeration becomes relevant for high CNT content 

due to dispersion difficulties during processing [18], however no systematic studies 

have been carried out to quantify this assumption. Unfortunately, this lack of 

publications providing quantitative information to characterize the agglomeration of 

CNTs impedes to precisely compare the goodness among different processing methods 

and dispersion routines. 
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Besides the CNT tendency to gather and the difficulty above mentioned for comparison, 

the mechanical properties of brittle ceramic matrix composites present an inherent 

substantial scatter. Large scatter of mechanical data–set should be analyzed according to 

statistical methods for component designing with these materials. Promising results in 

this direction have been recently published [22]. This study revealed that MWNTs 

enhance mechanical properties of MWNT/Al2O3 compared to pure alumina and the data 

treatment performed with statistical tools suggested better structural reliability of the 

former [22]. Unfortunately, reliability studies of mechanical properties of CNT/ceramic 

composites are extremely limited, which keeps away the actual real–life application of 

these composites. 

 

In this paper, aqueous colloidal processing of SWNTs and alumina powder has been 

performed to minimize the heterogeneity in the CNT dispersion and composite powders 

were subsequently consolidated by SPS to avoid damage the carbon nanotubes and 

excessive grain growth of the matrix. The SWNT agglomerates distribution has been 

characterized for the different SWNT content and the Vickers hardness has been 

evaluated for these SWNT/Al2O3 composites. Additionally, the effect of agglomerate 

distribution on the Vickers imprint formation has been addressed for the first time. 

Weibull statistical analysis of Vickers hardness data has also been performed to assess 

the reliability of SWNT/Al2O3 composites for structural applications and to establish the 

actual effect of the agglomerates on mechanical properties of CNT/alumina composites. 

In view of the results obtained, a method for improving hardness measurements in such 

composites has been proposed.  

 

2. Experimental procedure 

 

2.1   Raw materials and processing 

 

Monolithic polycrystalline alumina and SWNT/alumina composites with different 

carbon nanotube content (1, 3, 5 and 10 vol. % SWNT) were prepared from α-alumina 

powder (99% purity and 30–40 nm particle size) supplied by Nanostructured and 

Amorphous Materials Inc. (Houston, TX) and HiP–co SWNTs provided by Carbon 

Solutions Inc. (Riverside, CA). Details about colloidal processing of composite powder 

with acid treated SWNTs have been reported elsewhere [19]. This procedure was 
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specifically developed to achieve a highly homogeneous distribution of SWNTs at 

ceramic grain boundaries [19]. 

 

The materials were consolidated by SPS (Syntex Inc. Model 515S, Dr Sinter Inc., 

Kanagawa, Japan) using the following sintering conditions: sintering temperature of 

1300°C for 5 minutes, applied uniaxial pressure of 75 MPa, and heating and cooling 

ramps of 300 and 50 °C/min, respectively. These conditions were selected based on a 

previous study of the authors [23] devoted to optimize the sintering conditions for 

monolithic alumina in order to achieve maximum density values with minimum grain 

coarsening. Prepared samples were 15 mm diameter and 3 mm thickness, 

approximately.  

 

2.2  Density and microstructural characterization 

 

Bulk densities were measured by the Archimedes method using distilled water as 

immersion medium. Theoretical density values for the composites were calculated by 

the rule of mixtures assuming density values of 3.97 g cm–3 for Al2O3 and 1.80 g cm–3 

for SWNTs.  

 

The structural integrity of SWNTs in the composites after SPS sintering was assessed 

by Raman spectroscopy performed on fracture surfaces using a dispersive microscope 

(Horiba Jobin Yvon LabRam HR800, Kyoto, Japan) equipped with a 20–mW He–Ne 

green laser (532.14 nm).  

 

Microstructural studies of composite fracture surfaces have been performed by high–

resolution scanning electron microscopy HRSEM (HITACHI S5200) to analyze the 

distribution of SWNTs in the alumina matrix, and to characterize the ceramic grains 

morphology. Distribution and morphology of SWNT agglomerates present in the 

composites were characterized by low magnification conventional SEM (JEOL 

6460LV). Cross–section (c.s.) and in–plane (i.p.) slices, i.e. surfaces parallel and 

perpendicular to the SPS pressing direction were polished with diamond paste up to 1 

µm for morphological studies. Additionally, polished surfaces devoted to characterize 

the alumina grains were thermally etched at 1200 ºC for 20 minutes in air to reveal grain 

boundaries. The morphology characterization was made measuring about 200 grains or 
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agglomerates respectively to obtain the equivalent planar diameter as size parameter, d 

(or D) = 2(area/π)1/2, and the shape factor, f (or F) = (4π·area)/(perimeter)2. Hereafter, 

lowercase letters will refer to alumina parameters and uppercase letters to agglomerates. 

Surface density of agglomerates was evaluated from the area fraction covered by them 

in low magnification SEM micrographs.  

 

2.3 Mechanical testing 

 

Vickers hardness measurements were carried out on samples polished up to 1 µm 

diamond paste. 19.6 N load was applied for 10 seconds using a diamond Vickers 

indenter (Duramin Struers, Germany).  Vickers hardness tests were performed on both 

c.s. and i.p. surfaces. 30 indents were made on each surface avoiding boundary effects 

(i.e. keeping the appropriate distance from sample edges and between indentation 

marks), in well–separated and randomly selected regions to verify data consistency. 

Only 15 indents were performed on each orientation in monolithic alumina for 

comparison. The hardness value HV (in GPa) was calculated from the indentation load P 

and the diagonal of the Vickers imprint a: HV = 1.854 (P/a2). 

 

For samples exhibiting more than 9 suitable tests, the HV data–set was statistically 

analyzed using a 2–parameter Weibull distribution to quantify its scatter. According to 

Weibull statistics, the cumulative probability (p) of a parameter, HV in our case, can be 

expressed as: � � 1 � exp��	
�/
�
�
�� where HV0 is the Weibull scale parameter, 

i.e. the characteristic value of hardness having 63.2% probability, and m is the Weibull 

modulus that describes the extent of scatter in a given data–set. The cumulative 

probability can be obtained from empirical data using the approach: �� � 	� � 0.5�/� 

where i is the rank of the ith observation corresponding to data–set arranged in 

ascending order and n is the total number of observations. 

 

HV0 parameter is a measure of the nominal hardness of the material and usually 

increasing HV0 values will be found with increasing values of average hardness. 

Parameter m is related to the reliability of a distribution, so higher m values indicate a 

lower scatter (narrower data distribution) and, hence, higher reliability. Thus a 1/(1–p) 
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plot on a natural log(log) scale versus 
�/
�
 on a natural log scale should give a 

straight line of slope m and from its intercept can be evaluated 
�
	value. 

 

3. Results and discussion 

 

3.1      Microstructural characterization 

 

Table 1 shows the density values of monolithic alumina and SWNT/Al2O3 composites 

after consolidation by SPS. The nomenclature used to refer to the composites is also 

included. The increase in relative density of SWNT/Al2O3 composites with rising 

carbon nanotubes content implies that SWNTs promote densification in these materials. 

Present results differ from most of the published results on CNT/Al2O3 composites 

[9,10,12,14,16] where CNTs inhibit densification of Al2O3. Only few works report 

relative densities ~100% [8] or densification enhancement with CNT incorporation 

[11,17]. In our case, this favorable sinterability suggests the presence of an effective 

diffusion layer bonding the SWNTs and the alumina grains. According to the sintering 

temperature used, the formation of an aluminum oxy-carbide phase (Al–O–C interphase 

among SWNTs and Al2O3 grains) is possible [22,24].  

 

Figure 1 presents the characteristic fracture surfaces exhibited by the composites which 

illustrate the adequate dispersion of SWNT bundles surrounding alumina grains. 

Transgranular fracture zones are appreciated in composite C1, while the other 

composites mostly exhibit intergranular fracture. CNTs remain attached to the grains 

taking their shape and no pull–out is observed after intergranular fracture. SWNTs 

located mainly parallel to the fracture surface, implying few pull–outs, have also been 

observed in SWNT reinforced zirconia toughened alumina (ZTA) composites [25]. 

Whereas the alumina grains surrounded by SWNTs are scarce in C1, it appears that 

SWNTs cover most of the grain boundaries in the composites with higher CNT content. 

The series of high–magnification micrographs show that SWNTs look like a black 

covering that coats an increasing portion of alumina grain surfaces with increasing 

SWNT content. The higher the amount of carbon nanotubes, the larger the grain surface 

coated by them. Dark regions are composed by SWNTs as confirmed by Raman 

spectroscopy (not shown). Similar microstructure has been previously observed in other 
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SWNT/Al2O3 composites [6,19,20]. In MWNT/Al2O3 nanocomposites only Huang et al. 

[26] observed this particular microstructure also in their fracture surface. These authors 

relate the observation of printed CNTs like stamps on the alumina grains with carbon 

diffusion into alumina lattice [26]. This idea suggests that the appearance of CNTs like 

a blanket coating the grains observed in these composites could be indicative of the 

presence of Al–C–O interphase between CNTs and alumina grains referred by [22,24].  

 

Table 1 displays global results of morphological parameters of alumina grains. No 

differences were observed on results from i.p. and c.s. surfaces, so the mean grain size, 

its standard deviation and the shape factor values presented in table 1 are the average 

parameters from both orientations. HRSEM observations of polished and thermally 

etched surfaces evidenced the existence of anomalous alumina grain growth together 

with an elongated aspect of the matrix grains regardless the composition and orientation 

(not shown). Similar mean grain size (below 1 µm) and shape factor (about 0.7) were 

measured in composites with lower SWNT content (C1 and C3) and no significant 

differences were observed compared to monolithic alumina grains [23] except for 

narrower size distributions (smaller σd). Conversely, finer grain size with narrower 

distributions were found in composites with high carbon nanotube content (C5 and 

C10), but differences in relation to the grain shape were not appreciated.  

 

Low–magnification SEM micrographs (figure 2) illustrate the arrangement and 

morphology of SWNT agglomerates in the i.p. and the c.s. surfaces. Although many 

processing efforts were devoted to obtain a homogeneous distribution of SWNTs, it is 

obvious that the presence of agglomerates in the composites has not been avoided. It is 

interesting to note that the existence of agglomerates has not entailed detrimental effect 

on density values (table 1).  The rough finish observed is due to pull–out of the alumina 

grains, which takes place during the polishing process of the composites. This is in 

agreement with the observations of Echeberria et al. [25] on rougher finishing in 

surfaces with small alumina grains and CNTs compared to flat finishing in areas 

consisting of large–grains without CNTs. These latter zones are inexistent in our 

composites due to the adequate dispersion of SWNTs achieved. 

 

While the agglomerates (dark phase) are randomly oriented on the i.p. surface (fig. 2a), 

a strong alignment is clearly observed from micrographs on the c.s. plane (fig. 2b), with 
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their major axis disposed perpendicular to the direction of applied pressure during 

sintering. Only Thomson et al. [7] have also referred anisotropic orientation of CNT 

agglomerates in alumina. Similar agglomerate size, about 6 – 8 µm (table 2), was found 

regardless the SWNT content on the i.p. sections. Smaller sizes were measured on the 

c.s. surfaces for each composite. Furthermore, agglomerate shapes were also very 

sensitive to orientation. Whereas more rounded shape is found on the i.p. surfaces (F = 

0.6), a marked elongation was observed in the c.s. agglomerates (F = 0.4 – 0.5). These 

morphological characteristics suggest that the agglomerates are flattened structures.  

 

Regarding the surface density of agglomerates ρs, no remarkable differences have been 

found in relation to surface orientation. A considerable increase in the surface density of 

agglomerates with increasing SWNT content up to 5 vol. % was observed, changing 

from 0.6 % in C1 to 2.4 % in C5 (table 3). However, similar agglomerate surface 

density was found for C5 and C10 composites. These results highlight the need to 

characterize agglomerate densities for each prepared composite with different SWNT 

content.  

 

Assuming that the area fraction covered by agglomerates in SEM micrographs is equal 

to its volume fraction in composites (Delesse’s principle of stereology), the percentage 

of the CNT content that are agglomerated was estimated from the bulk density of 

agglomerates and the SWNT content for each composition (A% = 100��/

����	���.%�. The SWNT vol. % contained in the agglomerates can be directly 

inferred from agglomerate bulk density. The SWNT vol. % dispersed at the grain 

boundaries is directly the difference between the total SWNT content and the SWNT 

content within the agglomerates. Hereinafter, A–SWNTs and GB–SWNTs will refer to 

SWNTs arranged in agglomerates and at grain boundaries respectively. From these 

calculations, similar percentages of the SWNT content (~ 40 – 60%) were agglomerated 

in composites up to 5 vol. % SWNT, leading to both higher A– and GB–SWNT net 

contents in composites with higher SWNT content (table 3). This percentage is even 

smaller in the case of C10 (~ 20%) than for the former compositions, which results in a 

net A–SWNT content similar to that of composite C5 and a larger amount of SWNTs 

distributed at the grain boundaries. Although it has generally been assumed by other 

authors that agglomeration increases in case of high CNT content due to dispersion 
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difficulties, the results presented here point otherwise. These calculations are in 

agreement with increasing amounts of SWNT bundles embedded among ceramic grain 

boundaries observed by HRSEM (fig. 1).  Besides, the matrix refinement found in high 

SWNT content composites (C5 and C10, table 1) also supports that the predominant 

volume fraction of SWNTs is placed in networks surrounding the ceramic grains. 

Despite the presence of agglomerates, the GB–SWNT fraction has effectively inhibited 

the matrix grain growth since the presence of SWNTs at ceramic grain boundaries 

disfavor both grain boundary sliding and diffusion during densification [27,28].  

 

3.2    Evaluation of Vickers hardness in SWNT/Al2O3 composites 

 

Since microstructural characterization revealed anisotropy in agglomerate morphology, 

hardness both on i.p. and c.s. surfaces was evaluated. Regarding the formation of the 

indentation marks, most of the i.p. imprints were not well defined for all composites, i.e. 

the diagonals of the Vickers imprint were not visible (fig. 3a), while a higher number of 

proper well formed indentations were obtained on c.s. surfaces (fig. 3b). Up to our 

knowledge, no similar findings have been published in literature. Since Vickers 

hardness is calculated from diagonals of indenter imprints, the topography of each 

imprint was examined to discard those without the characteristic Vickers indenter 

regular shape. These optical images of typical indenter marks also show that polished 

surfaces have a rough finish due to grain pull–out during polishing. Vickers sites also 

exhibit typical lack of classical radial cracks in the indentation impression [6,25].  

 

A trend of decreasing on the number of Vickers marks showing visible diagonals with 

increasing SWNT content can be clearly appreciated for all compositions in the bar 

chart graph of figure 4. Furthermore, these results also point out that the use of cross–

section surface allows an accurate measurement of Vickers hardness in these 

composites more efficiently. As an example of the inefficiency of the procedure on i.p. 

surface, after 30 indentations performed in C3, only one proper measure was 

accomplished (fig. 4). In contrast, 24 proper imprints were obtained on c.s. surface for 

the same number of performed indentations. For composites with higher SWNT 

content, no suitable imprints were found on their respective i.p. surfaces (therefore, bars 

of C5 and C10 are not shown for these cases in fig. 4). 
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Since the ceramic grain morphology resulted very similar in both i.p. and c.s. surfaces, 

any discrepancies found in the definition of the imprint between both surfaces may be 

due to a different cause, most likely related to the different arrangement and shape of 

the CNT agglomerates. Taking into account that the agglomerates dispersed in the 

alumina matrix are SWNT entangled networks, they are bent during loading acquiring 

the shape of the indenter. Once the load is removed they are expected to elastically 

spring back to their original conformation.  

 

Therefore, SWNT aggregates can be visualized as elastic networks which prevent 

plastic deformation by indentation. Recently, Sarkar and Das [22] referred MWNTs 

stayed intact in their positions in indented regions of pressure–less sintered 

MWNT/alumina composites, while alumina matrix exhibited permanent deformation. 

The finding of unaffected carbon nanotubes by the indenter tip–CNT direct interaction 

during the indentation load cycle [22] supports that the contact between the indenter tip 

and elastic SWNT agglomerates prevents the formation of imprints properly. The 

probability of finding agglomerates is proportional to the agglomerate surface density. 

When the indenter is pushed in the direction of the sintering applied pressure, the 

rounded shape and larger size of the agglomerates favors greater contact surface with 

the indenter. However, in the cross–section areas the agglomerates exhibit smaller size 

with a much higher aspect ratio, very thin and elongated in the direction perpendicular 

to the applied pressure, leaving larger agglomerate–free areas in contact with the 

indenter, which allows permanent deformation of the matrix during indenter 

penetration. This idea could also explain the decrease in the number of suitable imprints 

with increasing SWNT content, which would be due to the increase of agglomerate 

density. This also suggests a control technique to compare SWNT dispersion in these 

composites consisting of making a fixed number of Vickers indentations so that the 

number of unsuitable marks can roughly provide direct information on the level of 

SWNT agglomeration. The decreasing tendency in the number of proper marks 

observed between C5 and C10 for indentations performed on their cross–section 

surfaces (figure 4) suggests that the extent of SWNT layer covering the alumina grains 

could also affects the imprint formation. These CNTs are randomly dispersed in the 

alumina matrix and acquire the tortuous shape of alumina grain boundaries. Our results 

suggest that the higher the surface contact among indenter and SWNTs (both in 

agglomerates as at grain boundaries), the greater the number of unsuitable indentations.  
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Vickers hardness values were evaluated only from indentations showing well defined 

marks. Values determined for each material resulted very similar both for the different 

orientations examined and for the different scanned zones on each surface (table 4). 

Therefore, although applied pressure during SPS leads to preferential alignment of 

SWNT agglomerates perpendicular to the pressing direction, directly observed on 

agglomerates distribution (fig. 2b), anisotropic effects have not been observed in the 

values of Vickers hardness for these SWNT/Al2O3 composites. Except for the 

composite C1 whose hardness is similar to that of monolithic alumina, HV values of the 

composites with higher SWNT content are lower. This can be explained by the fact that 

SWNTs are a softer component [17]. Despite the drop observed in composite hardness 

with respect to alumina, it is interesting to note the high hardness value measured for C5 

on c.s. surface (15.4 GPa), a value 40 % higher than that found for a similar composite 

also indented on its c.s. surface [7].  

 

The greater number of proper imprints found in c.s. surfaces allows a higher accuracy 

on the hardness measurements performed on these surfaces in comparison to those 

carried out on i.p. surfaces. This is supported by the reduction of the standard deviation 

of the data measured on c.s. surfaces due to the greater number of appropriate 

measurements (table 4). Therefore, the indentation of the cross–section surface is 

proposed for these composites in order to achieve superior preciseness in hardness 

measurement. 

 

Weibull plots (figure 5) of HV data obtained from indentations performed on c.s. 

surfaces of the composites show satisfactory linear fits consistent with the Weibull 

distribution proposal. Results of Weibull statistics are tabulated in table 4. 

 

A decreasing trend of the Weibull moduli (i.e. slope of the linear regression lines) with 

increasing SWNT content is observed. Hence, the HV data present a higher scatter in 

composites with higher SWNT content because the lower m means the greater the 

variability of hardness. Compared to monolithic alumina (mAl2O3 = 40.2), the addition of 

SWNTs leads to a poorer structural reliability (i.e. low m values). Notwithstanding the 

above, the decrease is not very pronounced in the case of low carbon nanotube content 

(mC1 = 31.2). Nearly invariable reliability was found for C3 (mC3 = 15.0) and C5 (mC5 = 

14.8) composites. Such large variability would lead to uncertainties in obtaining a 
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precise HV value for composites with high SWNT content. Since the agglomerate 

density for all these composites is different, this similarity in Weibull moduli found for 

C3 and C5 rules out that the increased scatter of HV data with increasing SWNT content 

from 1 to 3 vol. % is due to a greater presence of agglomerates. The fact that interfacial 

bonding between alumina grains degrades with SWNT addition, in agreement with 

increasing tendency to intergranular fracture exhibited by the composites (fig. 1), 

suggests that GB–SWNTs could be the weakest flaw controlling the Hv scatter. The 

decreasing trend of Weibull moduli with increasing SWNT content up to 3 vol. % could 

be related to higher possibility of indentation zones with alumina grains surrounded by 

GB–SWNTs. HRSEM inspections support that the alumina grains surrounded by 

SWNTs were scarce in C1 and an increasing fraction of alumina grains was coated by 

carbon nanotubes with increasing SWNT content (fig. 1). Once the GB–SWNTs cover 

most of the grain boundaries in the composites, this effect saturates leading to a 

stabilization of m value in composites with higher CNT content (C3 and C5). Thus, the 

continuity degree in the GB–SWNT distribution could be the key point controlling the 

variability of hardness. 

 

The characteristic values of Weibull distributions HV0 exhibit the similar decreasing 

trend than transversal HV data with increasing SWNT content (i.e., leftward shift 

observed in Weibull plots for composites), changing from 19.3 to 15.9 GPa for 

composites with 1 and 5 vol. % SWNT, respectively. The C1 composite shows a slight 

increase in HV0 compared with the value of 19.0 GPa found for monolithic alumina in 

agreement to mean HV values also reported in table 4. The composites C1 and C3 

exhibited similar matrix microstructures whereas C5 even showed refined grain size 

(table 1). Therefore, the HV0 decreasing trend with increasing SWNT content observed 

in figure 5 is not expected from matrix microstructure differences. Moreover, the 

increasing agglomerate surface densities found in these composites lead to similar 

percentages of SWNT content arranged into agglomerates in all them with increasing 

both A– and GB–SWNT vol. % as SWNT content increases (table 3). The hardness 

decrease could be explained arguing that CNT incorporation involves the addition of a 

softer phase and interfacial bonding between alumina grains worsens with SWNT 

addition. Therefore, more quantity of SWNTs at grain boundaries must be the 

responsible of the HV0 decrease.  
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Performing similar statistical analysis, an improvement of HV in pressure–less sintered 

MWNT/alumina composites has been reported by Sarkar and Das [22]. These authors 

propose that the adequate grain boundary cohesion achieved by flexible multi–walled 

carbon nanotubes entangling alumina grains could be responsible of the superior HV 

reliability of the composites over pure alumina despite the presence of CNT 

agglomerates. Our results point in the opposite direction to that suggested by the 

previous authors. SWNT addition reduces the reliability of hardness values in alumina–

based composites. It affects negatively the grain boundary cohesion in SWNT/alumina 

composites and SWNTs distributed at grain boundaries are pointed as the critical flaw. 

It is suggested that the fraction of alumina grains surrounded by SWNTs controls the 

variability of hardness values, whereas the increasing amount of GB–SWNTs is 

responsible of the decrease in characteristic hardness values with increasing SWNT 

content. The presence of agglomerates does not play a fundamental role on the HV 

distribution in these composites.    

 

4. Conclusions 

 

SWNT/Al2O3 composites with carbon nanotube content from 1 to 10 vol. % were 

prepared by colloidal processing and SPS. An increasing trend in their relative density 

with increasing SWNT content has been observed. Dense composites with submicron 

alumina matrix were obtained with SWNTs distributed at grain boundaries and into 

agglomerates homogeneously dispersed. The agglomerate size and shape resulted very 

sensitive to orientation, exhibiting a much higher elongation in the direction 

perpendicular to the applied pressure in cross–section areas than on in–plane surfaces 

where agglomerates were more rounded without exhibiting preferred orientation. The 

characterization of SWNT agglomerates performed in this work indicates that 

increasing SWNT content (from 1 to 5 vol. %) involves similar percentage of the 

SWNT content placed in agglomerates (~ 50%).  

 

A decreasing trend of the number of Vickers marks showing visible diagonals with 

increasing SWNT content was clearly appreciated for all compositions. In order to 

optimize the performance of Vickers hardness tests, indentation on the cross–section 

surfaces is proposed. Superior hardness measurement reliability when testing on cross–

section surfaces over in–plane ones is mainly attributed to the different agglomerate 
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morphology observed between these orientations. A control technique to compare 

SWNT level of agglomeration in these composites is proposed consisting of evaluating 

the number of imprints without pyramidal diagonal marks after making a fixed number 

of Vickers indentations. This number provides rough information on the level of SWNT 

agglomeration. 

 

Although applied pressure during SPS leads to preferential alignment of SWNT 

agglomerates perpendicular to the pressing direction, anisotropic effects have not been 

observed in the values of Vickers hardness. The decreasing trend in HV with increasing 

SWNT content observed for these SWNT/Al2O3 composites has been explained by the 

presence of higher SWNT quantities at grain boundaries. The presence of agglomerates 

does not play a fundamental role on the HV distribution in these composites.    
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Figure captions 

 

Figure 1. HRSEM micrographs of fracture surfaces: (a) C1, (c) C3, (e) C5 and (g) C10. 

Details corresponding to higher-magnification micrographs are shown in (b), (d), (f) and 

(h). The dark regions are SWNT bundles (arrows) surrounding alumina grains (light 

regions).  

 

Figure 2. SEM micrographs showing the SWNT agglomerate distribution on (a) in–

plane and (b) cross–section surfaces of composite C10. Compression axis during SPS is 

indicated in (b) by arrows. 

 

Figure 3. Optical images illustrating the different appearance of the imprints in C1 

composite after indenting on (a) i.p. and (b) c.s. surfaces.  

 

Figure 4. Statistical bar chart with percentages of proper indentations carried out on the 

different composites in both the in–plane (solid bars) and cross–section (hollow bars) 

surfaces.  

 

Figure 5. Weibull plots of HV data of C1, C3 and C5 obtained on transversal surface 

orientation (solid regression lines). Data of monolithic Al2O3 are represented for 

comparison (dashed regression line). 
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Table 1. Theoretical and relative density and morphological parameters of alumina 

grains.  

 

Material 
SWNT content 

(vol. %) 
ρth 

(g cm-3) 
ρr  

(%) 
<d>  

(µm) 

σ<d> 
(µm) 

f 

Al2O3
* 0 3.97 97.7 0.7 0.6 0.67 ± 0.14 

C1 1 3.95 98.5 0.6 0.3 0.68 ± 0.10 
C3 3 3.90 99.7 0.7 0.4 0.67 ± 0.12 
C5 5 3.87 99.8 0.5 0.4 0.71 ± 0.12 
C10 10 3.75 100 0.5 0.3 0.67 ± 0.12 

* Data from reference [23]. 
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Table 2. Morphological parameters of SWNT agglomerates measured on i.p. and c.s. 

surfaces for each composite.  

 

Material 

i.p. c.s. 

<D>  

(µm) 

σ<D> 
(µm) 

F 
(± 0.20) 

<D>  

(µm) 

σ<D> 
(µm) 

F 
(± 0.20) 

C1 7.9 6.3 0.63  2.7 1.9 0.50 
C3 6.4 3.8 0.61  5.5 3.9 0.53 
C5 8.5 7.0 0.60  5.3 3.9 0.41 
C10 7.6 5.7 0.56  6.0 6.0 0.43  
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Table 3. Surface density of SWNT agglomerates, percentage of carbon nanotube 

content in agglomerates and A– and GB–SWNT vol. % calculated for each composite.  

 

Material ρs (%) A% 
A–SWNT    
(vol. %) 

GB–SWNT  
(vol. %) 

C1 0.6 60 0.6 0.4 
C3 1.3 43 1.3 1.7 
C5 2.4 48 2.4 2.6 
C10 2.1 21 2.1 7.9 
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Table 4. Vickers hardness values of monolithic alumina and SWNT/Al2O3 composites. 

The number of suitable measurements is indicated in parenthesis. Results of Weibull 

statistics for c.s. HV data are also tabulated. 

 

Material 
HV  (GPa) Weibull parameters 

i.p. c.s. global  m HV0 (GPa) 

Al2O3 18.3 ± 0.4 (15) 18.7 ± 0.5 (15) 18.5 ± 0.5 (30) 40.2 ± 1.7 19.0 

C1 18.7 ± 1.5 (8) 18.9 ± 0.7 (27) 18.9 ± 1.0 (35)  31.2 ± 1.5 19.3 

C3 17.1 (1) 16.8 ± 1.3 (24) 16.8 ± 1.0 (25) 15.0 ± 0.4 17.3 

C5 n/a 15.4 ± 1.5 (9) 15.4 ± 1.5 (9) 14.8 ± 1.0 15.9 

C10 n/a 14.0 ± 0.7 (5) 14.0 ± 0.7 (5) n/a n/a 
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Figure captions 

 

Figure 1. HRSEM micrographs of fracture surfaces: (a) C1, (c) C3, (e) C5 and (g) C10. 

Details corresponding to higher-magnification micrographs are shown in (b), (d), (f) and 

(h). The dark regions are SWNT bundles (arrows) surrounding alumina grains (light 

regions).  

 

Figure 2. SEM micrographs showing the SWNT agglomerate distribution on (a) in–

plane and (b) cross–section surfaces of composite C10. Compression axis during SPS is 

indicated in (b) by arrows. 

 

Figure 3. Optical images illustrating the different appearance of the imprints in C1 

composite after indenting on (a) i.p. and (b) c.s. surfaces.  

 

Figure 4. Statistical bar chart with percentages of proper indentations carried out on the 

different composites in both the in–plane (solid bars) and cross–section (hollow bars) 

surfaces.  

 

Figure 5. Weibull plots of HV data of C1, C3 and C5 obtained on transversal surface 

orientation (solid regression lines). Data of monolithic Al2O3 are represented for 

comparison (dashed regression line). 
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