10

11

12

13

14

15

16

17

18

19

20

21

22

23

Female-female competition is influenced by forehead patch

expression in pied flycatcher females

Morales J**, Gordo 0%, Lobato E*®, Ippi S*¢, Martinez-de la Puente J*%, Tomas G*°,

Merino S, Moreno J?

?Museo Nacional de Ciencias Naturales-CSIC, Dpto. Ecologia Evolutiva, ¢/ José

Gutiérrez Abascal 2, 28006 Madrid (Spain)

* Correspondence: ). Morales, Museo Nacional de Ciencias Naturales-CSIC, Dpto. Ecologia Evolutiva,

28006 Madrid, Spain. e-mail address: jmorales@mncn.csic.es, phone: +34 914 111 328 ext. 1341, fax:

+34 915 645 078

® present address: Research Centre in Biodiversity and Genetic Resources (CIBIO), Behavioural Ecology
Group, Campus Agrdrio de Vairdo, Vairdo (Portugal)

¢ Present address: Departamento de Zoologia, Centro Regional Universitario Bariloche, Universidad
Nacional del Comahue — CONICET (Argentina)

9 present address: Estacion Bioldégica de Dofiana (EBD-CSIC), Department of Wetland Ecology, ¢/ Américo
Vespucio sn, Sevilla (Spain)

€ Present address: Estacion Experimental de Zonas Aridas-CSIC, Dpto. Ecologia Funcional y Evolutiva,

Almeria (Spain)

concise title: forehead patch and female intrasexual competition



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Abstract

There is increasing evidence that sexual selection operates in females and not only in males.
However, the function of female signals in intrasexual competition has been little studied in
species with conventional sex roles. In the Iberian populations of the pied flycatcher (Ficedula
hypoleuca), some females express a white forehead patch, a trait that in other European
populations only males exhibit and has become a classical example in studies of sexual
selection. Here, we investigated whether the expression of this trait plays a role in female-
female competition during early breeding stages. To test this hypothesis, we simulated
territorial intrusions by challenging resident females with stuffed female decoys expressing or
not a forehead patch. We found that resident females directed more attacks per trial and
maintained closer distances to non-patched decoys than to patched ones. Also, patched
females were more likely to attack the decoy than non-patched females. Interestingly, females
were more aggressive against the decoys when their mate was absent. This may indicate that
females relax territory vigilance in the presence of their mate or that males interfere in the
interaction between competing females. The behavior of resident males was also observed,
although it was not affected by decoy’s patch expression. Our findings suggest that the
forehead patch plays a role in female intrasexual competition. If the forehead patch signals
fighting ability, as it does in males, we may interpret that non-patched females probably

avoided repeating costly agonistic encounters with the most dominant rivals.

Keywords Aggression, Communication, Female competition, Female ornamentation,

Intrasexual selection, Ficedula hypoleuca, Sexual selection, Signaling
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Introduction

Sexual selection in species with conventional sex roles has been traditionally thought to act
mainly in males because of sex differences in gamete size, mating success and parental
investment (Bateman 1948; Trivers 1972). However, there is an increasing interest in the view
that sexual selection also operates on females (reviewed by Amundsen 2000; LeBas 2006;
Kraaijeveld et al. 2007; Clutton-Brock 2007, 2009; Clutton-Brock and Huchard 2013). Yet, the
extent of this selection and the mechanisms involved are less well understood. For instance,
where females have developed secondary sexual characters, it is often uncertain whether they
are used to attract males, induce male parental investment or to compete with other females
for breeding resources (Clutton-Brock 2007).

The importance of female-female competition has received little attention, probably
because it is usually less conspicuous than competition among males (Stockley and Campbell
2013). However, because of their greater energetic investment in gametes and parental care,
females are expected to compete over mate quality (Petrie 1983) or over resources that
directly influence the probability of mating or maintaining a monogamous pair-bond (Slagsvold
and Lifjeld 1994). This is crucial in socially monogamous species, where pair bonds persist
throughout a breeding season and sometimes for life. Therefore, sexual selection (or more
generally, natural selection; Clutton-Brock and Huchard 2013) may favor the evolution of
female traits that signal their capacity to outcompete other females for indirect genetic
benefits or for direct benefits held by preferred males (e.g., territories, nesting sites or
paternal care; Servedio et al. 2013). Indeed, there is evidence that female visual, odor or vocal
signals are involved in female intrasexual competition in various taxa (see reviews by Tobias et
al. 2012; Clutton-Brock and Huchard 2013; Stockley and Campbell 2013; Stockley et al. 2013).
However, despite recent interest in the evolution of female ornamentation and weaponry,

there are very few demonstrations compared with male signals (Rosvall 2011).
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Here, we explored the role of a female plumage trait in female-female competition in a
socially monogamous songbird, the pied flycatcher Ficedula hypoleuca. This is a suitable
species to study female intrasexual competition because mated females are highly aggressive
towards intruding females during initial breeding stages (i.e., nest-building and egg laying
periods; Breiehagen and Slagsvold 1988; Lifjeld and Slagsvold 1989). This behavior has been
proposed as a mechanism to protect male parental investment, given that there is facultative
polygyny in this species (Slagsvold et al. 1992; Slagsvold and Lifjeld 1994). Competition among
females for breeding sites (nest-boxes) can be rough and even lethal, especially during the
nest-building period, and we have observed that females may be evicted from their nest-box
by other females even while incubating eggs and brooding hatchlings (J. Morales et al.,
personal observation). Aggressive encounters between females could favor the evolution of
sexual signaling (or more generally, social signaling) in females just as in males (West-Eberhard
1983).

In Iberian populations of the pied flycatcher almost half of the females express a white
forehead patch (41% in our study population between 1997 and 2006, n=596 females), a
plumage trait that all males exhibit (see Fig. 1). In some cases, females’ patches are as large as
the largest patch in males (Potti 1993; Morales et al. 2007). This character has become a
classical example in studies of sexual selection on males in Ficedula flycatchers (see for
instance Gustafsson et al. 1995; Sanz 2001; Qvarnstrom et al. 2006). Forehead patch size in
males signals fighting ability and predicts the outcome of male competition over territories
(Part and Qvarnstrom 1997; Qvarnstrém 1997; Jarvisto et al. 2013). In Iberian pied flycatchers,
females prefer mates with larger forehead patch sizes (Potti and Montalvo 1991; but see
Galvan and Moreno 2009) and experimentally reduced male patch size results in lower
female’s reproductive investment (Osorno et al. 2006). In females, forehead patch expression

is heritable (Potti 1993; Potti and Canal 2011) and positively related to age (Potti 1993; Potti et
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al. 2013), although many old females do not express the trait (29% of females older than 4
years; Morales et al. 2007). Also, patch expression in females is correlated with lower risk of
haemoparasite infections (Potti and Merino 1996) and with greater yearly production of
fledglings (Morales et al. 2007; Potti et al. 2013). A long-term study shows that patched
females invest more in reproduction at early ages than non-patched ones, but at advanced
ages they seem to pay a cost for expressing the ornament in terms of decreased fledging
success, which could be indicative of advanced senescence (Potti et al. 2013). Interestingly,
experimental (Moreno et al. 2013a) and correlative (Moreno et al. 2013b) evidence indicates
that patched females suffer higher oxidative tissue damage. Thus, female’s forehead patch
could function as a badge of oxidative status. However, to date, the function of female’s
forehead patch as a badge of social status remains untested experimentally.

We hypothesized that the female’s forehead patch plays a role as a badge of status in
female-female competition. To test this hypothesis we performed simulated territorial
intrusion tests with stuffed female decoys either without patch or with a patch with the largest
size recorded for females in the study population. We may predict very different outcomes.
During social conflict, subordinate individuals can use information from signals of fighting
ability and previous encounters to avoid repeatedly entering into unprofitable fights with
higher ranked individuals (reviewed by Cant and Young 2013). Thus, resident females (both
patched and non-patched) should avoid encounters with patched decoys. Conversely, patched
decoys may elicit more aggressiveness from the residents because they are perceived as larger
threats (as found in male collared flycatchers Ficedula albicollis for the wing patch size;
Garamszegi et al. 2006). Additionally, signal asymmetry between opponents could play a role
in female-female competition (see Griggio et al. 2010, in the rock sparrow Petronia petronia),
and we may thus expect an interaction between resident female’s and decoy’s patch

expression. On the one hand, resident patched females could be more aggressive against non-



122 patched decoys than against patched ones (see Jarvi and Bakken 1984, in the great tit Parus
123 major). On the other hand, matched contestants may show the greatest tendency for

124 escalation (Parker 1974; see Midamegbe et al. 2011, in the blue tit Cyanistes caeruleus).

125 Finally, resident females could rely on their absolute badge size rather than relative to their
126  opponents (see Pryke and Andersson 2003, in red-shouldered widowbirds Euplectes axillari).
127

128  Material and methods

129  Study population

130  The study was conducted in 2006 in a population of pied flycatchers breeding in 300 wooden
131 nest-boxes in a deciduous forest of Pyrennean oak (Quercus pyrenaica), at an elevation of
132 1200 m in the locality of Valsain, Segovia, central Spain (40°53’'N, 4°01'W). The pied flycatcher
133 shows a high degree of sexual dimorphism during the breeding season. Although variable
134  amongindividuals, males in Iberian populations have a contrasting white and black plumage,
135  while females are dull light brown. Thus, females either expressing or not a white forehead
136  patch are visually distinct from males (see Fig. 1).

137

138  Simulated territorial intrusions

139 Nest-boxes were checked every three days from 1% April to 10" May to detect the initiation
140 and progress of nest construction, indicative of the establishment of a breeding pair. When
141 nest construction was almost complete (i.e., just before the nest showed the rounded and
142  closely knit nest cup), resident females were challenged with a pied flycatcher female decoy
143 placed on top of the nest-box to simulate a territorial intrusion. As decoys, we used two

144  stuffed females that originally lacked a forehead patch. Both were found naturally dead in the
145 population in previous years and were preserved frozen at - 20°C until stuffing. They were

146 mounted in neutral lifelike perched postures. We made a removable patch by gluing pieces of
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white feathers cut from a stuffed female’s wing patch on a cardboard of 9.9 x 5.7 mm (width x
height; the maximum female forehead patch size recorded in the study population in the
previous year). Decoy’s phenotype (presence/absence of forehead patch) was randomly
assigned in the first trial of each nest. When assigned, the fake patch was fixed on the decoy’s
forehead with a thin metal wire concealed under head plumage. We used two different stuffed
females to minimize pseudo-replication (Hurlbert 1984), as commonly used in bird studies to
perform territorial intrusion tests (e.g., Vergara et al. 2007, 2013; Vergara and Fargallo 2007;
Kingma et al. 2008; Parn et al. 2008). Apparently, the resident pair recognized stuffed decoys
as conspecifics, since not only some resident females attacked them but also around 20% of
resident males tried to copulate with the stuffed decoys (see results). On average, two days
(mean % SE: 2.1 £ 0.3; range 1-7 days) after the first test, females were challenged for a second
time with the same decoy but with the alternative patch phenotype to that previously
assigned. Thus, the two decoys presented to a given female only differed in forehead patch
expression (presence/absence). All observations were performed before first egg laying (on
average, 7.5%0.5 days before). Thus, all females were likely observed during their fertile period
(see Birkhead and Mgller 1992; Lifjeld et al. 1997).

We were able to observe the behavior of 38 individual females twice (with patched
and non-patched decoys) and of 6 once (3 with patched decoys and 3 with non-patched ones).
Some females did not appear during the entire trial and we supposed they were away from the
territory and did not perceive the stimuli of the intrusion. Therefore, we repeated the
corresponding test on the following day, but in 6 cases the focal female never appeared. Out
of the 82 territorial trials, the resident male turned up in 67 (32 with patched decoys and 35
with non-patched ones) and was absent in 15. Later in the season we captured 97% of focal

males in their nest-box and none of them was found to hold more than one territory.
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After placing the decoy on top of the nest-box, we retreated to a hidden observation
position about 20 m away. Observations were performed with the aid of binoculars and
recorded in real time in a digital voice recorder (Olympus VN-960PC). All tests were carried out
from 7:00 am to 12:30 pm, because activity is usually reduced after this time. Although our aim
was to record female behavioral responses, we also observed the behavior of males. We
recorded the following behavioral variables for females and males: latency time to first
appearance (min), presence/absence of attacks (pecking and flight attacks with or without
direct contact), number of attacks per trial, and the degree of approach to the decoy, which
was recorded according to three easily observed categories: 0O=the focal bird did not approach
the decoy, nor did it enter the nest-box or fly around it; 1=the focal bird did not approach the
decoy but entered the nest-box or flew around its entrance; 2=the focal bird clearly
approached the decoy either perching just beside it on the nest-box or performing attacks
against it with or without contact. During the tests we also noted that 19 individual females
expressed a distinctive forehead patch while 25 did not (this was later confirmed at capture).
For males, we additionally recorded presence/absence of copulation attempts and
presence/absence of enticement calls (hereafter song). We did not record the male’s degree of
approach to the decoy because of its ambiguous interpretation, for it may be either a sign of
intimidation or enticement.

Following previous studies in pied (Breiehagen and Slagsvold 1988; Ratti 2000) and
collared (Hegyi et al. 2008) flycatchers, we assumed that females’ degree of approach to the
decoy as well as direct attacks were accurate estimates of her aggressive motivation against
the decoy. We may interpret that females with long latency to arrive were on average less
engaged in territory vigilance. Pied flycatchers defend a rather small territory around the
immediate vicinity of the nest (median radius 10 m; Lundberg and Alatalo 1992). Although

feeding trips can sometimes be up to 100 m away, males and females seem to forage usually
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within a radius of 50 m around the nest (von Haartman 1956; Maps 7 and 8). Females are able
to detect intruder females at a distance of at least 40 m (Ratti 2000). Hence, it is likely that
most females in our study were able to detect the decoy soon after placing it on top of the
nest-box, although we cannot exclude the possibility that some of them were far away from
the territory. Observations lasted 15 minutes, although in 22 tests they were finished before
either because the female (n=17) or the male (n=2) knocked the decoy off the nest-box after
direct contact or because of heavy rain (n=3) (mean * SE of total observation length: 12.6 +
0.5; range: 0.5 - 15.0 min). Among the 17 females that knocked the decoy off the nest-box, 16
performed the highest number of attacks per trial registered. Thus, shorter duration length in
most of these observations did not preclude the presence/absence of female’s attack, number
of attacks and degree of approach to the decoy. Excluding the five shorter observations with
no female attacks led to the same qualitative results (results not shown but available upon

request).

Data analyses

We performed linear mixed effects models in SAS 9.2 (SAS Institute Inc. 2003) for all behavioral
female traits with nest-box identity as random factor. The presence/absence of patch in the
decoy and the resident female were included as fixed factors to test for their effect and the
interaction between both on female behavior. Additionally, the models included the
presence/absence of the male and decoy’s identity (stuffed female no. 1 or 2) as fixed
categorical factors. Observation length (total observation length minus female’s latency time)
was also included as an independent variable (except in the model of latency time), given that
females varied in the time available to interact with the decoy. We used linear mixed models
(MIXED procedure) for latency time, which was logarithmically transformed (log,o + 1) to

normalize its distribution, and generalized linear mixed models (GLIMMIX procedure) for the



221 presence/absence of attacks (binomial distribution), the number of attacks per trial (Poisson
222  distribution) and the degree of approach to the decoy (multinomial distribution). We did not
223 calculate attack rate (number of attacks per trial divided by observation length), because the
224  relationship between the number of attacks and observation length was not isometric (see
225 Garcia-Berthou 2001, for a review on the use of ratios).

226 To analyze male behavior, we performed similar linear mixed models with nest-box
227 identity as random factor and the following explanatory variables: female’s and decoy’s

228  forehead patch expression, the interaction between both, decoy’s identity and observation
229 length (total observation length minus male’s latency time). Additionally, we performed two
230 mixed models with binomial distribution to analyze the presence/absence of copulation and
231 song. Values for female and male behavior are expressed as means + SE.

232 Model selection was performed by an information theoretical approach. For each

233  female and male behavioral trait we run all possible models and ranked them according to
234  their Akaike’s Information Criterion values modified for finite sample size (AlCc). In generalized
235 linear mixed models (GLIMMIX procedure), we obtained AlCc with Laplace estimation method
236 (as recommended by Bolker et al. 2008). The Akaike weights (w;) for each model were

237  calculated (Anderson et al. 2000). Given that none of the models showed a w;> 0.90 (see

238  Tables Al and A2), we performed model averaging as recommended by Anderson et al. (2000)
239  and Burnham and Anderson (2002). Then, we calculated averaged estimates (b) and standard
240  errors (SE) for all explanatory variables weighted by the w; using only those most probable
241 models (i.e., those models with AAICc < 2; Burnham and Anderson 2002). The sum of w;s of the
242 models where a certain explanatory variable was included quantified its relevance. We also
243  calculated the amount of deviance explained (D? = 100*(deviance of the null model - residual
244 deviance)/ deviance of the null model; Zuur et al. 2009) by the most probable models weighed

245 by the w;.
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Results

Female behavior

Females were first observed in the territory on average after 3.90+0.50 minutes of the
beginning of the observation, but female’s latency time of first appearance was not strongly
explained by any variable (Table 1). Although female’s patch expression showed relatively high
w;, the averaged model explained very little amount of deviance (D?) in female’s latency time
(Table A1).

Females attacked the decoy in 36 out of 82 trials. Some females attacked as soon as
they appeared in the territory, while others did it in the very last minute of the observation
(timing of first attack: 6.12 + 0.85 min). Male presence/absence and female’s patch expression
had the strongest influence on the probability of attacks (Table 1). Male absence increased
twofold the probability of female attack (12 out 15 trials when the male was absent vs. 24 out
of 67 when the male was present). Patched females were more likely to attack than non-
patched ones (they attacked in 20 trials out of 35, while non-patched females attacked in 16
trials out of 47).

The number of attacks per trial was best explained by male presence/absence and
decoy’s patch expression (Table 1). Females performed on average more attacks in trials in
which their mate was absent than when it was present (Fig. 2a). Also, non-patched decoys
received on average more attacks per trial than patched ones (Fig. 2b). Observation length had
relatively high w; suggesting a negative effect on the number of attacks (Table 1), which is not
surprising given that some observations were interrupted when females knocked the decoy off
the nest-box.

The female’s degree of approach to the decoy was best explained by male

presence/absence and decoy’s patch expression (Table 1). Females approached the decoys to
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a higher degree when their mate was absent than when it was present (male absent: degree of
approach 0 (n=1), 1 (2), 2 (12); male present: 0 (16), 1 (18), 2 (33)). Also, females approached
non-patched decoys to a higher degree than patched ones (non-patched decoy: degree of

approach 0 (n=6), 1 (9), 2 (27); patched decoy: 0 (11), 1 (11), 2 (18)).

Male behavior

Female’s patch expression had the strongest effect on male’s latency time of first appearance
(Table 2). Males mated with patched females showed up later during the trials than those
mated with non-patched ones (respectively, mean * SE of non-transformed data: 4.85 + 0.66
and 2.62 + 0.56 min). Decoy’s identity also had high influence on male’s latency time (Table 2).
Males appeared earlier in the trials of the stuffed female no. 1.

Males attacked the decoy in 15 out of 67 trials, sang in 19 and performed copulation
attempts in 13. However, the averaged models explained very little amount of deviance,
especially in the number of attacks and in the presence/absence of song and copulation. Only
decoy’s identity had influence on the probability and number of male’s attacks (Table 2). The
stuffed female no. 1 was more prone to be attacked and with more intensity by males. The
presence/absence of copulation and song were not strongly affected by any explanatory

variable (Table 2).

Interaction between mates

We also observed that the resident pair interacted in various ways. The male clearly attacked
its mate in 5 trials. Conversely, females never attacked their mate, but in 2 trials they attacked
the decoy just when the male started copulation attempts with it. Finally, in 9 trials the male
and the female chased each other or flew around the nest-box together with no sign of

aggression.

12
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Discussion

We found that resident females expressing a forehead patch were more likely to attack the
decoys than non-patched females. However, irrespective of their own patch expression,
resident females directed more attacks per trial against non-patched decoys than against
patched ones. Also, they approached non-patched decoys to a higher degree than patched
ones. Overall, these results support a signaling role for the forehead-patch in female-female
interactions. If the forehead patch signals dominance and fighting ability, as it does in males
(e.g., Jarvisto et al. 2013), patched decoys were probably perceived by resident females as the
highest ranked individuals, given that we provided them with an artificial patch with the
largest size recorded for females in the study population. We may thus interpret that high-
ranked (patched) females were more willing to perform a first attack against intruders of any
phenotype, but both patched and non-patched females avoided repeated attacks against the
highest ranked rivals. We may have expected that patched decoys were considered as larger
threats and elicited more aggressiveness from the residents (see Garamszegi et al. 2006), at
least from patched resident females of presumably high rank. However, given that fighting is
costly for both opponents (Maynard-Smith and Price 1973; Senar 2006), it is likely that resident
females just tried to avoid unprofitable fights with the most dominant individuals (see Cant
and Young 2013). An interaction between female’s own patch and decoy’s patch expression
would have suggested that females were able to perceive their own patch phenotype and to
match their fighting ability with that of their contestants (see for instance, Griggio et al. 2010).
One possibility for the lack of an interaction effect is that females relied on their absolute
patch size rather than relative to their opponents (see Pryke and Andersson 2003).

Alternatively, the fact that patched decoys had the largest badge may have obscured the
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interaction effect. Manipulating female’s patch expression as well as decoy’s would shed light
on this issue (see Searcy and Beecher 2009, for a review of aggressive signals).

The presence/absence of the mate was the most important factor affecting females’
behavior against the decoy. Male absence increased female aggressiveness in almost all the
behavioral variables studied, suggesting that females take on extra costs of territoriality when
their mates are not present. If female-female competition was directed at guarding the male’s
parental investment (Slagsvold and Lifjeld 1994) or at avoiding male’s extra-pair copulations
we may have expected higher aggressiveness in the presence of the male. One possible
explanation for the opposite trend is that males, when present, have a more prominent role in
territory defence than females, probably because of their bigger size that confer a physical
advantage. Another possibility is that females were more interested in the male (when
present) than in fighting the decoy, or that the male actively interfered to circumvent female-
female aggression (see Slagsvold and Lifjeld 1994). We registered fourteen interactions within
the resident pair in which the male and the female flew around together or the male was
observed attacking its mate. Only in three out of these fourteen trials the females were
aggressive against the decoy, which could support that intra-pair interactions prevented
female-female aggression. Another possibility is that the most aggressive females were paired
with males that spent less time guarding their mate and territory. Manipulation of male
presence would be needed to understand these results. In any case, our findings highlight the
importance of controlling for the mate’s presence when observing female behavior.

Males showed up later during the trials when mated with patched females. This may
indicate that males were less engaged in territory vigilance when paired with a dominant
female that was able to evict intruders. It may also suggest that males invested less time in
guarding patched females in their fertile period than non-patched ones. However, data

collected in the study population indicate that extra-pair copulations are not related to
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females’ forehead patch expression (J. Moreno, unpublished data). Additionally, we found no
evidence of a male preference for decoy’s forehead patch, since neither song nor copulation
attempts were related to decoy’s patch phenotype. Yet, we cannot exclude the possibility that
males do show a preference for patched females during the mating period, as correlative
evidence suggests (i.e., assortative mating; Potti and Merino 1996). Nevertheless, although the
preference for patched females may confer certain benefits to males in terms of health and
reproductive success (Potti and Merino 1996; Morales et al. 2007), too highly dominant
females may not necessarily be more fecund, given that patch expression implies costs in
terms of oxidative stress (Moreno et al. 201343, b). In that case, the optimal strategy for males
would be to develop stabilizing mating preferences for female’s forehead patch to avoid
females that risk their fecundity for signaling (Chenoweth et al. 2006; see also Morales et al.
2012 in seabirds). Finally, various male behavioral traits were affected by decoy’s identity.
Although the decoys used were apparently similar to a human observer and were mounted in
the same position, they might have differed in features that we did not acknowledge.

Female intrasexual competition should occur when variation in male quality is high or
access to reproductive resources is limited (Amundsen 2000). Our results support that
reproductive resources (nest-site or mate) are valuable for females close to egg laying, since
many of them behaved aggressively against the decoys. Nest-sites are crucial for non-
excavating hole-nesters (Newton 1994) and their loss may imply a total seasonal reproductive
failure in a short-lived migratory bird with short breeding seasons like the pied flycatcher.
Competition for nest-sites in females may be similar to selection in males for breeding
resources (territories and females), or be related to social selection for non-reproductive
resources like food or shelter (West-Eberhard 1983). Nest-sites are as important as mates for
reproduction when they are limited, and thus there should be stiff competition for them

leading to signals of status also in females (Rosvall 2011; Tobias et al. 2012). Alternatively,
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females expressing a forehead patch could mimic young males (which are mostly brown in
their first year) and thus avoid competitive fights with other females and males. However, this
is unlikely since no female-like light brown males exist in Iberian populations, contrary to pied
flycatchers in other European populations (see Potti and Merino 1996; see also Fig. 1).
Moreover, females are recognized as females by their conspecifics independently of their
forehead patch expression (Szaetre and Slagsvold 1992).

A recent study has shown that the experimental addition of a fake forehead patch to
females without one in the study population increases the bearer’s oxidative tissue damage
(Moreno et al. 2013a). Although the physiological mechanism remains to be elucidated, the
link between oxidative damage and patch expression is probably mediated by social control
(see Safran et al. 2008). Females without patches may avoid high oxidative damage implied by
social interactions, but might lose breeding opportunities when competition for breeding
resources is strong (Moreno et al. 2013a, b). Interestingly, the forehead patch is expressed in
pied flycatcher females only in southern European populations. One possibility is that selection
on the forehead patch is higher in southern populations than farther north because of a
stronger negative effect of oxidative stress and parasites in southern latitudes (Moreno 2004).
Additionally, the low availability of suitable breeding habitat and its high degree of
fragmentation in the Iberian Peninsula could facilitate higher territoriality and stronger sexual
selection in southern populations.

In conclusion, our results suggest that a trait that has become a classical example in
studies of male intrasexual selection plays also a role in female-female contests, as found in
other socially monogamous bird species (e.g., the rock sparrow: Griggio et al. 2007, 2009; the
diamond firetail, Stagonopleura guttata: Crowhurst et al. 2012). Our results oppose to the
classical view portraying females as merely passive and choosy, which is being re-evaluated in

the light of recent research (Clutton-Brock and Huchard 2013).
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Table 1 Averaged linear mixed models for female behavioral traits with their weighed D%

Akaike weights (w;) and weighted averaged estimates (b) and standard errors (SE) are shown

for the explanatory variables included in the top ranked models (see model averaging in Table

Al). For categorical explanatory variables, the weighted estimate and SE of the category

specified between parentheses are shown. High w; are shown in bold

female behavioral trait D? explanatory variable w; b SE
latency time (log-min) 3.11 female’s patch (absent) 0.74 -0.13 0.067
male (absent) 0.26 -0.032 0.030
attacks (presence/absence) 13.88 male (absent) 1.00 184 0.73
female’s patch (absent) 1.00 -1.20 0.64
decoy’s patch (absent) 047 0.26 0.29
female’s x decoy’s patch  0.16  0.17 0.17
observation length 0.16 -0.006 0.008
no. of attacks 10.90 male (absent) 1.00 155 0.36
decoy’s patch (absent) 1.00 041 0.19
observation length 0.79 -0.036 0.017
decoy’s identity (no.1) 0.68 0.50 0.27
female’s patch (absent) 0.44 -0.25 0.19
degree of approach 9.04 male (absent) 1.00 -3.12 1.28
decoy’s patch (absent) 1.00 -0.73 0.66
female’s patch (absent) 0.27 0.15 0.24
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Table 2 Averaged linear mixed models for male behavioral traits. Akaike weights (w;) and

weighted averaged estimates (b) and standard errors (SE) are shown for the explanatory

variables included in the top ranked models (see model averaging in Table A2). For categorical

explanatory variables, the weighted estimate and SE of the category specified between

parentheses are shown. High w; are shown in bold

male behavioral trait D? explanatory variable w; b SE
latency time (log-min) 17.22 female’s patch (absent) 1.00 -0.21 0.088
decoy’s identity (no. 1) 0.84 -0.16 0.072
decoy’s patch (absent) 0.23 0.014 0.020
attacks (presence/absence) 8.35 decoy’sidentity (no.1) 1.00 1.03 0.45
observation length 0.31 0.016 0.022
no. of attacks 2.52 decoy’sidentity (no.1) 0.77 093 0.52
observation length 0.27 0.011 0.011
copulation (presence/absence) 0.52 female’s patch (absent) 0.20 -0.12 0.12
decoy’s identity (no. 1) 0.15 -0.060 0.095
observation length 0.15 0.007 0.011
decoy’s patch (absent) 0.14 -0.042 0.086
song (presence/absence) 1.43  decoy’sidentity (no.1) 0.41 -0.53 0.43
female’s patch (absent) 0.29 0.24  0.28
decoy’s patch (absent) 0.13 -0.066 0.10
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Figure caption
Fig. 1a) Adult pied flycatcher female without forehead patch (credit J. Morales); 1b) adult pied
flycatcher female with a forehead patch (left) and male showing the typical breeding plumage

(right) (credit OG)

Fig. 2 Number of attacks per trial performed by resident pied flycatcher females against the

female decoy in relation to: a) the presence/absence of the male; b) the decoy’s forehead

patch expression. Values are medians with 25-75" percentile (error bars)
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