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We have performed simulations of a simple bead-spring model for cylindrical and

spherical phases of diblock copolymers. We have analyzed in detail the dynamic

heterogeneity of the structural α-relaxation of the component confined in the mi-

nority domains. In analogy with previous investigations on the lamellar phase of

the same bead-spring model, the analysis reveals moderate gradients of mobility in

the investigated temperature range, which qualitatively probes time scales up to 100

ns. Thus α-relaxation times measured at different distances from the domain center

spread over less than one decade. The spatial extension of the gradients of mobility

is apparently consistent with that previously observed in the lamellar phase of the

same model. Gradients of mobility do not seem to be related to gradients of density

within the domains, which are indeed absent. We have performed an analysis of self-

and effective concentrations, a concept usually invoked to explain the α-relaxation

in polymer mixtures and that has been recently adapted to the analysis of experi-

mental data of diblock copolymers in ordered phases. The simulation results reveal a

strong disagreement with the proposed empirical relation between self- and effective

concentration, as well as with the Flory-Fox mixing rule for the dynamics. This

suggests that the use of these relations may bias the analysis of experimental data.
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I. INTRODUCTION

Diblock copolymers formed by two thermodynamically inmiscible components can exhibit

microphase separation in domains rich in one component and poor in the other. These

domains can be spatially arranged in ordered periodic structures, leading to phases with,

e.g., lamellar, cylinder, spherical or gyroid morphologies [1–4]. The transition from the

disordered to the ordered state and between the different ordered phases can be easily tuned

by varying control parameters as the temperature, chain length, or monomer fraction of each

component.

The local segmental dynamics in ordered phases of diblock copolymers, i.e, the α-

structural relaxation associated to the glass transition of each block, has been character-

ized in several works [5–12]. A general observation is that the average α-relaxation times

of each block are close to those of the corresponding homopolymer. However the dynamic

response in the diblock ordered phase exhibits a strong broadening in the low-frequency

side (long times) in comparison with that of the corresponding homopolymer [6, 8, 10, 11].

This feature is often rationalized in terms of dynamic heterogeneity. A picture of gradients

of mobility is usually invoked in the analysis of experimental data. This picture assumes

that the α-dynamics of a given component is strongly perturbed in the interfacial region

due to, e.g., specific interactions with the other component or changes in the local density.

This perturbation propagates over the domain up to a certain distance from the interface.

Beyond such distance the block monomers recover the α-dynamics of the corresponding

homopolymer.

In a recent publication [13] we presented a detailed computational investigation of the

α-structural relaxation in the lamellar phase of a simple bead-spring model for diblock

copolymers. This investigation aimed to characterize the heterogeneity of the α-dynamics

as a function of the distance to the lamellar interface. The analysis of the data revealed

that gradients of mobility were mostly an interfacial effect. Thus, the observed gradients

of mobility extended over a limited range of a few nanometers (<∼ 4 nm) from the interface

and beyond such distance the α-dynamics of the corresponding homopolymer was recovered

[13].

∗Corresponding author: wabmosea@ehu.es
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In this article we extend our previous investigation in the lamellar phase of the mentioned

bead-spring model to the case of strongly segregated cylindrical and spherical phases. As in

our previous work, the analysis of dynamic heterogeneities reveal moderate gradients of mo-

bility, of about one time decade, in the investigated temperature range, which qualitatively

probes relaxation time scales of up to hundreds nanoseconds. The spatial extension of the

gradients of mobility is apparently consistent with that previously observed in the lamellar

phase. Gradients of mobility do not seem to be related to gradients of density within the

domains, which are indeed absent. This feature is also consistent with observations in the

lamellar phase.

An additional result of this article is the characterization of the self- and effective con-

centrations at the copolymer interface. The self- and effective concentrations are con-

cepts usually invoked to explain the α-relaxation of polymer mixtures [14–18]. In a recent

work [19] Lund et al. investigated, by means of broadband dielectric spectroscopy, the

α-relaxation of poly(isoprene) in the minority domains of the cylindrical mesophase of a

poly(isoprene)/poly(dimethylsiloxane) block copolymer system. They proposed a modifica-

tion of the original Lodge-McLeish relation between the self- and effective concentration [15],

in order to characterize the interphase of ordered diblock copolymers. A Helfand-Tagami

function [20–22] for the local density profile in the cylindrical domain was assumed, leaving

the domain radius and interfacial width as fit parameters. These ingredients were used in

combination with the Flory-Fox mixing rule for the dynamics [23], and a good description

of the experimental spectra was achieved. Here we test both the modified Lodge-McLeish

and Flory-Fox relations proposed in Ref. [19], by using the effective and self-concentrations

directly computed from the simulations. We find a strong disagreement between the simula-

tion results and the former relations, suggesting that their use might bias the experimental

analysis of the dynamics in block copolymers. We show that indeed the dynamic correlators

obtained from the simulations can be described by invoking all the assumptions made in

the experimental analysis. However the analysis provides an estimation of the local density

profiles (through the fit parameters mentioned above) that strongly differs from the real

profiles directly obtained from the simulations.

The article is organized as follows. In Section II we describe the investigated model and

give simulation details. In Sections III an IV we characterize density profiles and gradi-

ents of mobility respectively. In Section V we characterize effective and self-concentrations.
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Conclusions are given in Section VI.

II. MODEL AND SIMULATION DETAILS

The diblock chains are modelled as strings of n connected beads, each block containing

beads of a single species F (‘fast’) or S (‘slow’). In the following the different simulated

systems will be denoted as FnFSnS (if nF < nS) or SnSFnF (if nS < nF), where nF and nS

are respectively the number of F- and S-beads per chain, and nF + nS = n. Each simulated

system consists of Ncha identical chains. We use Ncha = 1008 and 1782 for the cylindrical and

spherical mesophase respectively. We have simulated complementary sytems of compositions

FxSy and SxFy, i.e, with exchanged identities of the core and matrix monomers. Thus we

have simulated the systems F13S37 and S13F37 for the cylindrical case and the systems

F7S47 and S7F47 for the spherical case.

The interaction between any two given monomers of the species α, β ∈ {F,S} is given by

a shifted Lennard-Jones potential:

V LJ
αβ (r) = 4εαβ

[

(σαβ

r

)12

−
(σαβ

r

)6

+
1

4

]

, (1)

for r < rc and V LJ
αβ (r) = 0 for r ≥ rc. By using a cut-off distance rc = 21/6σαβ, the potential

is purely repulsive and has no local minima. Moreover potential and forces are continuous at

rc. If the two monomers are bonded to each other, they also interact through an additional

finitely extensible nonlinear elastic potential (FENE) [24]:

V FENE
αβ (r) = −εαβKFR2

0 ln

[

1−
(

r

R0σαβ

)2
]

, (2)

with KF = 15 and R0 = 1.5. The sum of the potentials (1) and (2) gives an effective potential

between connected monomers with a deep minimum at r = 0.96σαβ, which guarantees chain

uncrossability [24]. We use identical monomer masses mF = mS = m = 1 and interaction

diamaters σFF = σSS = σFS = σ = 1. In order to obtain different mobilities for the two

species, we use different values for the energy scale of the self-interaction, εFF = 0.35 and

εSS = 1, which leads to faster dynamics for the F-component (see below). For the cross-

interaction we use εFS = 9. With this strong energetic penalty for the F-S interactions

and the used compositions, the minority component of the systems F13S37 and S13F37 is
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expected to form an hexagonal lattice of cylindrical domains. For the systems F7S47 and

S7F47 a bcc lattice of spherical domains is expected.

The structural and dynamic properties of the simulated mesophases have been inves-

tigated as a function of temperature. The results for the minority component have been

compared with those of homopolymer systems with the same chain length as the minority

blocks. Accordingly, the simulated homopolymer systems are denoted as αx, with α ∈ {F,S}
and x ∈ {7, 13}. We have simulated homopolymer systems of Ncha = 1000 and 500 chains

for chain lengths of x = 7 and 13 respectively. In the following temperature T , pressure P ,

monomer number density ρ, time t, and distance will be given respectively in units of εSS/kB

(with kB the Boltzmann constant), εSSσ
−3, σ−3, σ(m/εSS)

1/2, and σ. Simulation units can

be qualitatively mapped to real units as 5-10 Å for distance and 1-10 ps for time (see the

discussion in, e.g., Refs. [24, 25]). With these conversion factors our simulations cover a time

scale of the order of 100 nanoseconds, and domain sizes of the order of tenths of nanometers

(see below).

Periodic boundary conditions are applied to the simulation cell, which is cubic for the

homopolymer systems as well as for the spherical phases. An orthoedric cell is used for

the cylindrical phases (see below). A linked-cell method is implemented for reducing com-

putational expense in the calculation of interparticle distances [26]. Equilibration runs are

performed in the isothermal-isobaric (NPT ) ensemble at external pressure Pex = 3.0, by

using the Nosé-Hoover algorithm [26]. A further equilibration run is performed at constant

volume under periodic velocity scaling according to the target temperature. Finally, a run is

performed in the microcanonical ensemble for production of configurations, from which we

compute the static and dynamic observables presented below. Equations of motion are inte-

grated in the Martyna’s scheme [26, 27] for the NPT runs and in the velocity-Verlet scheme

[26] for the other runs. We use typical integration time steps of 4 × 10−3 ≥ δt ≥ ×10−3

according to the investigated temperature, which covers the range 0.14 ≤ T ≤ 0.30. The

corresponding equilibrium densities cover the range 1.06 ≥ ρ ≥ 0.98 and 1.00 ≥ ρ ≥ 0.92

for respectively the F- and S-homopolymer. These are typical melt densities for similar

bead-spring models of polymer systems [24].

Except for the case of very short chains and temperatures far above Tg, the spontaneous

formation at melt densities of mesophases with well-defined order is unfeasible in simulations

due the extremely long characteristic time scales for chain diffusion [28–31]. Instead, we
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follow the usual procedure of generating the system in the ordered state before starting the

equilibration run [29, 32–34]. For the cylindrical case we construct a 2d hexagonal lattice

with n = 12 sites. For each site we define a cylinder, of diameter σ, perpendicular to

the lattice. We graft Ncha/n diblock chains to the surface of each cylinder, with the end

momomers of the minority blocks directly attached to the surface. The chains are generated

by random growth up, with a constraint avoiding core overlap of new inserted monomers

with those previously inserted. This is facilitated by constructing the system at a low density

ρ ∼ 0.5. We use an orthoedric simulation cell, of side lengths Lx, Ly and Lz. The z-axis

is parallel to the cylinder axes. According to the hexagonal symmetry of the lattice, we fix

the ratio Ly/Lx = 2/
√

3.

The generated system is taken as the initial configuration for the equilibration NPT run.

Though the imposed external pressure Pex = 3.0 leads the system to melt densities ρ ∼ 1,

the applied isotropic cell fluctuations cannot not provide the correct interdomain spacing.

Indeed they do not produce by themselves the required balance of the x, y and z-components

of the virial pressure. For this we follow the method proposed by Schultz and co-workers

[32] and perform an NPT run combining the standard isotropic fluctuations with periodic

anisotropic rescaling. The volume of the cell is mantained at each anisotropic rescaling.

Thus, the z-coordinate is rescaled by a factor f = 1± ξ, with ξ some small positive number

(0 < ξ � 1), and simultaneously the x, y-coordinates are rescaled by a common factor

f−1/2. We use f = 1 + ξ when 〈Px,y〉′ < 〈Pz〉′ and f = 1− ξ when 〈Px,y〉′ > 〈Pz〉′. Here 〈...〉′

denotes average over a certain interval prior to a rescaling event. We initially use ξ = 0.01

and progressively decrease its value as the pressure balance 〈Px〉 = 〈Py〉 = 〈Pz〉 = Pex is

approached.

In the spherical mesophases and in the homopolymers the three spatial directions are

equivalent, and a standard NPT run (isotropic fluctuations) is performed. We generate the

spherical mesophases in a similar manner as in the cylindrical case, by grafting the diblocks

to spherical surfaces centered around the sites of a bcc lattice. The simulation cell contains

ns = 2 × 33 = 54 lattice sites, with 33 chains associated to each site. It must be noted

that by construction the cylindrical and spherical domains are initially monodisperse in the

aggregation number nagg = Ncha/ns. We monitor the values of nagg for the different domains

[35] during the simulation. The monodispersity is mantained at low and intermediate tem-

peratures in the time scale of the simulation. Only at the highest investigated temperatures
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rare hopping events to neighboring domains have been observed (just one or two events in

the whole simulation), i.e., the domains also remain essentially monodisperse. Thus, the

statistical averages for the structural and dynamic properties presented in next sections are

free of polydispersity effects, facilitating their physical interpretation.

It must be noted that the mesophases obtained after the ‘equilibration’ run are not ex-

pected to be the actual equilibrium ones, but metastable states in the simulation time scale.

For instance, finite size effects induced by the periodic boundary conditions will likely mod-

ify the equilibrium domain spacing —despite having simulated large cells the used number

of domains is small. Using larger cells would reduce such effects, but still would not solve

an implicit drawback of the spherical mesophase. Namely, unless it coincides fortuitously,

the used aggregation number nagg = 33 for the spherical domains will not be the actual

equilibrium one. Though we have also imposed specific values for the ‘aggregation num-

bers’ Ncha/ns to the cylindrical domains, these have no major meaning because they become

infinite by applying periodic boundary conditions along the cylinder axis. Thus, the con-

structed cylindrical system can approach the equilibrium domain size through (anisotropic)

scaling of the cell. On the contrary the spherical system cannot approach it unless it starts

from the correct aggregation number. A way to estimate this would be to construct cells

with different values of nagg, perform the equilibration runs as described above, and select

the cell with the lowest energy. This would be computationally very demanding. Still, we

believe that conclusions on the qualitative structural and dynamic features presented in next

sections will not be modified by using the correct equilibrium aggregation number.

III. DENSITY PROFILES

As expected for the limit of strong segregation, the results displayed here and in the follow-

ing for density profiles, effective and self-concentrations are almost temperature-independent.

Therefore, for each phase the latter will be presented for a single temperature. Figs. 1 and 2

show two typical snapshots of the cylindrical and spherical phases, for the systems S13F37

and F7S47 respectively. We characterize local density profiles of the F- and S-components

at both sides of the interface. For the cylindrical phases we quantify profiles in the direction

normal to the cylinder axis. For this we introduce the quantity ρ(r⊥) = n(r⊥)/V (r⊥), with

n(r⊥) the number of monomers in a cylindrical shell of volume V (r⊥), parallel to the cylin-
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FIG. 1: Typical snapshot of the system S13F37 at T = 0.15. S- and F-beads are depicted in grey

and red respectively. For the sake of clarity, the bead sizes are much smaller than the actual values

of σ.

der axis and defined between the distances r⊥ and r⊥ + ∆ normal to the axis. In a similar

manner for the spherical phases we quantify radial profiles ρ(r) = n(r)/V (r), with n(r) the

number of monomers in a spherical shell of volume V (r), defined between the distances r

and r + ∆ from the center of the spherical domain. We use a bin size of ∆ = 0.1σ. Fig. 4

shows typical results (T = 0.15) of ρ(r⊥) for F- and S-monomers in the cylindrical phase

of the system F13S37. As expected for the strongly segregated regime, sharp boundaries

are observed between the flat profiles characterizing the cylindrical domains and the ma-

trix. By estimating the domain radius Rc as the crossing point between the profiles of both

components, we find Rc ∼ 6σ. The full-width of the interface, in which both profiles are

significantly different from zero, is about 2σ. The bottom panel of Fig. 3 shows a detailed

comparison of the local densities in the cylinders and matrix with the number densities ρhom

of the respective homopolymers. Except for the interfacial region, this comparison reveals

very small differences, below one per cent. Thus, the local densities in the inside of both

the domains and the matrix are essentially identical to those of the homopolymer.

Fig. 4 displays similar results of ρ(r) for the spherical phase of the system F7S47 at T =

0.15, and the corresponding comparison with the densities of the respective homopolymers.

The domain radius is Rc ∼ 3.5σ. As for the cylindrical case, the interface thickness is about

2σ. Again, very small differences are observed between the local densities in the inside of the

domains and matrix and those of the respective homopolymers. This result found for both
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FIG. 2: As Fig. 1 for the system F7S47.

the cylindrical (F13S37) and spherical (F7S47) phase is also observed for the complementary

compositions (S13F37 and S7F47), as well as for all the investigated temperatures. A similar

analysis of local density profiles revealed the same qualitative features in lamellar phases [13]

of the same bead-spring model investigated here (i.e, identical interactions given by Eqs. (1)

and (2)). This suggests that this observation is a general feature of ordered mesophases,

independent of their morphology.

Finally, it is worth mentioning that the density profiles can be very accurately described

in terms of the Helfand-Tagami function predicted by self-consistent field theory [20–22],

ρα(r) = ρ0 +
ρ1

1 + exp[−2(Rc − r)/σc]
, (3)

with Rc and σc the domain radius and interfacial width, respectively. The constants ρ0 and

ρ1 are adjusted to match the amplitudes of the density profiles. Best fits to Eq. (3) are

represented in Figs. 3a and 4a as thick solid lines.

IV. DYNAMIC HETEROGENEITY

Fig. 5 presents results for the temperature dependence of the mean squared displacement,

〈∆s2(t)〉, of the F- and S-monomers in the two cylindrical phases F13S37 and S13F37.

The corresponding results for the orientational correlator, P (t), of F-F and S-S bonds are

displayed in Fig. 6. The bond orientational correlator is defined as P (t) = 〈cos θ(t)〉, with

θ(t) the angle between the orientations of the bond at t = 0 and at the considered t. For
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FIG. 3: (a): For both the F- and S-monomers in the system F13S37 at T = 0.15, density profiles

ρ(r⊥) perpendicular to the cylinder axis. Symbols are simulation data. Thick solid lines are best

fits to Eq. (3). The vertical dashed lines indicate the approximate limits of the interfacial region.

(b): Enhanced representation of data in (a), and comparison with the macroscopic densities of the

respective homopolymers (horizontal dashed lines) at the same T . Thin solid lines are guides for

the eyes.

temperatures T <∼ 0.22 the mean squared displacements and bond correlators exhibit a

plateau after the initial ballistic regime. The plateau extends over longer time scales as

temperature decreases. This plateau corresponds to the caging regime, i.e., the temporary

trapping of each particle by the surrounding ones, which is a universal feature of glass-

forming liquids on approaching the glass transition temperature [36]. The plateau is followed
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FIG. 4: (a): For both the F- and S-monomers in the system F7S47 at T = 0.15, radial density

profiles ρ(r). Symbols are simulation data. Thick solid lines are best fits to Eq. (3). The vertical

dashed lines indicate the approximate limits of the interfacial region. (b): Enhanced representation

of data in (a), and comparison with the macroscopic densities of the respective homopolymers

(horizontal dashed lines) at the same T . Thin solid lines are guides for the eyes.

by an increase in 〈∆s2(t)〉 and a decay in P (t), which reflect the structural α-relaxation.

Consistently with observations in the lamellar phase [13], a progressive dynamic separation

between the F- and S-components is observed as temperature decreases. Estimating α-

relaxation times τ as those for which 〈∆s2(τ)〉 = σ2 or P (τ) = e−1, we find a separation of

about one decade in τ at the lowest investigated temperature T = 0.14. For comparison,

we include the results of the corresponding homopolymer for the minority component. As
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FIG. 5: Temperature dependence of the mean squared displacements of both species in the cylindri-

cal phases F13S37 (a) and S13F37 (b). Data for the minority and majority species are represented

by open symbols and solid lines respectively (see panels). Filled symbols are data for the homopoly-

mers corresponding to the minority species. Rouse-like power-laws (dashed lines) are included for

comparison.

expected the dynamics of the S-monomers in the cylindrical domains of the S13F37 system is

sped up by their coupling to the fast F-matrix. Likewise the dynamics of the F-monomers in

the counterpart F13S37 system is slowed down by the surrounding slow S-matrix. Dynamic

differences between the confined minority component and its homopolymer counterpart are
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FIG. 6: Temperature dependence of the bond orientational correlators of both species in the

cylindrical phases F13S37 (a) and S13F37 (b). Data for the minority and majority species are

represented by open symbols and lines respectively (see panels). Filled symbols are data for the

homopolymers corresponding to the minority species.

stronger when the matrix is intrinsically slower (F13S37 system) than when it is intrinsically

faster (S13F37 system).

Figs. 7 and 8 shows results for the mean squared displacements and bond correlators

in the spherical phases F7S47 and S7F47. We find the same qualitative trends observed

in Figs. 5 and 6 for the cylindrical phases. Having said this, dynamic differences between
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FIG. 7: As Fig. 5 for the spherical phases F7S47 (a) and S7F47 (b).

the minority component and its homopolymer counterpart are more pronounced than in the

cylindrical phases. This feature is tentatively related to the smaller radius of the spheri-

cal domains in the simulated systems (see above), leading to a larger number of interfacial

monomers than in the cylindrical phase, and therefore to a stronger perturbation of the in-

trinsic homopolymer dynamics. This question will be discussed later by analyzing gradients

of mobility within the domains.

At times beyond the α-relaxation scale apparent Rouse-like behavior 〈∆s2(t)〉 ∼ t1/2

is found. This feature is a direct consequence of the chain connectivity and a universal
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FIG. 8: As Fig. 6 for the spherical phases F7S47 (a) and S7F47 (b).

feature of polymer melts [37]. Strongly entangled polymer melts exhibit further sublinear

regimes at longer times, that are commonly understood in the framework of the reptation

model [37], before reaching the diffusive regime (〈∆s2(t)〉 ∼ t) at late times. Having said

this, reptation effects are minor for the weakly entangled chains of length n ∼ 50 here

investigated. Indeed this chain length is comparable to the estimated entanglement length

(ne ∼ 35) in flexible bead-spring melts [24]. Presumably the saturation of 〈∆s2(t)〉 observed

after the Rouse regime in Figs. 5 and 7 is mostly related to the presence of the interface,

more than to intrinsic features of chain dynamics. Thus, the attachment of the blocks to
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FIG. 9: Symbols: mean squared displacements for different shells in the cylindrical domains at

T = 0.15. Panel (a) shows data for the F-monomers in the F13S37 system. Panel (b) shows

data for the S-monomers in the S13F37 system. Data for the F- and S-homopolymers (lines) are

included for comparison in (a) and (b) respectively.

the interface creates and extremely large effective barrier for perpendicular diffusion. The

observed saturation will persist over time scales far beyond the simulation window, prior to

the final crossover to diffusion.

As mentioned in the Introduction, the segmental relaxation of each component of the

diblock system is expected to exhibit dynamic heterogeneity in the ordered mesophases. We

may characterize this dynamic heterogeneity as a function of the distance of the monomer
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FIG. 10: Symbols: bond orientational correlators for different shells in the cylindrical domains at

T = 0.15. Panel (a) shows data for the F-F bonds in the F13S37 system. Panel (b) shows data for

the S-S bonds in the S13F37 system. Data for the F- and S-homopolymers (lines) are included for

comparison in (a) and (b) respectively.

to the centers of the domains. Following the same procedure as in Ref. [13], we divide the

cylindrical and spherical domains in (cylindrical or spherical) shells of thickness δ = 0.3 and

compute shell-dependent mean squared displacements and bond correlators. Thus, for a

given shell rmin < r < rmin + δ, the quantity 〈∆s2(t; r)〉 is computed only over the monomers

that are initially (i.e., at t = 0) located in the shell. Likewise the bond correlators P (t; r)

are computed only for the bonds whose centers are within the specific shell at t = 0.
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FIG. 11: As Fig. 9 for the spherical phases F7S47 (a) and S7F47 (b).

Fig. 9 shows results, at T = 0.15, for the shell-dependent mean squared displacements

of the minority component in the cylindrical phases F13S37 and S13F37. Fig. 10 shows,

for T = 0.15, the shell-dependent bond correlators of the minority component in the former

cylindrical phases. The corresponding results for shell-dependent mean squared displace-

ments and bond correlators in the spherical phases (F7S47 and S7F47) are shown in Figs. 11

and 12. A moderate dispersion, over about one decade, is observed in the relaxation times

at the lowest investigated temperature. The relaxation of the minority F-monomers and

F-F bonds initially located in the center of the domains is faster than the relaxation of those

initially located in the interfacial region and in direct contact with the slow S-matrix (for the
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FIG. 12: As Fig. 10 for the spherical phases F7S47 (a) and S7F47 (b).

represented cases, the interfacial region begins at r⊥ <∼ 5 in the F13S37 system and r <∼ 3

in the F7S47 system, see Figs. 3 and 4). The opposite effect is observed when the minority

component is the slow one. Thus, S-monomers and S-S bonds initially located in the center

of the domains show a slower relaxation than those initially located in the interfacial region,

i.e, in direct contact with the fast F-matrix.

These features are analogous to those observed in simulations of lamellar phases [13],

suggesting that they are independent of the morphology of the domains. In Ref. [13] it

was shown that relaxation in the lamellar domains approached that of the corresponding

homopolymer as the distance to the interface increased. Namely, for distances beyond about
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d ≈ 4 the relaxation was indistinguishable from that of the corresponding homopolymer.

Results presented here for the cylindrical and spherical phases (Figs. 9 to 12) seem to be,

at least partially, consistent with the result found in lamellar phases. In the cylindrical

phase (Figs. 9 and 10) the homopolymer dynamics is nearly recovered at the center of the

domain (r⊥ → 0). Indeed the interfacial region — i.e., the decay of the density profile of the

minority component — starts at a distance r ≈ d ≈ 4 from the domain center, and at smaller

distances the local density is within statistics the same as in the corresponding homopolymer

(see Fig. 3). A different result is found in the spherical phases. Though we still find the

former trends with increasing distance to the interface, the relaxation of the corresponding

homopolymer is not recovered in the center of the spherical domains. Results in Figs. 11

and 12 show that, for T = 0.15, relaxation in the center of the spherical domains differs

from than in the corresponding homopolymer by up to one decade. Tentatively this feature

may be understood by the fact that the interfacial region begins at a distance r ≈ 3 (see

Fig. 4), smaller than the characteristic distance d ≈ 4 associated to the gradient of mobility.

More demanding simulations of longer chains, in order to obtain domain radii larger than

d, would be necessary to recover the homopolymer dynamics in the domain center.

V. EFFECTIVE AND SELF-CONCENTRATION

The concept of effective and self-concentration is usually invoked in theoretical frame-

works for explaining the behavior of the α-relaxation in polymer blends [14–18]. Even being

miscible systems, two different α-relaxation times are usually found, each of them corre-

sponding to the dynamics of each component modified by blending. This behavior is the

so-called ‘dynamic heterogeneity’ of the α-relaxation in polymer blends. In the framework of

the self-concentration ideas the presence of two α-relaxation processes in the blend is a direct

consequence of the chain connectivity. More precisely, because of the chain connectivity the

local concentration in a given volume, relevant for the α-process, around a segment of one

of the blend components will be different from the average concentration of the blend.

Given a blend of F- and S-chains, the macroscopic concentrations of each species are given

by Φα = Nα/(Nα + Nβ), with Nα the total number of α-monomers in the system and α ∈
{F, S}. Let us define the effective concentration, Φeff

α (R), as the average concentration of α-

monomers within an sphere of radius R around a given (‘tagged’) α-monomer, i.e., Φeff
α (R) =
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〈Nα(R)/[NF(R) + NS(R)]〉, with Nα(R) the number of α-monomers within the sphere. In

the following we will refer to R as the ‘observation radius’. Provided that the observation

radius is sufficiently small (a few Kuhn lengths or less), the effective concentration Φeff
α (R)

will be higher than the macroscopic concentration Φα. This is a direct consequence of the

chain connectivity. Since the tagged α-monomer is connected to an α-chain, the observation

sphere will contain an excess of α-monomers over the macroscopic concentration Φα.

The self-concentration is defined as Φself
α (R) = 〈N intra

α (R)/[NF(R) + NS(R)]〉, with

N intra
α (R) the number of α-monomers belonging to the chain of the tagged α-monomer and

contained in the observation sphere of radius R. Lodge and McLeish proposed a simple

linear relation between the effective and self-concentration [15]:

Φeff
α (R) = Φself

α (R) + [1− Φself
α (R)]Φα. (4)

Since obviously Φself
α (R →∞) = 0 and Φself

α (R → 0) = 1, the Lodge-McLeish formula leads

to the expected limits Φeff
α (R →∞) = Φα and Φeff

α (R → 0) = 1.

Lund and co-workers extended the idea of self-concentration to account for the α-

relaxation within the minority domains of ordered phases of diblock copolymers [19]. In

analogy with Eq. (4), the effective and self-concentration at a given distance r from the

domain center are assumed to follow the linear relation:

Φeff
α (r; R) = Φself

α (r; R) + [1− Φself
α (r; R)]ρN

α (r). (5)

Again, the former quantities are defined within an observation sphere of radius R. The

quantity ρN
α (r) is defined in similar way as the local density profile of α-monomers discussed

above (Figs. 3 and 4). Namely the profile ρN
α (r) is not normalized by the volume V (r) of the

shell, but by the total number of particles N(r) in that volume, i.e., ρN
α (r) = nα(r)/N(r).

For the cylindrical phase r must be again understood as the distance r⊥ normal to the

cylinder axis (see above), whereas for the spherical phase r is the distance to the center

of the spherical domain. For computing the quantities Φeff
α (r; R) and Φself

α (r; R) directly

from the simulation data, we construct spheres of radius R around each of the (tagged) α-

monomers contained in (cylindrical or spherical) shells defined within the interval (r, r+∆),

with ∆ = 0.1σ. These are the shells previously used for obtaining the density profiles ρα(r)

(see above). In analogy with the former definitions, the effective and self-concentrations are
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respectively obtained as

Φeff
α (r; R) =

〈

Nα(r; R)

NF(r; R) + NS(r; R)

〉

(6)

and

Φself
α (r; R) =

〈

N intra
α (r; R)

NF(r; R) + NS(r; R)

〉

. (7)

The quantity Nα(r; R) is the total number of α-monomers within an observation sphere of

radius R around a tagged α-monomer located in the shell (r, r+∆). The quantity N intra
α (r; R)

accounts only for the α-monomers belonging to the same chain of the tagged α-monomer.

Averages in Eqs. (6) and (7) are performed over all the shells (r, r + ∆) in the simulation

cell (one shell per domain), all the tagged α-monomers contained in such shells, and over

typically 100 independent configurations of the simulation cell.

Obviously, the values of the effective and self-concentrations depend on the selected value

of the observation radius R. The analysis of experimental data based on the Lodge-McLeish

formula is usually performed by using the Kuhn length [37], lK, as the relevant dynamic

length scale [15, 17]. For the bead-spring model investigated here one finds [24] a Kuhn

length lK ≈ 1.5σ . Still, in the following we do not limit the discussion of simulation results

to the specific case R = lK and present data for a broad range of observation radii.

Fig. 13 shows self-concentrations directly computed from the simulations at T = 0.14

and for several observation radii. Data correspond to self-concentrations of the minority F-

component in the cylindrical phase F13S37 and in the spherical phase F7S47. As expected,

Φself
α (r; R) decreases by increasing the observation radius R, and tends to be position inde-

pendent for large R. Because of the soft character of the Lennard-Jones potential [Eq. (1)]

some monomer interpenetration is possible for r <∼ σ. Therefore, there is a non-negligible

probability of finding more monomers than the tagged one, including monomers of other

chains, within an observation radius of R = 1.0. This feature explains the observed result

Φself
α (r; R = 1.0) <∼ 1, which would be impossible for hard-sphere interactions.

For relevant length scales 1.0 < R < 4.0, the self-concentration shows a non-monotonous

dependence on the distance to the domain center, with a maximum close to the innermost

part of the interfacial region (see Fig. 13), except in the case R = 1.1 (see discussion below).

This maximum reflects a certain degree of segregation of each chain from its neighbors in

that region, resulting in a higher self-concentration. The self-concentration decays smoothly

along the interface as the distance from the domain center increases. This range of distances
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FIG. 13: Self-concentration (note the logarithmic scale) of the F-monomers at T = 0.14 in the

cylindrical phase F13S37 (a) and in the spherical phase F7S47 (b). Different data sets correspond to

different observation radii R (see legends). The dashed lines in both panels indicate the approximate

limits of the interfacial region (see also Figs. 3 and 4).
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FIG. 14: Effective concentration, as a function of the distance to the domain center, of F-monomers

at T = 0.14 in the cylindrical phase of the system F13S37 (a) and in the spherical phase of the

system F7S47 (b). Symbols are results directly computed from the simulations through Eq. (6).

Dashed lines are obtained by using Eq. (5) (see text for details). Same colors for symbols and lines

correspond to a same observation radius R (see legend). The thick solid lines are the local density

profiles ρN
F (r) of the F-monomers (see text).

is progressively probed by minority monomers at the junction point of the two blocks.

Since a fraction of their neighbors in the same chain belongs to the other species, the self-

concentration shows an ultimate decay. In strongly segregated phases as those investigated

here the minority monomers are rarely found far beyond the interfacial region. For this
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reason their self-concentration in that region has poor statistics (see data at long r in Fig. 13).

The self-concentration for the specific case R = 1.1 shows a rather different behavior

from that found for the other observation radii. Namely Φself
α (r; R = 1.1) does not exhibit

a maximum at the innermost neighborhood of the interface, but a sharp increase at long r.

By analyzing the intramolecular radial distribution function g(r) of the minority component

(not shown), we find a main peak at r <∼ 1.0, corresponding to the typical bond distance,

and a weak secondary peak at r ≈ 1.1. This secondary peak is not found in the g(r) of

the corresponding homopolymer, and reflects bond stretching in the interfacial region. Thus

the observation radius R = 1.1 probes this feature, resulting in a sharp increase of the

self-concentration by crossing the interface.

Fig. 14 shows, for the former systems and at the same T = 0.14, results for the effec-

tive concentration of the F-monomers. The symbols are data directly computed from the

simulations by using Eq. (6). The dashed lines are the theoretical expectations from the

generalized Lodge-McLeish formula, by inserting in the right-hand side of Eq. (5) the self-

concentrations (Fig. 13) and density profiles ρN
α (r) directly obtained from the simulations.

A good agreement is found only in the limit case R = 1.0, for which the effective and self-

concentration are essentially identical. The simulations reveal a clear breakdown of Eq. (5)

for any relevant length scale R > 1.0, including the usual assumption R = lK (R = 1.5 in

this system [24]). The actual effective concentrations obtained from the simulations exhibit

a much more stretched decay than those predicted by the modified Lodge-McLeish relation.

These results suggest that the use of Eq. (5) might bias the experimental analysis of the

α-relaxation in block copolymers [38, 39], and in particular the so-obtained values char-

acterizing structural properties relevant for the segmental dynamics. In Ref. [19] a block

copolymer system of poly(isoprene)/poly(dimethylsiloxane) was investigated in its cylindri-

cal mesophase. The α-relaxation of poly(isoprene) confined in the cylindrical domains was

analyzed in terms of a model based on self- and effective concentrations following the scheme

described above. The temperature dependence of the α-times at different distances to the

domain center was assumed to follow a Vogel-Fulcher-Tamman (VFT) law,

τ(r) = τ∞ exp[E/(T − T0(r))], (8)

with T0(r) the VFT temperature at distance r. Eqs. (5) and (8) were combined with the

empirical Flory-Fox mixing rule. This provides the VFT temperature of a component in a
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FIG. 15: VFT temperatures, as a function of the distance to the domain center, for the relaxation

times of the F-F bonds in the cylindrical phase of the system F13S37. Large empty symbols are

obtained by fitting the relaxation times directly obtained from the simulations (see text), with all

free parameters (squares) or by fixing τ∞ and E to the values of the F-homopolymer (circles). A

typical error bar is included. Small symbols are obtained by using the Flory-Fox equation (9) with

the effective concentrations directly obtained from the simulations (see Fig. 14a). The respective

observation radii are given in the legend.

polymer mixture as an interpolation between the VFT temperatures of the two homopoly-

mers, according to the concentration of each component [23]. In Ref. [19] the Flory-Fox

equation was adapted to the case of ordered block copolymers. According to the scheme

proposed there, the Flory-Fox equation for the minority F-component reads

1

T0(r; R)
=

Φeff
F (r; R)

T F
0

+
1− Φeff

F (r; R)

T S
0

, (9)

with T F
0 and T S

0 the VFT temperatures of the F- and S-homopolymers respectively, and

Φeff
F (r; R) the effective concentration of the F-component in the diblock system. We have

quantified the relaxation times τ of the F- and S-homopolymer as the times for which the

respective bond orientational correlators decay to P (τ) = e−1. By fitting the values of τ

obtained at the different temperatures to an VFT law we find T F
0 = 0.093 and T S

0 = 0.11

for the F- and S-homopolymer respectively. The latter and the effective concentrations



27

obtained from the simulation (symbols in Fig. 14a) are the inputs in Eq. (9), which provides

the theoretical estimation of the VFT temperature along the F-domains. Since the effective

concentrations are different for each observation radius R, different profiles for T0(r; R) are

found. These theoretical profiles are displayed in Fig. 15 (small symbols) and compared

with the real profile (large empty symbols). The real profile is obtained by determining the

relaxation times of the shell-dependent orientational correlators P (t; r) directly obtained

from the simulations at the different temperatures (e.g., data sets in Fig. 10a), and fitting

such times to the VFT Eq. (8). We have applied two fitting procedures. In the first one,

the three parameters (T0, E and τ∞) are free. The so-obtained values for T0 are displayed

in Fig. 15 as empty squares. In the second procedure — following assumptions of the

experimental analysis in Ref. [19] — T0 is the only free parameter, whereas the others are

fixed to the values of the F-homopolymer (E = 0.30 and τ∞ = 9.7). The values of T0

obtained by this second procedure are displayed as empty circles in Fig. 15. As expected,

these show a much lower dispersion than the values obtained from fully free fits. Anyway,

in both cases there is a full disagreement with the theoretical profiles. The discrepancy

between simulation and theoretical results is reduced by increasing the observation radius

R for the effective concentration, but strong differences persist even for unrealistic values as

R ∼ 4σ — at this point we remind that R is assumed to be a relevant length scale for the

segmental relaxation, i.e, it should be comparable to the Kuhn length lK ≈ 1.5σ [24]. A full

disagreement between simulation and theoretical profiles for the VFT temperatures is also

found in the other investigated systems (not shown), independently of the specific geometry

of the mesophase.

The results in Figs. 14 and 15 demonstrate that the modified Lodge-McLeish relation

(Eq. (5)) and Flory-Fox mixing rule (Eq. (9)) are clearly uncompatible with the simulation

results. This is apparently in contradiction with the analysis presented in Ref. [19], which im-

plemented the former relations and provided a good description of the experimental spectra.

This was achieved even by assuming a fixed value of the self-concentration in the cylindrical

domain (see below), which is also in clear disagreement with the trends observed in Fig. 13.

Having said this, it must be noted that the density profile intervening in Eq. (5) was not

directly accessed in Ref. [19]. Instead, it was modelled by the Helfand-Tagami function of

Eq. (3), leaving Rc and σc as the fit parameters which provided the best description of the

experimental spectra. The results discussed in this section suggest that the values obtained
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for such parameters are biased by incorrect assumptions made in the experimental analysis,

as the use of the modified Lodge-McLeish and Flory-Fox relations.

Now we clarify this point by performing a ‘blind analysis’ of the segmental dynamics

within the same scheme of Ref. [19], i.e, by making assumptions on self-concentrations and

density profiles instead of using the inputs from the simulations. We illustrate the procedure

for the representative case of the system F13S37. In Ref. [19] the self-concentration of

poly(isoprene) was assumed to take a fixed value φself = 0.45, independently of the position

within the domain and identical to the value of the homopolymer [15]. The latter was

estimated by assuming R = lK. For the system here investigated lK ≈ 1.5σ [24], and

accordingly we use Φself
F = 0.30 in Eq. (5) as a reasonable value (similar values did not

change the qualitative results discussed below). We construct density profiles ρN
F (r) for

different values of Rc and σc by using the Helfand-Tagami function, Eq. (3). For this we fix

ρ0 = 0 and ρ1 = 1 + exp[−2Rc/σc], in order to fulfill the condition ρN
F (r = 0) = 1 (indeed

S-monomers were never found in the center of the domain). The so-obtained profiles ρN
F (r)

are inserted in Eq. (5), which together with Eq. (9) provides different theoretical profiles for

T0(r). In general, the agreement between the real and theoretical profiles T0(r) is improved

by increasing the width σc and decreasing the domain radius Rc in the Helfand-Tagami

function for the theoretical density profile. The top panel of Fig. 16 shows results for fixed

σc = 2 and different values of Rc. The real profile for T0(r) is qualitatively approached only

for the smallest used value Rc = 2. For smaller values of σc the comparison (not shown)

with the real T0(r) worsens and not even a qualitative agreement is found. Fig. 16b shows

a comparison between the real density profile ρN
F (r) and the Helfand-Tagami function for

the former values Rc = σc = 2. This figure clearly illustrates how the improvement of the

description of the real T0(r) is obtained at the expense of introducing a theoretical density

profile that strongly differs from the real one.

Following the experimental analysis, the theoretical T0(r) is used to construct the theo-

retical profile τ(r) for the relaxation times according to Eq. (8), with the additional experi-

mental assumption of using the values of the F-homopolymer for τ∞ and E. We construct

the theoretical function for the global orientational correlator as the weighted-average of

the shell-dependent bond correlators, P (t) =
∑

r ρN
F (r)P (t; r)/

∑

r ρN
F (r). In this expres-

sion we use for ρN
F (r) the Helfand-Tagami function with Rc = σc = 2, which as discussed

above, provides the best description of the real T0(r) in Fig. 16a. In analogy with the ex-
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FIG. 16: Panel (a): VFT temperatures, as a function of the distance to the domain center, for

the relaxation times of the F-F bonds in the cylindrical phase of the system F13S37. Large empty

symbols are obtained by directly fitting the simulation results (see text), with all free parameters

(squares) or by fixing τ∞ and E to the values of the F-homopolymer (circles). A typical error bar

is included. Small symbols are theoretical predictions by fixing Φself
F = 0.30 and using a Helfand-

Tagami function for the density profiles (see text), with fixed σc = 2.0 and different values of Rc

(see legend). Panel (b): Density profiles ρN
F (r) at T = 0.14 in the cylindrical phase of the system

F13S37. The symbols are simulation data. The solid line is a best fit to a Helfand-Tagami function

(Rc = 5.9 and σc = 0.57). The dashed line is obtained with Rc = σc = 2. Panel (c): Global

orientational correlator P (t) for the F-F bonds at T = 0.14 in the cylindrical phase of the system

F13S37. Symbols are simulation results. The solid line is the theoretical prediction (see text) with

Φself
F = 0.30, and Rc = σc = 2.
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perimental analysis of Ref. [19], we assume a Kohlrausch-Williams-Watts (KWW) function

P (t; r) ∼ exp[−(t/τ(r))β] for the shell-dependent bond correlators, with β the same stretch-

ing exponent as in the F-homopolymer at the same T [40, 41]. In the KWW function we

use the theoretical α-times τ(r), obtained as described above. Fig. 16c shows a comparison

between the theoretical global correlator P (t) obtained by the former procedure and the sim-

ulation results. A good agreement is found, despite many of the assumptions and ingredients

used to construct the theoretical P (t) being incorrect. This agreement has been achieved

by using as input of the model a density profile that strongly differs from the real one. This

point, together with the fact that the experimental analysis of Ref. [19] provides the density

profile as an outcome from the fitting procedure, suggests that the latter is strongly biased

by the assumptions made on the Lodge-McLeish and Flory-Fox equations.

VI. CONCLUSIONS

We have presented a detailed characterization of several static and dynamic properties in

a generic bead-spring model for cylindrical and spherical phases of diblock copolymers, This

complements results previously obtained [13] for the lamellar phase of the same bead-spring

model. We have characterized the dynamic heterogeneity of the structural α-relaxation of the

component confined in the minority domains. Consistently with previous investigations in

the lamellar phase [13] the analysis reveals moderate gradients of mobility in the investigated

temperature range, which qualitatively probes time scales up to 100 ns. The estimated

spatial extension of the gradients of mobility (a few nanometers) is also consistent with that

observed in the lamellar phase. Gradients of mobility do not seem to be related to gradients

of density within the domains, which are indeed absent.

We have performed a detailed analysis of effective and self-concentrations, a concept

usually invoked to explain the α-relaxation of polymer mixtures and that has been recently

adapted to analyze experimental data of diblock copolymers in ordered phases. The analysis

of effective and self-concentrations directly computed from the simulations reveals a strong

disagreement with the modified forms of boh the Lodge-McLeish relation and the Flory-Fox

mixing rule, which have been recently proposed for ordered block copolymers [19]. This

suggests that their use may strongly bias the experimental analysis of the α-relaxation in

block copolymers, in particular providing incorrect estimations of the local density profiles.
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[7] Zhukov, S.; Geppert, S.; Stühn, B.; Staneva, R.; Ivanova, R.; Gronski, W. Macromolecules

2002, 35, 8521.
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