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Abstract 

Conservation of maize inbred lines in different stations causes variability 

among strains. The objective of this research was to determine agronomic and 

molecular differences in American sweet corn inbreds maintained in Spain. 

American and Spanish strains of five sweet corn inbred lines were 

characterized by using 34 RAPD primers that produced 168 consistent bands. 

Strains of four of these inbreds were crossed in a diallel design, and hybrids 

were evaluated in four environments in northwestern Spain. The RAPD 

characterization showed no differences between strains for two inbreds, while 

divergence between strains was largest for the inbred I5125. Most primers did 

not reveal any variability between pairs of strains, while some primers 

produced variations at high rates. Differences in agronomic performance 

among Spanish and American strains were most important for P51, followed 

by P39, while strains were not significantly different for I453 or I5125. 

Molecular differences between strains were not related to agronomic 

performance. Residual heterozygosity or outcrossing cannot explain these 

results. Lack of adaptation could have caused stress-induced mutagenesis. 

Natural selection could have eliminated unfavorable selective mutations, but 

neutral mutations can be found at the molecular level and favorable mutations 

could have been selected at the agronomic level.  

Key words: Zea mays - variability - RAPD - germplasm conservation. 
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Variability among strains of maize inbreds has been observed since the 

beginning of the inbred-hybrid system (Jones 1945) until the development of 

molecular markers (Tracy et al. 2000). Jones (1945) found several degenerative 

single-gene changes in five inbreds that produced large heterosis in crosses to 

their respective wild types, but the mutant lines did not reduce the yield of 

crosses to unrelated lines. Based on previous works and their own experiments, 

Tracy et al. (2000) concluded that most observed changes involve several loci, 

that changes are produced at different rates depending on the genotype, and 

that the causes of such changes are unclear. 

Fleming et al. (1964) reported divergence in conservation of maize 

inbred lines in different locations, and suggested that genetic changes were due 

to residual heterozygosity or mutation. Russell and Vega (1973) evaluated 

several maize inbred lines maintained at different stations for ten years and 

found significant differences for several quantitative traits among some 

inbreds, though most changes had no practical importance. These authors 

reported that genetic changes were independent and occurred continuously. 

Bogenschutz and Russell (1986) concluded that the method used to maintain 

the inbreds induces genetic variation. Gethi et al. (2002) have shown that there 

was small but significant variation among different strains of important inbred 

lines. According to these authors, such variation could affect germplasm 

conservation and several steps of genetic studies.  

Genetic changes occur during conservation (Murata 1991), and 

multiplication of germplasm can be produced through selection, errors, and 
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outcrosses (Parzies et al. 2000, Kameswara Rao and Jackson 1996). Revilla et al 

(2004) reported variability during conservation of maize inbred lines and 

suggested natural selection for viability and vigour within inbred lines during 

storage. Therefore, germplasm conservation and multiplication may have a 

major impact on genetic composition and structure of gene pools.  

There are no published reports on the variability among inbred strains 

maintained at environments were they were poorly adapted. Sweet corn is 

poorly adapted to northwestern Spain (Ordás et al. 1994). The objective of this 

research was to determine agronomic and molecular differences in American 

sweet corn inbreds maintained in Spain.  
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Materials and Methods 

 

Plant material: American (US) and Spanish (SP) strains of the five inbred 

lines I453, I5125, P39, P51, and C13 of sweet corn, Zea mays L., were 

characterized by using 34 Random Amplified Polymorphic DNA (RAPD) 

primers that yielded 168 loci. The US seed was provided by the North Central 

Regional Plant Introduction Station (Ames, Iowa) in 1997. These inbred lines 

had been released in the USA more than thirty years before they were 

introduced into Spain and had been self-pollinated enough times to be 

considered completely homozygous. The University of Minnesota provided the 

SP seed of I453 and P51 in 1976, and of C13 in 1978, and the seed of I5125 

and P39 was provided in 1976 by Crookham Company. The SP strains have 

been multiplied in northwestern Spain 10 times, except for P51 than was 

multiplied 7 times. Conservation was carried out by the standard procedure 

consisting on self-pollinating the original seed and choosing three 

representative ears from the descendants of one ear. This process is repeated 

every time the inbred line has to be multiplied. Therefore, the seed available 

today in Spain descends from one unique US seed. 

 

Genomic DNA isolation and amplifications: Maize kernels were 

germinated at 25 ºC for a week and one of the first leaves was collected and 

frozen immediately in liquid nitrogen. Genomic DNA was extracted from 

individual leaves of each inbred line according to Liu & Whittier (1994) with 
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slight modifications. Amplifications were conducted with 10-mer primers from 

Operon DNA Technologies Inc (Alameda, California, USA). From an initial 

screening of 80 decamer primers (kits A, B, C, and D) we selected 34 decamer 

oligonucleotides that showed consistent banding patterns. For the RAPD 

reactions 25 ng of genomic DNA were used as template in a final volume of 25 

µl containing 1 × reaction buffer (20 mM Tris-HCl pH 8.0, 100 mM KCl, 0.1 

mM EDTA, 1mM DTT, 50% glycerol, 0.5% Tween  20 and 0.5% Nonidet 

P40), 3.0 mM Mg Cl2, 200 µM of each dNTP (Ecogen), 30 ng of each primer 

and 1 U Taq polymerase (ECOGEN, Barcelona, Spain). Amplifications were 

performed in a PTC-100 Thermal Cycler (MJ Research, Watertown, 

Massachusetts, USA) under the following conditions: DNA denaturation was 

done at 95 ºC for 5 min followed by a 45 cycle amplifications (95 ºC, 1 min; 35 

ºC, 1 min.; 72 ºC, 2 min) and a final extension step at 70ºC for 7 min. RAPD 

products (20 µl) were separated by gel electrophoresis in 1.5% agarose gels in 

TAE buffer. The polymorphic fragments were named by the primer code (OP 

Operon), the kit letter and its approximate size in base pairs. Only bands that 

gave a reproducible score in the duplicated experiment were included in the 

final analysis. 

 

Agronomic analysis: The US and SP strains of I453, I5125, P39, and P51 were 

crossed in a diallel design in 1997. The hybrids were planted in Pontevedra 

(northwestern Spain) (20 m above sea level) in experiments arranged as 
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randomized complete block designs with two replications per environment. 

This location has a humid climate with annual rainfall about 1600 mm. 

Planting dates were the 20 of May and the 17 of June in 1998, and the 19th of 

May and the 15th of June in 1999. Plant density was approximately 60 000 

plants ha-1. Trials were harvested when the ear was dry (end of October or 

November) in order to measure yield as seed production. 

Lack of adaptation of maize from USA to European conditions is the 

main selective force that might alter the genetic constitution of germplasm 

resources; therefore, we measured the main adaptive-related traits, namely early 

vigor and dry grain yield. Early vigor is a key adaptive trait for the introduction 

of maize from the USA in northern and western Europe, where springs are too 

wet and cool for maize germination. The estimation of early vigor takes into 

account size, color, and canopy development approximately one month after 

planting, using a scale from 1 (weak plants) to 9 (vigorous plants), where 5 

represents the average plant development of the trial. Dry grain yield is the 

main adaptive trait because summarizes the total fitness of the plant. Dry grain 

yield was recorded in kg ha-1 at 140 g kg-1 grain moisture. 

The analysis of variance was made considering hybrids and inbred 

strains as fixed effect, and any other source of variation as random effect. The 

analysis was made for each environment separately and combined over 

environments. A separate analysis of variance was performed for each hybrid, 

considering strain combinations as fixed effects. For each hybrid, means were 

compared among the four possible strain combinations, Spanish × Spanish, 
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Spanish × USA, USA × Spanish and USA × USA. All analyses were performed 

using the SAS program (SAS, 2000). 
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Results 

 

RAPD analysis 

The inbreds P51 and C13 did not show differences between US and SP strains 

for the 168 bands obtained from 34 RAPD primers, while the other three 

inbreds had some variability between strains (Table 1). The inbred I5125 

showed the largest variability, 8% of the bands being different between the SP 

and the US. The strains of I453 differed for 2% of the bands, and the strains of 

P39 for 1%.  

Only eight of the 34 random primers showed differences between 

strains and, from them, OPC11 differed between strains for the three inbreds 

and OPC4 for two of the inbreds. Besides, for most of the primers, none of 

the bands varied between strains, while for some primers, as OPC2, OPC4, 

OPC8, and OPC11, most of the bands differed between strains. 

 

Field trials 

Environments and hybrids and the genotype × environment interaction were 

significantly for vigor and yield (data not shown). When the analyses of 

variance were made for each hybrid, differences among strain combinations 

were always significant, while the genotype × environment interaction was 

significant only for early vigor of I5125×P51. 
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 Strain combinations SP×SP were more vigorous than US×SP for the 

hybrids I453×I5125 and I5125×P39, and than the combination SP×US and 

US×US for the hybrid P39×P51 (Table 2). For the hybrid I453×P39, the most 

vigorous combination was SP×US, and for I5125×P51, the combination 

US×SP was more vigorous than SP×US. These results suggest that Spanish 

strains had experienced some improvement of early vigor while maintained in 

the wet and cool springs of northwestern Spanish springs.  

Concerning yield, SP×US combinations were superior to SP×SP for 

I453×P39 and to US×SP for I5125×P39, and US×SP yielded more than SP×SP 

for I5125×P51 (Table 2). The strain combination SP×SP had higher yield than 

SP×US and US×US for P39×P51. Therefore, although differences among 

strain combinations were not as significant for yield as they were for early 

vigor, heterosis in crosses between Spanish and USA strains was larger than in 

crosses SP × SP or US × US, when available. 
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Discussion 

 

Variation in SP strains from the original US strain involves both the 

appearance and disappearance of RAPDs bands (Table 1), therefore, variability 

has aroused by several mechanisms. Some of the sequences polymerized from 

these primers varied between strains more than others. Variability at the 

molecular level was not distributed uniformly among the inbreds or randomly 

along the genome, suggesting that whatever the cause of variation might be, 

some genotypes and genomic regions are more affected than others.  

Both early vigor and yield show that Spanish and US strains are not 

equivalent and that hybrids between Spanish strains were more vigorous and 

had less heterosis than crosses between Spanish and US strains. Early vigor is a 

serious limitation for most US hybrids when grown in Europe (Ordás et al. 

1994, Revilla et al. 1999). Therefore, these results show that ex-situ 

conservation resulted in selection for early vigor and, to a lesser extend, for 

yield, within these sweet corn inbred lines. 

Tracy et al. (2000) detected heterosis among strains of the sweet corn 

inbred P39. Although we could not calculate heterosis due to lack of US seed 

and the extremely poor performance of inbreds, divergence among US and 

Spanish strains seems to more related to selection for early vigor that to 

heterosis-related effects. 

Residual heterozygosity was not the only explanation for the observed 

variability among P39 strains, as reported by Tracy et al. (2000), and we 



 12 

completely agree with that conclusion because SP strains are not 

morphologically different to US strains. These authors considered that the 

possibility of pollen contamination or outcrossing was unlikely because of a 

number of reasons, including that the strains are morphologically similar, 

which is also true in the present experiments.  

Possible explanations for the high mutability (8%) of I5125, compared 

to the other four inbreds, could be the phenomenon known as hyper-mutation 

(Foster, 2000). Besides, the preferential variation in some sequences could be 

that some selective agent is causing adaptive mutations (Foster, 2000). Besides 

hyper-mutation, other models that have been proposed to explain the 

appearance of adaptive mutations are the direct mutation model (Cairns et al. 

1988) and the amplification mutagenesis model (Andersson et al. 1998). Stress 

induced mutagenesis has been extensively reported in bacteria and yeast, either 

as a consequence of the stress response of the organism, or as a result of 

selection (Tenaillon et al. 2004, Hersh et al. 2004). Adaptive mutations could 

be playing a role in adaptation of maize to marginal or exotic environments, 

thus disturbing germplasm conservation but facilitating breeding for 

adaptation. 

Agronomic differences between SP and US strains were most 

important for P51, followed by P39, while strains were not significantly 

different for I453 or I5125. Differences between strains, as deduced from 

RAPD data, were not related to agronomic performance. Contrarily, Tracy et 

al. (2000) concluded that there was a relationship between molecular diversity 
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and improved performance. Therefore, these data do not support the 

hypothesis that selection for adaptation within inbred lines has generated 

molecular variability. However, selection has actually happened, and variability 

is indispensable for selection to be efficient, therefore, some other sort of 

variability must be underlying agronomic differences between strains of these 

inbred lines. 

Variation was probably due to lack of adaptation, which might have 

raised the mutation rate and caused adaptive mutations by several mechanisms, 

such as transposons. The conservation of inbred lines implies some natural 

selection that would have eliminated unfavorable selective mutations. 

Therefore mainly neutral mutation can be found at the molecular level, while 

agronomic variation reflects the few favorable selective mutations that had 

been conserved. Besides, other explanations, such as epigenetic variation or 

gene silencing are possible, but further research is needed to board this issue. 
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Headings of Tables 

Table 1. Polymorphism for 168 RAPD bands from 34 primers between U.S.A 

and Spanish strains of five U.S.A. sweet corn inbred lines that are conserved in 

Spain since 1976. 

Table 2. Means for early vigor1 and yield for crosses among the Spanish (SP) 

and the U.S.A. (US) strains of four sweet corn inbred lines evaluated in two 

planting dates and two years.
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Table 1 

Inbred Primer Locus U.S.A. Spain 

I5125 OPA8 650 - + 

 OPB17 700 + - 

 OPC2 890 - + 

  900 + - 

  950 - + 

  1200 - + 

 OPC4 850 + - 

  1050 + - 

  1100 - + 

 OPC8 1200 - + 

  1250 + - 

 OPC11 1600 + - 

 OPC14 1000 + - 

  1100 + - 

I453 OPC6 700 - + 

 OPC11 1400 - + 

  1600 + - 

P39 OPC4 1100 - + 

 OPC11 1600 + - 
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Table 2 

Early vigor1 (1-9) Strain combination 

Hybrid SP × SP SP × US US × SP  US × US 

I453 × I5125 7.1a 6.3ab 6.1b 3 

I453 × P39 5.0b 6.1a 4.7b 3 

I453 × P51 6.9a 6.4a 6.3a 3 

I5125 × P39 6.8a 5.9ab 5.5b 6.0ab 

I5125 × P51 5.5ab 4.9b 6.9a 3 

P39 × P51 7.1a 4.7b 6.8a 4.3b 

Yield (kg ha-1) SP × SP SP × US US × SP  US × US 

I453 × I5125 517a 528a 535a 3 

I453 × P39 267b 361a 274b 3 

I453 × P51 416a 440a 405a 3 

I5125 × P39 400a 466a 284b 413a 

I5125 × P51 344b 397ab 524a 3 

P39 × P51 472a 327b 422ab 340b 

1 Early vigor was estimated by using a scale from 1 (weak plants) to 9 (vigorous 

plants) 

2 Means followed by the same letter, within the same row do not differ 

significantly; following Fisher protected LSD (P=0.05) 
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3 Due to the poor adaptation of US inbreds, there was not enough seed from 

these hybrids for trials. 


