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Adrián Velázquez-Campoy, Miguel A. De la Rosa, Irene Dı́az-Moreno

PII: S0005-2728(14)00555-6
DOI: doi: 10.1016/j.bbabio.2014.07.017
Reference: BBABIO 47350

To appear in: BBA - Bioenergetics

Received date: 17 March 2014
Revised date: 23 July 2014
Accepted date: 26 July 2014

Please cite this article as: Blas Moreno-Beltrán, Antonio Dı́az-Quintana, Katiuska
González-Arzola, Adrián Velázquez-Campoy, Miguel A. De la Rosa, Irene Dı́az-Moreno,
Cytochrome c1 Exhibits Two Binding Sites for Cytochrome c in Plants, BBA - Bioener-
getics (2014), doi: 10.1016/j.bbabio.2014.07.017

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36167306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.bbabio.2014.07.017
http://dx.doi.org/10.1016/j.bbabio.2014.07.017


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 

 

 

 

Cytochrome c1 Exhibits Two Binding Sites for Cytochrome c in Plants 

 

Blas Moreno-Beltrán1, Antonio Díaz-Quintana1, Katiuska González-Arzola1, Adrián 

Velázquez-Campoy2, Miguel A. De la Rosa1 and Irene Díaz-Moreno1,* 

 

1Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-

CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain 

 

2Institute of Biocomputation and Physics of Complex Systems (BIFI) - Joint Unit BIFI-

IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, 

Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de 

Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain; Fundacion ARAID, 

Government of Aragon, Maria de Luna 11, 50018, Spain 

 

*Corresponding author: idiazmoreno@us.es  

Telephone number: +34 954489513; Fax number: +34 954460165 

 

Short Title: Plant Cytochrome c1-Cytochrome c Complex 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 

 

Abstract  

 

In plants, channeling of cytochrome c molecules between complexes III and IV has 

been purported to shuttle electrons within the supercomplexes instead of carrying 

electrons by random diffusion across the intermembrane bulk phase. However, the 

mode plant cytochrome c behaves inside a supercomplex such as the respirasome, 

formed by complexes I, III and IV, remains obscure from a structural point of view. 

Here, we report ab-initio Brownian Dynamics calculations and Nuclear Magnetic 

Resonance-driven docking computations showing two binding sites for plant 

cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-

productive (or distal) site with a long heme-to-heme distance and a functional (or 

proximal) site with the two heme groups close enough as to allow electron transfer. As 

inferred from Isothermal Titration Calorimetry experiments, the two binding sites exhibit 

different equilibrium dissociation constants, for both reduced and oxidized species, that 

are all within the micromolar range, so revealing the transient nature of such a 

respiratory complex. Although the docking of cytochrome c at the distal site occurs at 

the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with 

the complex III structure. In our model, the extra distal site in complex III could indeed 

facilitate the functional cytochrome c channeling towards complex IV by building a 

“floating boat bridge” of cytochrome c molecules (between complexes III and IV) in 

plant respirasome.  

 

 

Key words: Arabidopsis thaliana, Cytochrome c, Cytochrome bc1 Complex, NMR, 

Respirasome, Supercomplex  
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Abbreviations: 

AIRs  Ambiguous Interaction Restraints  

AU  Analytical Ultracentrifugation 

BD  Brownian Dynamics 

Cc  Cytochrome c 

Cc1  Cytochrome c1 

Cc2  Cytochrome c2 

Cbc1  Cytochrome bc1 complex 

CcO  Cytochrome c oxidase complex 

Cf  Cytochrome f 

CD  Circular Dichroism 

CSP  Chemical-Shift Perturbations 

ET  Electron transfer 

GALDH L-galactono-1,4-lactone dehydrogenase 

HADDOCK High Ambiguity Driven Docking approach 

HSQC  Heteronuclear Single-Quantum Correlation 

ITC  Isothermal Titration Calorimetry 

MD  Molecular Dynamics 

NMR  Nuclear Magnetic Resonance 

PCA  Principal Component Analysis 

pCc  plant Cytochrome c 

pCcred  Reduced plant Cytochrome c 

pCcox  Oxidized plant Cytochrome c 

pCc1  plant Cytochrome c1 

pCc1ox  Oxidized plant Cytochrome c1 

pCc1red  Reduced plant Cytochrome c1 
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pRieske plant Rieske  
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1. Introduction 

 

Cytochrome c (Cc) was first described as a redox carrier in the mitochondrial electron 

transport chain transferring electrons from cytochrome bc1 (Cbc1) to cytochrome c 

oxidase (CcO), which are respectively known as complexes III and IV [1-3]. Since then, 

several other mitochondrial Cc partners were being reported, including recently the 

flavoenzyme L-galactono-1,4-lactone dehydrogenase (GALDH) in plants; GALDH is 

required for the correct assembly of NADH dehydrogenase (or complex I) and 

catalyzes the terminal step of L-ascorbate biosynthesis [4-6]. Nowadays, Cc is capable 

of interacting with several protein targets not only in the mitochondria under 

homeostatic conditions but also in the cytoplasm and even in the nucleus under 

programmed cell death conditions [7-10].  

 

Nowadays, the organization and dynamics of the respiratory complexes in the inner 

mitochondrial membrane is a matter of debate, for which two different models have 

been proposed [11]. In the random collision models, all membrane proteins and redox 

components catalyzing electron transport and ATP synthesis are in constant and 

independent diffusional motion [12]. In contrast, the supramolecular organization 

models of membranes are based on specific interactions between individual respiratory 

complexes to form stable supercomplexes. In fact, the oligomerization in 

supercomplexes could enhance the respiratory chain activity through spatial restriction 

of electron carrier diffusion [13]. In particular, the complexes I, III and IV are, in their 

turn, the three basic components of the so-called respirasome, which is a multisubunit 

respiratory supercomplex composed of dimeric complex III and single copies of 

complex I and IV [14]. Such a diversity in arrangement of the respiratory complexes 

may modulate the capability of cells in response to diverse environmental conditions 
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[15] as the respirasome could quickly drive electrons from NADH to dioxygen in the 

presence of ubiquinone and Cc [16,17].  

 

In this context, Cc channeling between complexes III and IV to shuttle electrons within 

the supercomplexes instead of carrying them by random diffusion has recently been 

proposed to occur in plants [18], in agreement with the metabolic channeling model 

proposed by Kholodenko and Westerhoff [19]. Within this frame, channeling would 

imply the affinity of Cc molecules towards consecutive binding sites, impairing its 

release to the bulk phase but providing a diffusion path between its redox partners. 

This idea demands a detailed structural and functional analysis of the interactions 

between plant Cc (pCc) and its respiratory partners. The structure of the mammalian 

supercomplexes is consistent with a single Cc molecule bound to one of the Cc1 

subunits of complex III, as found in the yeast X-ray structure [20,21]. Unfortunately, the 

behavior of pCc in supercomplexes remains obscure from a structural point of view as 

not even the electron tomography studies of plant respirasomes have revealed the 

location of pCc molecules [22].  

 

In classical redox experiments, Cc seems to interact with either complex III or IV by 

forming multiple transient encounters that enable high turnover rates and efficient 

electron transfer (ET), even though only a few conformations of the encounter 

ensemble lead to a productive complex [20,23,24]. Actually, the multiphasic kinetics 

observed in polarographic and spectrophotometric assays for the oxidation of reduced 

Cc by beef complex IV can be fitted to a model with just one catalytic site. Such a 

simple model includes alternative binding conformations of the transient complex, with 

some of them being unable to transfer electrons but affecting the ET rate at the 

catalytic site [25,26]. Recently, the surface residues of human Cc contacting bovine 

complex IV have been mapped by Nuclear Magnetic Resonance (NMR) [27].  
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Non-ET conformations within the complex between beef Cbc1 and human Cc were also 

evidenced by steady state kinetic analysis, and so a binding model with more than one 

molecule of Cc per molecule of Cbc1 was proposed to explain the observed multiphasic 

kinetics [28]. In addition, a second cytochrome c2 (Cc2) binding site was proposed for 

the biphasic kinetic observed by plasmon resonance in the oxidized Cbc1-Cc2 complex 

from Rhodobacter capsulatus [29]. However, the crystal structure of the yeast Cbc1-Cc 

complex does only show a single Cc molecule on the native complex III dimer, mainly 

driven by non-polar contacts [20,30,31]. Notwithstanding, extra electrostatically 

charged residues seem to be also involved, as inferred from Molecular Dynamics (MD) 

calculations [32] and experimental data with chemically modified Cc [33,34].  

 

The Cbc1-Cc interaction corresponds to a short-lived complex, whose lifetime and ET 

mechanism are strongly dependent on ionic strength [35,36]. Rhutenium-based 

techniques of photooxidation have been developed to study ET in the Cbc1-Cc complex 

from Rhodobacter sphaeroides, Paracoccus denitrificans and yeasts [36-40]. The 

resulting kinetic data suggests the formation of an encounter complex guided by long-

range electrostatic forces. Interestingly, ruthenium kinetics have also shown that the 

acidic domain of the Cbc1 complex from Rhodobacter sphaeroides, which is analogous 

to the acidic subunits in eukaryotic bc1 complexes, does not play any significant role in 

ET [40].  

 

The nature of non-productive conformations within the Cbc1-Cc complex and their 

eventual role in the respirasome assembly remain unclear. In this work, we have 

investigated the interaction in solution between pCc and the globular domain of plant 

cytochrome c1 (pCc1), which has been made soluble by truncating its membrane-

anchoring hydrophobic helix located at the extreme C terminus (Figure 1). The 
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transient complex between the two Arabidopsis thaliana heme proteins has been here 

analyzed by using NMR, Isothermal Titration Calorimetry (ITC) and restraint docking 

calculations. Surprisingly, our experimental data reveal two well-defined binding sites 

for pCc at the pCc1 surface, namely a non-productive (or distal) site with a long heme-

to-heme distance (> 30 Å) and a functional (or proximal) site with the two heme groups 

close enough (< 8 Å) as to allow ET. Though not functionally active in redox reactions, 

the distal site at the pCbc1 adduct could play a key role in channeling pCc molecules 

within the respiratory mitochondrial supercomplexes in plants. 
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2. Material and Methods 

 

2.1 Design of constructs and site-directed mutagenesis 

 

A 0.72 kb synthetic DNA fragment encoding for the soluble domain of pCc1 subunit 

(amino acids 64–265, GenBank ID: 834081) fused to a standard N-terminal periplasmic 

signal peptide was amplified by PCR using the oligonucleotides pCc1_fw (5-

GCGGGATCCAGGAGGTGACCATG-3) and pCc1_rv (5-

GCGCTCGAGTTCCATTTCCGGTTCCGC-3), containing BamHI and XhoI restriction 

sites (underlined), respectively. The reaction product was inserted in the pET28a(+) 

expression vector. Successful cloning was confirmed by automated sequencing. Site-

directed mutagenesis was performed using pET_pCc1 as a template and the 

QuikChange II method (Stratagene, http://www.stratagene.com). The primers for PCR 

were pCc1_C10A_fw (5-TGGCCTGGAAGCGCCGAACTAT-3) and pCc1_C10A_rv (5-

ATAGTTCGGCGCTTCCAGGCCA-3).  

 

A 0.4 kb DNA fragment encoding for the pCc was cloned into a pBTR1 vector [41] by 

adaptamer technology. The pBTR1 contains the yeast hemelyase, needed for correct 

heme integration in c-type cytochromes. The oligonucleotides used to generate the 

adaptamer were pCc_adapt_fw (5-ATATATCCATGGCGTCATTTGA-3) and 

pCc_adapt_rv (5-TCTTGGTACCTCATCACGCGGT-3). pCc DNA insert was amplified 

directly from pCytA [42]. The pET_pCc1-C10A and pBTR-pCc constructs were verified 

by automated sequencing. 

 

Protein expression and purification protocols have been included in Supplementary 

Material (Materials and Methods M1). 
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2.2 Absorption spectroscopy  

 

Absorption spectra were recorded in the ultraviolet-visible (UV-VIS) range at 25 ºC in a 

V-650 spectrophotometer (Jasco, http://www.jascoinc.com). A 1 mL quartz cuvette with 

a path length of 10 mm was employed. Circular Dichroism (CD) spectra were recorded 

in the UV range (190-250 nm) at 25 ºC in a J-815 spectropolarimeter (Jasco, 

http://www.jascoinc.com), equipped with a Peltier temperature-control system, using a 

1-mm quartz cuvette. Protein concentration was 3 M in 5 mM sodium phosphate 

buffer pH 6.3. 20 scans were averaged out for each sample. Secondary structure 

analysis was performed by using CDPRO software [43,44]. CDSSTR was used as 

reference database. 

 

2.3 Analytical ultracentrifugation 

 

Sedimentation equilibrium experiments of pCc1 were performed at 20 ºC in an Optima 

  -   nalytical  ltracentrifuge   ec man  nstruments , 

https://www.beckmancoulter.com) with an AN50-Ti rotor. 80 L aliquots of a 50 M 

pCc1 solution in 5 mM sodium phosphate buffer pH 6.3 were analyzed at three 

successive speeds (13,000; 15,300 and 22,500 rpm). Absorbance was measured at 

523 nm after 17 h to ensure that the equilibrium condition was reached. Baseline 

signals were determined taking a radial scan at 13,000 rpm after running the samples 

for 8 h at 45,000 rpm. Conservation of mass in the cell was checked in all experiments. 

Sedimentation velocity experiments were performed at 45,000 rpm and 20 ºC with 400 

L samples loaded into double sector cells, using the same buffer and protein 

concentration as in the equilibrium experiments. Radial scans at 523 nm were taken 

every 10 min and the sedimentation coefficient distribution was calculated by least-
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squares boundary modelling of the sedimentation velocity data using the program 

SEDFIT [45]. The experimental coefficients were converted to standard conditions. The 

partial specific volume of pCc1 (0.738 g/L), calculated from the amino acid composition, 

as well as the buffer density and viscosity were determined with the SEDNTERP 

program [46]. 

 

2.4 NMR measurements 

 

1D 1H NMR spectra of pCc1 in its two redox states were performed on a Bruker Avance 

700 MHz (Bruker, http://www.bruker.com). Water signal was suppressed by 

WATERGATE solvent suppression method [47]. Protein concentration was 100 M in 5 

mM sodium phosphate buffer pH 6.3. Either ascorbic acid or ferricyanide was added to 

ensure the redox state for each sample. NMR assignments of the 15N and 1H nuclei of 

reduced pCc (pCcred, BMRB accession number 18828) were taken from previous work 

[6]. The data were processed using Bruker TOPSPIN (Bruker) and then analyzed with 

SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San 

Francisco, CA, USA).  

 

NMR titrations of 100 M of 15N labeled pCc with aliquots of unlabeled pCc1 (both 

reduced) were performed in 5 mM sodium phosphate pH 6.3 and 10% D2O. Each 

titration step was prepared in an independent NMR tube (Shigemi) up to a 0.28 mL 

volume. The pH of the samples was checked before and after recording every 

spectrum. The chemical-shift changes were monitored in a series of [1H, 15N] 

Heteronuclear Single-Quantum Correlation (HSQC) experiments at 25 ºC and recorded 

on a Bruker Avance 700 MHz (Bruker). The data were processed using Bruker 

TOPSPIN (Bruker) and analyzed with SPARKY. NMR chemical-shift titration curves 
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were analyzed with Origin 7 (OriginLab, http://www.originlab.com) by using a two-

parameter non-linear least squares fit using a one-site (1) and two-site (2) binding 

model. Under fast exchange conditions, the chemical-shift perturbations (CSP) for a 

signal in a given titration step is defined by: 

 

   
    

    
       (1) 

Where 

               

     
                                       

 
 

     
                                       

 
  

 

Wherein       is the maximum perturbation for the signal,      and      are the overall 

and respective concentrations of pCc and pCc1 in the measured sample.      and      

are the concentrations of the free and bonded pCc species under equilibrium. KD is the 

dissociation constant. The equation deduction is in Supplementary Material (Materials 

and Methods M2). 

 

For the two-binding sites, the third order equation was solved according to the 

approach of Wang and Jiang [48]. In this approach, two sites with different affinities are 

considered, and each one of them can be in different accessibility states. For simplicity, 

we assumed a full ability of the two sites in pCc1 to bind pCc. Thus:  

 

         
      

 

 
 
 

 
            

 

 
 

    
   (2) 

Where 
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 ; 

                      ; 

                                ; and 

                  

 

 

The average CSP were derived from the equation:  

 

                       

 
   

 

where     and     are the CSP of the amide nitrogen and proton, respectively. The 

estimated error in KD values was 10%. 

 

The methods for the global fitting of CSP and determination of line broadenings are in 

Supplementary Material (Materials and Methods M3 and M4). The Principal 

Component Analysis (PCA) method is also in Supplementary Material (Materials and 

Methods M5). 

 

2.5 ITC measurements 

 

All ITC experiments were performed using an Auto-ITC200 instrument (GE Healthcare, 

http://www.gehealthcare.com) at 25 ºC. The reference cell was filled with distilled 

water. The titration experiments between pCc1 and pCc consisted of 2 L injections of 

0.4 mM pCc (reduced or oxidized forms) in 10 mM sodium phosphate buffer pH 7.4 into 

the sample cell, initially containing 20 M pCc1 solution (reduced or oxidized) exactly in 

the same buffer. All solutions were degassed before the titrations. Titrant was injected 
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at appropriate time intervals to ensure the thermal power signal returned to the 

baseline prior to the next injection. To achieve homogeneous mixing in the cell, the 

stirring speed was kept constant at 1,000 rpm. The data, specifically the heat per 

injection normalized per mol of injectant versus molar ratio, were analyzed with Origin 7 

(OriginLab) using a two-site binding model [49]. Calibration and performance tests of 

the calorimeter were carried out conducting CaCl2-EDTA titrations with solutions 

provided by the manufacturer. The values of the reduced 
statistic were calculated 

considering the normalized heat associated with each injection Q, expressed in 

calories per mol.  

 

2.6 Brownian Dynamics 

 

Brownian Dynamics (BD) trajectories were computed for ab initio docking with the 

SDA-6 package [50]. For this purpose, PQR files were built using the LEAP module of 

AMBER 9 [51] using the AMBER 2003 force-field charge set [52]. Then, a 97 Å3 

electrostatic grid with 1 Å node spacing was built with the APBS package [53]. Ionic 

strength was set to 100 mM and the protein internal dielectric was 4. Translational and 

rotational diffusion constants for BD were calculated from the initial coordinates using 

the script ARO (former main_axis) [54] on the tcl console of VMD [55]. Every complex 

formed was recorded except when the RMSD value was lower than 2 Å with respect to 

a previous one. A structural alignment of modelled proteins to the X-ray coordinates for 

the yeast complex [30] was applied as an accuracy reference. Structures were 

represented using UCSF Chimera [56]. 

 

2.7 NMR-driven docking 
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Restrained docking calculations were performed with the High Ambiguity Driven 

Docking approach (HADDOCK) [57-59], using homology models as input for reduced 

forms of pCc, pCc1 and plant Rieske head domain (pRieske) (Supplementary Material, 

Materials and Methods M6). Dielectric constant was set distance-dependent. Scaling of 

intermolecular interactions for rigid body was fixed to 1.0. Ambiguous interaction 

restraints (AIRs) for the docking simulation were generated using standard criteria. 

Random exclusion of AIRs was not employed. pCc residues labelled as active were 

those showing       ⩾ 0.025 ppm and a solvent accessibility larger than 50%, 

calculated with NACCESS.  

These active residues were Ala13, Glu15, Lys16, Arg19, Thr20, Gln24, Gln36, Ser55, 

Ala58, Lys80, Lys81, Gly85, Val89, Lys94 and Lys95. N-terminal residues were not 

included in the list. pCc residues located at less than 4 Å from the active ones and 

showing high solvent accessible surface (> 50%) were labelled as passive residues. 

No active residues for pCc1 were defined and passive residues were those with a high 

solvent accessibility (> 50%). These residues were Gln38, Ser42, Leu48, Arg52, Gly56, 

Thr60, Glu62, Ala66, Glu70, Val74, Pro77, Asp79, Glu80, Gly81, Glu82, Met83, Thr85, 

Lys89, Ser91, Arg93, Glu96, Ser99, Glu101, Ser102, Arg105, Phe106, Gly109, Ala122, 

His124, Arg138, Asp139, Ala142, Gly143, Ser145, Arg147, Glu148, Gly149, Pro157, 

Asn168, Asp169, Glu170, Glu173, Glu175, Asp176, Gly177, Pro179 and Thr181. Both 

N- and C-terminal residues were not included in the list. The flexible segments were 

defined by the active and passive residues used in the AIRs ± 2 sequential amino-

acids. For each run, 2,000 rigid-body solutions were generated by energy minimization. 

The 200 structures with lowest AIRs energies were subjected to semi-flexible simulated 

annealing. Then, the first 100 structures were submitted to a final refinement in explicit 

water. The 100 best structures were analyzed using standard criteria. Structures were 

represented using UCSF Chimera [56].  
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Centers of mass were calculated using previously reported protocol [54]. Second-

molecule docking computations were performed with solutions from first pCc1-pCc 

molecule docking as input file and a second pCc molecule as probe. Docking 

parameters and active and passive residues of pCc were defined as before. No active 

residues for the pCc1-pCc adduct were defined and passive residues corresponded to 

those with a high solvent accessibility (> 50%). These residues matched with those 

previously defined for pCc and pCc1, with the exception of residues from pCc1 which 

are not exposed to solvent in pCc1-pCc adduct. Finally, single docking computations 

between the pCc1-pRieske adduct and pCc were also performed. Only passive 

residues with high solvent accessibility (> 50%) for pCc1-pRieske were defined. The 

pCc1-pRieske complex was built using pCc1 and pRieske conformations that both 

structures  eep in the “closed” conformation inside complex     [60].  
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3. Results 

 

3.1 Elucidating two binding sites for pCc on pCc1  

 

To first understand the nature of the interaction between pCc1
 and pCc and to visualize 

their ensemble of transient encounter complexes under equilibrium conditions, we 

computed 2,000 BD trajectories with the two heme proteins. Each trajectory lasted 313 

ns on average. Figure 2a shows the distribution of the first, lowest-energy 500 

solutions. Notably, pCc swept most of the solvent-exposed pCc1 surface. For all 

orientations, non-polar interactions seem to be the largest contribution to binding 

energy (Table S1), as proposed by Lange and Hunte [30]. The recorded complexes 

were submitted to structural clustering, which yielded two major clumps. Cluster 1 of Cc 

molecules comprised 212 recorded structures out of 484,511 matching ones along the 

trajectories, with the representative Cc structure lying on the same Cc1 surface patch 

as in the crystal structure of the yeast Cbc1-Cc complex (PDB 1kyo). However, such a 

representative Cc molecule is rotated by ca. 90 degrees, around the normal to the 

interaction Cc1 surface, with respect to Cc orientation in the crystal structure (Figure 

2b,c). As the heme-to-heme distance is short enough to guarantee an efficient ET, this 

cluster was allocated within the herein called proximal binding site. Cluster 2 of Cc 

molecules consisted of 200 recorded structures out of 361,331 matching, and showed 

ca. 60 Å RMSD from the X-ray structure (Figure 2b). Remarkably, it sampled at the 

outer rim of Cc1 at the Cbc1 complex (Figure 2c), and so the adducts were non-ET 

conformations located at the herein called distal binding site. The remaining clusters 

were much less populated and, opposite to clusters 1 and 2, they clashed if 

superposed onto the full Cbc1 structure.  
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To test experimentally the stoichiometry of the interaction between pCc1 and pCc, we 

cloned the water-soluble and monomeric domain of pCc1, which keeps its 

tridimensional structure as compared to the full-length pCc1 subunit of the Cbc1 

complex in the native membrane. For this purpose, all the residues from the 

physiological mature protein (GeneBank ID: 834081) until Glu265 were kept and the C-

terminal hydrophobic helix was removed. The protein sequence of such soluble domain 

is highly conserved in evolved plants  ≥ 93% sequence identity with rice, soybean, 

maize, grape vine, tomato, cacao or poplar), whereas the designated position for 

truncation was selected according to previous works with soluble domains of Cc1 

[24,61-63] and photosynthetic cytochrome f (Cf) [64,65]. In addition, Cys10 at the N-

terminal region was replaced by alanine to avoid pCc1 dimerization of wild-type protein 

through intermolecular disulfide bridges (Figure S1). The resulting soluble site-directed 

mutated domain of pCc1 was expressed in E. coli, and Analytical Ultracentrifugation 

(AU) corroborated its monomeric state for at least 96% of population (Figure 3a). The 

molecular mass of the monomeric domain was 23,857 Da, as verified by MALDI-TOF. 

Small populations (4%) of multimers were also detected by AU, with a molecular mass 

of ca. 100.7 kDa. 

 

The proper folding of pCc1 was assessed by CD and NMR spectroscopies. The CD 

spectral analysis of reduced pCc1 (pCc1red) yielded a major -helix component (67.6%), 

along with a minor contribution of turns (7.7%) and -sheets (5%) in the secondary 

structure (Figure 3b). Similar results were found for the oxidized state (65.8% of -

helixes, 8.6% of turns and 4.3% of -sheets; Figure 3b). The 1D 1H NMR spectrum of 

pCc1red displayed a high dispersion of signals in the amide and methyl regions, as 

corresponds to a three-dimensional folding (Figure 3c, upper). The NMR spectrum also 

showed several signals at negative  values that belong to the side chain of Met163 
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axial ligand, consistent with a proper heme coordination. The 1D 1H NMR spectrum of 

oxidized pCc1 (pCc1ox) showed a significant overall line broadening, and some signals 

from residues close to the heme group, such as Met163, were strongly shifted as a 

result of the paramagnetic effect of Fe3+ (Figure 3c, lower).  

 

The UV-visible absorption spectrum of ascorbate-reduced pCc1 showed a maximum at 

552 (-band) and at 522 nm (-band), as expected for the correct incorporation of the 

heme group into the apoprotein [61,66]. On the other hand, the oxidized pCc1 showed 

the 699-nm band typical of the octahedral heme iron coordination and, in particular, of 

the bond between the Fe atom and the S atom of Met163 (Figure S2). The calculated 

redox potential (Em) of pCc1 was ca. +160 mV (Figure S3), lower than that determined 

(ca. +250 mV) for the membrane-anchored Cc1 subunit in photosynthetic bacterial and 

plant complexes [66-68]. Similar decrease in redox potential has also been observed 

with isolated water-soluble domains of Cc1 from Rhodobacter sphaeroides, Paracoccus 

denitrificans and Thermus thermophilus [24,62,63].  

 

The interaction between pCc1 and pCc was first tested along a direct NMR titration by 

monitoring the line broadening of the signals from methionine axial ligands of both 

cytochromes (Met88 of pCc and Met163 of pCc1, respectively) in their reduced state. 

As shown in Figure 4a, the Met88-CH3 signal of pCc broadened upon every pCc1 

addition. Moreover, the Met163-CH3 signal of pCc1 could also be followed at each 

titration step. This latter also widened with respect to that of unbound pCc1 at the same 

concentration level (Figure 4a). 

 

A CSP analysis of the amide groups of pCc was further performed. For this purpose, 

NMR titration experiments showing the changes in the [1H, 15N] HSQC spectrum of 15N-
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labelled pCc upon gradual addition of pCc1 were recorded. Several pCc amide signals 

showed significant chemical-shift displacements along titrations (Figure 4b), as well as 

specific line-broadening (Figure S4), which is consistent with an intermediate/fast 

exchange rate and with the transient nature of this complex [35,40].  

 

In agreement with BD computations, the CSP binding curves of the titration with 

reduced proteins could be consistently fitted to a 2:1 binding model (two independent 

binding sites for pCc on pCc1; Figure 4c and S5) with all the analyzed amides, 

according to R2 (R-squared) and 2 (chi-squared) statistical criteria. R2 and 2 values 

were equal to 0.9997 and 2 · 10-6, respectively. Notably, the binding curves poorly fitted 

a 1:1 binding model (R2 = 0.8183 and 2 = 0.0816), as shown for Gln24 in indirect 

dimension (Figure 4d). Hence, the experimental data clearly indicated the presence of 

two independent pCc binding sites on the pCc1 surface. The fit to the model described 

in Material and Methods yielded two different values for the dissociation constant (KD), 

namely 0.25 M for KD1 and 30.0 M for KD2, thereby suggesting a site for tight binding 

and another site for a weak, more transient interaction (Table 1). The KD2 value for the 

weak-binding site is similar to those reported in other c-type cytochrome ET complexes 

[65,69-71]. When the two sites were forced to behave with a similar KD value, the fitting 

was slightly worse and yielded a KD value of ca. 9.9 M, also consistent with a transient 

complex. In this case, R2 and 2 values were equal to 0.9928 and 3.22 · 10-3, 

respectively (Figure S6).  

 

To further validate the 2:1 binding model, we performed a principal component analysis 

(PCA) of CSP data. Notably, the first component projection was consistent with ca. 

99% of the amplitude of the CSP data and was accurately fitted to a 2:1 stoichiometry 

with two different KD values (Figure S7). Indeed, the binding was fitted to a KD1 of 0.29 
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M and a KD2 of 23 M. R2 and 2 values were 0.99827 and 0.00576, respectively. 

These results were in agreement with the previous performed fittings. The fit to one 

binding site was, by contrast, not good enough. R2 and 2 values were 0.88808 and 

0.46825, respectively. The other component projections corresponding to the 1% of the 

remaining amplitude were not analyzable. 

 

All the pCc signals showed a similar perturbation profile along the NMR titration 

experiments, a finding suggesting that pCc may use the same surface area to interact 

with pCc1 at the two binding sites. The CSP profile and map for the reduced complex 

(Figure 4e,f) showed a few residues with avg larger than 0.075 ppm. These residues 

were Phe3, Lys16, Gln24, Lys80, Gly85 and Val89. The map comprised residues at the 

rim of the heme cleft, such as Thr20, Lys21, Ala23, Gln24, Gln36, Lys87, Val89 and 

Phe90. The resulting interaction patch is well conserved among complexes involving c-

type cytochromes, which include cytochrome c peroxidase, Cf, cytochrome b5, 

photosystem I, complex IV, GALDH and novel partners recently discovered 

[6,10,27,65,70-75]. In addition, the initial turn of the first -helix and its interface with 

the C-terminal helix could likewise be affected by pCc binding to pCc1.  

 

The CSP map of pCc in Figure 4f is also consistent with the solved X-ray structure of 

the yeast Cbc1-Cc complex (Figure 4g) [30]. Extensive studies using chemical 

modification of mammalian Cc have implicated a subset of lysines in the affinity and 

turnover of Cc in its binding to complex III. Actually, these experiments evidenced the 

key role of lysines at positions 8, 13, 27, 72, 86 and 87 (residue numbering for 

mammalian Cc) in the complex III-Cc interaction [33,34], as MD simulations also did 

[32]. In our solution NMR studies, we have detected significant CSP for the lysines at 

positions 16, 21, 70, 80, 81, 87, 94 and 95 (residue numbering for pCc). All lysines 
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previously implicated in its binding to complex III were detected, with the only exception 

of Lys35 (Lys27 in mammalian Cc) that showed a avg value lower than 0.025 ppm.  





To obtain accurate data on the binding affinities, not only in the reduced system but 

also in the oxidized complexes, we resorted to ITC experiments (Figure 5). The 

experimental data for both redox states fit to a 2:1 model, with two independent binding 

sites for pCc on pCc1. The reduced 2 value was equal to 504 and 243 for the reduced 

and oxidized complexes, respectively. As shown in Figure 5 and Table 1, a first site for 

tight binding and another site for weak, more transient binding were observed for both 

redox states. The redox state of the heme proteins slightly affected their binding affinity 

using both binding sites. Indeed, the reduced system (KD1 = 6.7 M, KD2 = 35 M) was 

somewhat tighter than the oxidized system (KD1 = 9.3 M, KD2 = 110 M). The binding 

reaction was endothermic for all binding events, in both reduced and oxidized 

complexes, and was entropically driven. When the two sites were forced to have the 

same value for KD, the fitting was less accurate. Indeed, the reduced 2 value 

significantly increased to 2,264 and 591 for the reduced and oxidized systems, 

respectively. In this case, the KD values were 6.1 M and 22 M for the reduced and 

oxidized proteins, what is consistent with a lower affinity for the oxidized complex. In 

agreement with NMR measurements, the fitting of ITC data to a 1:1 model was slightly 

worse, as visually shown in Figure S8. 

 

 

3.2 Exploring the pCc1-pCc complex: a NMR-restrained docking model 
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With our experimental CSP constraints, NMR-restraint docking calculations of the 

reduced pCc1-pCc complex were carried out by using the HADDOCK software. 

Clustering of solutions for NMR-restrained docking resulted in two binding sites on the 

surface of pCc1, according to the two-site model suggested by NMR and ITC fitting. In 

agreement with the BD simulations, non-polar interactions also constituted the major 

contribution to binding energy; the resulting surface area burials were larger than 1200 

Å2 (Table 2), whereas those calculated from X-ray coordinates were ca. 990 Å2 

[20,30,31] . Electrostatic interactions seemed to also be crucial for binding in solution, 

in consonance with the MD simulations performed by Kokhan et al. [32]. 

 

A first docking between pCc and pCc1 yielded two clusters of pCc molecules that were 

compatible with the presence of two independent binding sites for pCc on pCc1 (Figure 

6a). One of the pCc clusters (cluster 1) coincided with that resulting from the X-ray 

coordinates of the yeast Cc1-Cc complex [30] but rotated ca. 90 degrees. Cluster 1 is 

herein called proximal binding site, in which the heme-to-heme distance is ca. 6.7 Å. 

This site would correspond to the tightest binding site as it matches the crystallographic 

center of mass of yeast Cc and is consistent with an efficient ET. The second cluster 

(cluster 2) was located at the outer rim of pCc1, close to the extended -strand fork that 

directly contacts to the Rieske head in complex III. Cluster 2 is herein called distal 

binding site as the two hemes were located far away from each other, at a distance (ca. 

36.9 Å) too long for efficient ET. This second site, which is first reported here, would 

allow a weak binding of pCc to pCc1. In contrast to cluster 1, the structures from cluster 

2 slightly clashed when they were superposed onto the native complex III structure. 

The two clumps were similarly driven by non-polar and electrostatic interactions, yet 

the structures in cluster 1 were energetically favored. The backbone deviation was 1.88 

Å with respect to the representative structure in each cluster. Although cluster 1 was 
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slightly less populated than cluster 2, it fitted better with the experimental results based 

on HADDOCK score (Table 2). 

 

To test the independent nature of the purported distal site, another single-docking 

calculation was carried out with the best structure in which pCc sampled the proximal 

site as a starting adduct structure. Two clumps emerging from these computations 

located nearby to the same surface path of the proposed distal site (Figure 6b) 

supporting the independence of a second binding governed by non-polar and 

electrostatic forces (Table 2). Both sub-clusters (2” and 2#) showed similar energy 

terms and had long heme-to-heme distances (longer than 35 Å), although cluster 2” is 

clearly more populated. The long distance between redox centers is again consistent 

with non-ET binding. Notably, the representative structure of cluster 2” did not clash 

with any subunit when it was superposed on the full dimeric complex III structure.  

 

In addition, a reverse docking calculation was performed to check that the proximal 

binding site was filled when a pCc molecule was fixed on the distal binding site of pCc1 

in the starting structure (Figure S9). 

 

To further assess the reliability and physiological compatibility of the proximal and 

distal binding sites, additional docking calculations were carried out. An adduct of pCc1 

bound to pRieske from the same structural monomer was used as starting input. The 

pRies e subunit was  ept in the “open” conformation, with respect to the quinol 

oxidation site, in the pCc1-pRieske adduct. Such conformation is more restrictive than 

the “closed” conformation for pCc sampling on pCc1 surface [60]. Two clusters were 

formed on the pCc1-pRieske surface, which were consistent with our two-site binding 

model (Figure 6c and Table 2). Cluster 1* included pCc molecules sampling the 

proximal binding site, which is compatible with ET, and cluster 2* was significantly 
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more populated than cluster 1*. Cluster 2* corresponded to the weak distal site located 

near the interface between pCc1 and pRieske domain, and did not clash when it was 

superposed onto the full complex III structure. The intermolecular energy and 

HADDOCK score ratio between both clusters was not altered by the pRieske subunit. 

Thus, the existence of a distal binding site was fully compatible with the complex III 

structure.  
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4. Discussion 

 

It is widely accepted that Cc plays a key role in eukaryotic living cells, under 

homeostatic conditions, by transferring electrons between the mitochondrial membrane 

complexes III and IV, either free or associated in supercomplexes [4,14]. However, the 

way Cc does it within a supercomplex such as the respirasome formed by complexes I, 

III and IV varies from one organism to another. Actually, pCc seems to be channeled 

while transferring electrons from complex III to complex IV in plants, but not in 

mammals [18]. Here, the interaction between pCc and the soluble domain of pCc1 has 

been in deep analyzed by combining different experimental approaches.  

 

The physiological significance of the functional analysis herein performed with the 

soluble domain of pCc1 is solidly supported by other experimental approaches. In 

bacteria, for instance, no significant differences are observed in the rate of electron 

transfer to the soluble acceptor from the Ccb1 complex, either in its native state or 

devoid of its soluble acidic domain [40]. Similar approaches have extensively been 

carried out to analyze the interaction of the photosynthetic electron carriers 

plastocyanin and cytochrome c6 with the soluble domain of Cf from the cytochrome b6f 

complex [54,64,65,69,71,75].  

 

Our values for the dissociation equilibrium constants of the pCc1-pCc complex obtained 

by ITC and NMR are within the micromolar range, so revealing the transient nature of 

such a respiratory complex in plants. The intermediate/fast exchange regime observed 

by NMR is consistent with a short-lived complex with lifetimes in the range of s-ms 

[35,40], in which the balance between specificity and turnover is critical for efficient ET. 

Thus the common association of fast exchange to very weak complexes does not 
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exclude other scenarios. In fact, interprotein complexes under fast exchange with KD 

values lower than 0.25 M have been reported in literature [76]. 

 

In addition, pCc displays a conserved profile of NMR signals in the presence of pCc1 

that mostly belong to residues around the heme crevice. This pattern of pCc signals 

perturbed upon binding is practically the same when Cc interacts with other 

physiological targets, such as GALDH, complex IV and novel targets recently 

discovered [6,10,27]. Our CSP profile is not only compatible with the X-ray structure of 

yeast Cc bound to yeast complex III [20,30,31], but also reveals extra residues of pCc 

involved in the binding to pCc1 in solution.  

 

In the past, the binding interaction between Cc and Cc1 was often thought to be 

dominated by electrostatic forces, as inferred from chemical labeling and mutagenesis 

studies. Actually, well-conserved negatively and positively charged residues around the 

heme clefts in both cytochromes were identified [33,34]. Our findings here indicate a 

relevant role of charged residues in solution experiments and docking analyses, 

pointing out to an electrostatically-driven interaction. These findings are in agreement 

with the MD simulations performed with the yeast complex III-Cc system and with 

several ET studies performed in the Cbc1-Cc complex from Rhodobacter sphaeroides, 

Paracoccus denitrificans and yeasts [32,36-40]. In addition, the non-polar forces 

yielding the defined and oriented pCc1-pCc complex would be determinant in the 

binding event, as do they in the X-ray structure of the yeast complex III-Cc system 

[20,30,31]. Thus, the charged residues may provide a first step in recognition via 

electrostatic steering, which could further result in well-defined and specific orientations 

governed by hydrophobic contacts at short distances, as proposed for many other 

electron transient complexes. Actually, the large magnitude of the CSP for the pCc1-
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pCc adducts in our solution NMR experiments suggests predominant hydrophobic 

contacts that extend the time that both heme proteins spend in single orientations. This 

clearly differs from other Cc-involving interfaces, namely those in the non-physiological 

complexes Cf-Cc and cytochrome b5-Cc [73,74].  

 

Our data strongly points that such single orientations of pCc result in two well-defined 

binding sites on pCc1: a tight proximal site (equilibrium dissociation constant ranging 

from 0.25 to 9.3 M), in which the heme-to-heme distance is optimum for ET and 

consistent with the crystallographic structures [20,30,31], and a weak distal site 

(equilibrium dissociation constant ranging from 30 to 110 M), in which the heme-to-

heme distance is not suitable for ET and is not occupied in the crystal structures. Such 

a novel distal binding site is here evidenced in solution by NMR and ITC experiments 

with reduced and oxidized pCc and pCc1, as well as by ab-initio BD calculations. In 

addition, the PCA performed to validate CSP fits reveals a global and majoritarian 

component that accurately fitted to a 2:1 binding model. Other authors had previously 

reported the existence of non-ET conformations or evidenced more than one Cc 

binding site in the Cbc1-Cc complex [25,26,28,29].  

 

Our NMR-driven docking approach also reveals that such a two-site model is 

consistent with NMR constraints obtained with the pCc1-pCc complex at the reduced 

state. It is worth to mention that pCc uses a common surface area to explore the two 

binding sites on pCc1. According to the literature, other c-type cytochromes use the 

same residues to interact with more than one site at their partner surface, either 

forming a ternary complex between Phormidium Cf and yeast Cc [73] or assembling an 

encounter complex with Nostoc cytochrome c6 and Cf [75]. The dissociation constants 

for the two binding sites in the Cf-Cc system are similar to those herein described for 
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the pCc1-pCc complex, in the M range with a highly dynamic behavior. Moreover, the 

differences in affinity between the two binding sites in the Cf-Cc and Cc1-Cc complexes 

are moderate, a finding that is compatible with a linear behavior of the CSPs of Cc 

amide groups (Figure 4b) and with a similar chemical environment on the surfaces of 

Cf and Cc1, both negatively charged. Indeed, the resulting docking data shows that the 

location of the pCc distal binding site into the pCc1-pCc complex is close to the 

extended -strand fingers, in a negative pocket, at physiological ionic strength (Figure 

S10) that contact directly with the head of the Rieske subunit. 

 

The docking of pCc at the distal binding site is not impeded by the pRieske subunit, 

and only the relative orientation of pCc1 and pCc in the transient complex is slightly 

changed. Similar effects have been observed in BD computations carried out on the 

photosynthetic ET complex formed by the Cf-Rieske adduct with cytochrome c6 [77]. In 

principle, the visualization of the proximal but not the distal site in X-ray coordinates 

could be easily explained by assuming a weaker, yet physiological, nature of the distal 

binding site, which would be stable enough to be detected in solution by NMR. 

Moreover, the binding studies with both redox states indicate that the reduced complex 

is tighter than the oxidized one, though both systems maintain two pCc binding sites for 

interaction. 
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5. Conclusions 

 

Our in vitro experiments indicate that the interactions of pCc with the proximal and 

distal sites of pCc1 are two independent binding events. The distal site herein reported 

for the pCc1-pCc complex opens the possibility to new binding modes in solution for the 

native dimeric complex III, including the simultaneous allocation of two pCc molecules 

on the pCc1 surface without steric hindrance between them (Figure 7). The extra distal 

site in complex III could indeed be used to facilitate the functional shuttle of electrons to 

complex IV in plant supercomplexes [18]. Actually, this may provide a path for diffusion 

of the electron carrier to the oxidase, as the pCc molecules could move from the distal 

to the proximal site, and vice versa, so using them as entry or exit ports. In other 

words, the pCc molecules could serve as a “floating boat bridge” between complexes 

III and IV within the respirasome rather than as a long distance electron carrier. Also, 

an extra distal site could serve as an attraction for pCc molecules to simply increase its 

local concentration near binding domains, as was proposed to explain the second Cc2 

binding site in the Rhodobacter capsullatus Cbc1-Cc2 complex in its oxidized state [29]. 

The extra distal site could have physiological relevance in the dynamics and 

organization of electron flow, which is modulated in supercomplexes to optimize the 

use of available substrates [15].   
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Figure Legends 

 

Figure 1. The functional Cbc1 monomer. 

Chimeric model of complex III based on the structure of the functional monomer from 

yeast Cbc1 (PDB: 1kyo) with its cytochrome b subunit colored in blue. The Rieske 

subunit, shown in purple, has been replaced by the chicken Rieske subunit (PDB: 

1bcc) at its “open” conformation with respect to the quinol oxidation site. The homology 

model of pCc1 (in yellow) is overlaid onto the globular domain of yeast Cc1 subunit 

(magenta), which has a membrane-anchoring hydrophobic helix that is represented in 

red. The truncation site of pCc1 is marked by an arrow. Other yeast complex III 

subunits are colored in light gray. Heme groups are in green and the iron-sulfur cluster 

is in cyan. 

 

Figure 2. Ab-initio docking calculations of the pCc1-pCc complex.  

a) Distribution of the mass center of pCc around pCc1 within the 500 lowest energy 

conformations of the complex. Every mass center of pCc is represented by a ball 

colored according to the complex binding energy ranging from -72 kcal mol-1 (red) to -

92 kcal mol-1 (blue). pCc1 is represented by a khaki ribbon and the heme group is in 

green. Orientation of the pCc1 molecule is the same as in Figure 1. b) Ribbon diagrams 

showing pCc1 (khaki) along with the representative Cc structures for clusters 1 (blue) 

and 2 (red) corresponding to the proximal and distal binding sites of pCc1, respectively. 

c) View of dimeric complex III from the intermembrane space showing the location of 

the single Cc molecule in the solved X-ray structure of the yeast Cc-bound complex III 

(PDB ID: 1kyo, green) in one monomer, and those of the representative Cc structures 

for proximal (blue) and distal (red) sites in the other monomer, in which the soluble 
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domain of yeast Cc1 has been replaced by pCc1, shown in khaki. XRD stands for X-

Ray Diffraction. 

 

Figure 3. Biophysical characterization of recombinant pCc1.  

a) Continuous distribution c(s) versus sedimentation coefficient (left) and sedimentation 

velocity analysis (right) of reduced pCc1. b) UV CD spectra of reduced (dotted line) and 

oxidized (solid line) forms of pCc1. c) 1D 1H NMR spectra of reduced (upper) and 

oxidized (lower) pCc1 species. 

 

Figure 4. NMR binding assays of reduced pCc1-pCc complex.  

a) 1D 1H NMR spectra of 100 M pCc along titration with pCc1. Complex formation can 

be followed by monitoring the line broadenings of the two heme axial ligand signals 

(Met163-CH3 of pCc1 and Met88-CH3 of pCc). A control spectrum of 100 M free 

pCc1 is also shown in gray. b) Detail of the superimposed [1H, 15N] HSQC spectra of 

15N-labeled pCc along titration with pCc1. pCc concentration was 100 M at each 

titration step. Signals corresponding to distinct titration steps are colored according to 

the code in the panel. pCc1 concentrations at each titration step were depicted in the 

panel. c) Curves representing the best global fit of several amide signals in indirect 

dimension to a 2:1 ratio for the pCc1:pCc binding model with two different global KD 

values (0.25 for KD1 and 30.0 M for KD2). KD1 and KD2 stand for the dissociation 

equilibrium constants of the proximal and distal sites of pCc1, respectively. d) Binding 

curves of Gln24 in the indirect dimension. Lines represent the best fit to 1:1 (red) or 2:1 

(black) binding models. e) Plot of CSP of 15N-labeled pCc as a function of residue 

number. Proline and non-assigned residues are marked by asterisks. f) CSP map of 

reduced pCc upon addition of reduced pCc1. Residues are colored according to their 

respective avg value, as follows: blue for <0.025, yellow for ≤0.050, orange for 
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≤0.075 and red for ≤0.300 ppm. Prolines and non-assigned are in dark gray, and the 

heme group is in green. g) Surface map of yeast Cc showing in red those residues that 

are closer than 4 Å to the Cc1 subunit in the crystal structure of the yeast Cc-bound 

complex III (PDB ID: 1kyo).  

 

Figure 5. ITC binding assays of the reduced and oxidized pCc1-pCc complexes.  

Binding assays of the complexes between pCc and pCc1 under reducing (left) or 

oxidizing conditions (right). The experimental data for both redox states are fitted to a 

2:1 model. Thermograms are shown at the upper panels and binding isotherms at the 

lower panels. pCc1 concentration in the cell was 20 M, whereas pCc concentration in 

the syringe was 400 M. 

 

Figure 6. HADDOCK molecular docking of reduced pCc1-pCc complex.  

a) Mass centers of pCc were organized in two clusters (1 and 2) that determine two 

well-defined binding sites in pCc1, the herein called proximal and distal sites 

respectively. Each pCc molecule is plotted as a ball colored according to their 

intermolecular energy (Einter), ranging from 0 kcal mol-1 (red) to -400 kcal mol-1 (blue). b) 

Mass centers of pCc from a docking approach in which a pCc molecule was primarily 

fixed on the proximal site. Solutions were colored as a function of Einter, ranging from -

50 kcal mol-1 (red) to -350 kcal mol-1 (blue). pCc molecules at the distal binding site 

were organized in two clusters 2” and 2#. c) Additional docking computation using the 

pCc1-pRieske adduct. Mass centers of pCc were plotted on the adduct according to its 

Einter, ranging from -50 kcal mol-1 (red) to -450 kcal mol-1 (blue). Solutions were divided 

in two clusters (1* and 2*) as described in a).  
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Figure 7. Binding sites for Cc on complexes III and IV at the respiratory 

supercomplex.  

Complexes III and IV (gray) in respiratory supercomplexes are viewed from the 

mitochondrial intermembrane space. The representative structure of Cc at the proximal 

site of Cc1 is in blue, whereas that at the distal site is in red.  HADDOCK results were 

superposed on the monomer of complex III dimer in which Cc binding was reported by 

X-ray crystallography (PDB ID: 1kyo). Cc was also represented (green) docked to 

respiratory complex IV, in the proposed binding site for ET to CcO subunit [78]. A 

putative new way of communication between both complexes through Cc molecules is 

marked by black arrows. This figure is an adaptation from the fitted model for bovine 

mitochondrial supercomplex [21]. 
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Table 1. Equilibrium and thermodynamic parameters for the interaction of pCc with 

pCc1 at the two binding sites. Equilibrium dissociation constants (KD1 and KD2), 

enthalpies (H1 and H2), entropies (-TS1 and -TS2), Gibbs free energies (G1 and 

G2) and stoichiometry of the reactions (n) were determined by CSPa or ITCb for the 

reduced (pCc1red-pCcred) and oxidized (pCc1ox-pCcox) states.  

  

 Proximal Site Distal Site  

 
KD1 H1 -TS1 G1 KD2 H2 -TS2 G2 n 

Protein couple (M) (kcal mol
−1

) (kcal mol
−1

) (kcal mol
−1

) (M) (kcal mol
−1

) (kcal mol
−1

) (kcal mol
−1

) 
 

a)
pCc1red /pCcred 0.25 n.d. n.d. -8.9 30.0 n.d. n.d. -6.1 2 

b)
pCc1red /pCcred 6.7 4.3 -11.3 -7.0 35.0 2.4 -8.4 -6.0 2 

b)
pCc1ox /pCcox 9.3 3.0 -9.8 -6.8 110.0 12.0 -17.3 -5.3 2 

 

*
n.d. – not determined 

Relative errors: KD 20%, H and -TS 5%, G 2% 
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Table 2. Statistical analysis of HADDOCK data after clustering the solutions for the 

reduced pCc1– pCc complex.  

Cluster RMSD  Size Einter Ehidrophob Eelec Buried 
surface area 

Haddock 
score 

 (Å)   (kcal mol
−1

) (kcal mol
−1

) (kcal mol
−1

)    (Å
2
)    (a.u.) 

1 1.88 ± 0.57  20 -284 ± 67 −439 ± 55 −387 ± 54 1939 ± 192 −137.7 ± 20 

2 1.88 ± 0.52  24 -170 ± 63 −469 ± 49 −449 ± 48 1291 ± 101 −97.8 ± 17 

2” 3.38 ± 1.20  39 -76 ± 69 −421 ± 67 −384 ± 89 1472 ± 159 −103.3 ± 15 

2# 2.26 ± 0.93  19 -101 ± 55 −429 ± 50 −392 ± 54 1530 ± 118 −103.6 ± 9 

1* 1.44 ± 0.62  10 -314 ± 45 −466 ± 46 −421 ± 52 1910 ± 113 −139.1 ± 14 

2* 1.48 ± 0.51  56 -222 ± 80 −475 ± 63 −452 ± 05 1833 ± 128 −112.4 ± 12 

 

Einter, Ehidrophob and Eelec stand for intermolecular, hydrophobic and electrostatic energy terms. 

a.u. stands for arbitrary units. 
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with:  

Cytochrome c1 Exhibits Two Binding Sites for Cytochrome c in Plants 

Blas Moreno-Beltrán et al. 

 

 Cytochrome c1 (Cc1) has two binding sites for cytochrome c (Cc) in plants. 

 Both distal (non-productive) and proximal (functional) sites differ in the heme-to-

heme distance. 

 Cc interacts with both sites of Cc1 with different dissociation constants.  

 The docking of Cc at the novel distal site is compatible with the complex III. 

 The model proposes that Cc facilitates the functional channeling within the plant 

respirasome. 

 

 


