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Abstract 

 

 The analysis of water management in irrigated districts is highly relevant. The 

present work highlights the principal irrigation management problems of the irrigation 

district of Almudévar, a representative surface irrigation district located in the Northeast 

of Spain. The predominant irrigation system is blocked-end borders. The study included 

three phases: 1) Assessment of crop water requirements of the main crops of the study 

area; 2) Characterisation of soil depth and soil water retention; and 3) Analysis of the 

current irrigation practices based on the study of the 1994 water records of the district. 

The following irrigation management problems were identified: 1) The mean volume of 

water billed  to the farmers  was 43 % higher than the net irrigation requirements; 2) 

The volumes of water billed to the farmers were inversely related to the farm size; 3) 

Few, widely  spaced, large irrigation events; 4) Large delay time in water delivery; and 
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5) In selected crops and / or areas, water billing was lower than the net irrigation 

requirements, indicating the presence of marginal areas or heavily subsidised crops. 

This research could be applied in other areas of traditional surface irrigation systems. 

The goal of this methodology is to diagnose the actual level of water management and 

to provide data for the modernisation of the irrigation district. In a companion paper, a 

decision support system for the modernisation of the district is presented.  

Keywords: surface, irrigation, district, modernisation, management. 

 

Introduction  

 

 Irrigation is the main user of water in Spain, and accounts for 80% of the total 

water demand. The irrigated area of Spain is 3.3 106 ha and its water demand reaches 

24.5 109 m3/year (Mateo Box, 1996). Rainfall in Spain is irregularly distributed in time 

and space. As a consequence many hydrologic infrastructures are needed to distribute 

and manage the water resources. Water demand for irrigation has been continuously 

increasing for the last 50 years due to development of new irrigation areas.  

 

 In the irrigated areas of Spain, surface irrigation methods are used in more than 

65% of the total irrigated land. In many of the traditional irrigation districts, irrigation 

management is not adequate. Typical problems include: distribution systems with 

capacity below the peak demand; inflexible delivery rates, usually in 24 hour shifts; 

poor on-farm land levelling; high ramification of the distribution systems; and small 

plots. These problems usually result in poor irrigation efficiency, especially in areas 

dominated by soils with high infiltration rates and low soil water retention 

characteristics. Poor irrigation management also results in important social, economical 
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and environmental problems. Ensuring the sustainability of irrigated agriculture requires 

a complete modernisation of many Spanish irrigation districts. 

 

The Almudévar irrigation district is representative of the numerous traditional 

surface irrigation districts. The district is located in the province of Huesca, in the 

Northeast of Spain. The total district area is 3,989 ha: 410 ha are dry farmed and 3,579 

ha are irrigated. The actual population of the villages included in the district is 2,500 

inhabitants, of which 863 are farmers. Only 20 % of the farmers are fully dedicated to 

agriculture and 85 % of them are over 50 years of age.  

 

 The Almudévar area was developed for irrigation in the 1950´s. The delivery 

system was designed to apply supplementary irrigation to winter cereal crops. Water 

demand in the area has increased since the 1970’s due to changes in cropping patterns.  

Presently, the distribution system is unable to meet the crop water requirements, even 

though a large area is still cropped with winter cereals. Adding to the problem is a 

deterioration of the infrastructure, a shortage of labour in the farms and very long 

irrigation times. 

 

The district is surrounded by the main canals of the Monegros Project: 

Monegros, Santa Quiteria and Violada (Figure 1). The distribution system is composed 

of a large number of lined and unlined ditches operated 24 hours a day. As a result, the 

farmers have to irrigate during day and night shifts. The irrigation system used in the 

district is almost exclusively blocked-end borders. Often the plots owned or leased by a 

farmer are located in different areas of the district, making irrigation very time 

consuming and difficult.  
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The district management is formed by the president, the secretary and the board, 

all of whom are farmers. The staff is completed by the ditchriders, numbering 4 to 6, 

depending on the season. The district office is located in the village of Almudévar. 

 

The Almudévar irrigation district manages its water delivery activities using a 

database computer application located at the district office. Water distribution in 

Almudévar is performed in two ways according to the classification proposed by 

Clemmens (1987): limited rate arranged schedule (LRA) in 80% of the area, and varied 

frequency rotation schedule (VFR) in the rest of the district. The plots on a LRA 

schedule are billed per surface and per volume of delivered water. LRA plots are 

charged a fixed amount of 75 Euro (European currency unit) per hectare and year plus 

2.9 Euro per each thousand cubic meters of water. The plots on a VFR schedule are 

billed a fixed amount per surface. 

 

For billing purposes, records are kept in the database regarding each individual 

water allocation to a LRA plot. No water allocation information is kept for water 

allocation to VFR plots. Farmers report to the district office when they need to file a 

water request for a LRA plot. Requests are made on a volume basis. The volume will be 

served at a discharge limited by (and close to) the ditch capacity. The district 

management schedules water allocation for each irrigation ditch considering the water 

requests. The time between the filing of the water request and the water delivery (delay 

time) is variable, depending on the number of concurrent water requests and the 

irrigation ditch capacity. In the event of coincident demands for a given irrigation ditch, 

the management can take measures like giving priority to plots irrigated at an earlier 
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time and/or limit the requested duration. The daily delivery schedule for each irrigation 

ditch is posted at the office two days in advance.  

 

During the peak of the irrigation season the district tries to enforce equity among 

water users, delivering the same volume per unit area. At this time, water delivery in 

both LRA and VFR plots is shifted to a rotation scheme (Clemmens, 1987). Under this 

scheme no arrangement is possible, and the ditchriders enforce the irrigation shifts and 

record the water allocation to LRA plots.  

 

Palmer et al. (1991) reported the results of a study based on the water records of 

a surface irrigated district located in the Southwest of the USA. These authors 

concluded that the lack of internal water measurement and the poor quality of the 

district records were major limitations of their analysis. The study evidenced the 

complexity of the water management operations in the district and the relevance of the 

relationships between farm and district personnel. A similar problem is expected in the 

Almudévar irrigation district. 

 

 In this article we analyse irrigation management on the LRA plots in the 

irrigation district of Almudévar using district water ordering and billing records for the 

year 1994.  
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Materials and methods 

    

Land tenure and irrigation management units 

 

Many farmers in Almudévar own plots in different areas of the district. Each 

plot is composed of several borders. We have considered the area of all the plots owned 

by the same farmer as a single farm. Also, many farmers lease plots and manage 

irrigation in plots other than their own. The irrigation management units are composed 

of the plots belonging to the own farm plus the leased plots. Therefore, the irrigation 

management unit does not necessarily match farm or plot sizes. 

  

Climate  

  

The climatic characterisation of the study area was based on the mean monthly  

air temperature and precipitation for the 1929-1995 period at the station of “La Granja 

de Almudévar”. The station is located within the district, at a North latitude of 42º 1’ 

45”, an East longitude of 3º 6’ 20” and an altitude of 395 m. In 1994 daily 

meteorological data of the same station were used to characterise the specific year of 

study and to calculate crop water requirements. Available data included maximum and 

minimum air temperature, wet and dry bulb temperature at 08:00 hours, wind run at 2 m 

height above the soil surface, sunshine duration and precipitation. 
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Soils  

  

Physical soil properties in the Almudévar irrigation district area were studied 

using 310 sampling points to a depth of 1.20 m when possible (Slatni, 1996). At each 

point, soil texture, stoniness and soil depth were determined in situ. Sampling points 

were distributed over the total district area. Field capacity and wilting point were 

determined using the Richards membrane (Soil Moisture, Santa Barbara, California) 

with two replicates per sample. Soil samples were saturated for two days and then a 

pressure of 0.03 and 1.5 MPa (for field capacity and wilting point, respectively) was 

exerted until no further change in soil moisture was observed. 

 

Bulk density was determined using 40 undisturbed soil samples taken at a depth 

of 15 cm. The management allowable deficit (MAD, mm), defined by Merriam and 

Keller  (1978), was determined for each sample using the following equation: 

 

 SpMAD
w

b
WPFC  1)(10

3

2 3




  [1]   

 

Where: 

 p = Soil depth (m) 

 FC = Gravimetric water content ratio at field capacity 

 WP = Gravimetric water content ratio at wilting point 

 b = Soil bulk density (Mg m-3)  

 w = Water density (Mg m-3)  

 S = Volumetric ratio of stoniness 
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Water delivery and drainage infrastructures 

  

Water delivery infrastructure data were obtained from the irrigation district files 

(Bensaci, 1996). Additional water management data were collected from other sources 

(Torres, 1987; Rubio, 1995; Comunidad de Regantes de Almudévar, 1997). 

  

 The district is irrigated from 9 turnouts in the Monegros canal, 14 turnouts in the 

Violada canal and 16 turnouts in the Santa Quiteria canal. The canal managers 

(operating the three canals), schedule the turnouts on a 24 hour-a-day basis. The 

turnouts consist of submerged orifices regulated by slide gates. Discharge is measured 

at each turnout considering the canal level and the slide gate opening.  

 

The water distribution system (district- and farmer-owned) consists of 50 km of 

concrete lined ditches and 40 km of unlined ditches. The capacity of the district-owned 

ditches ranges between 50 and 300 L s-1, although the discharge delivered to the farmers 

only ranges between 50 and 100 L s-1. The irrigation district does not have reservoirs 

inside its perimeter. Therefore, irrigation is performed on a 24 hour per day basis. This 

fact, together with the small ditch capacity and the current crop intensity makes 

irrigation practice laborious and problematic. The differences between water supply and 

demand produce operational spills in the distribution network which are added to the 

losses produced on-farm.  

 

In the VFR plots, the farmer usually irrigates every 14 to 20 days. In the LRA 

plots, the farmer submits a water order for the volume that he requires for the irrigation 
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of his plot (in cubic meters). The administration office will grant him the water a few 

days later. The district personnel processes the water orders and determines the 

irrigation delivery sequence, which typically starts at the ditch upstream end and then 

proceeds in the downstream direction. This process of water order submission and water 

delivery is modified to meet the characteristics of some crops. In the case of corn, 

farmers submit water orders for pre-planting and the first irrigation. Subsequent water 

orders are automatically generated by the database with a frequency of 10 to 13 days, 

depending on the district-owned ditch characteristics. In the case of alfalfa, the district 

will try to minimise the delay between hay harvest and the subsequent irrigation. To do 

so, the district reserves the right to modify the water delivery schedule. Small family 

orchards and vegetable gardens are very common near the villages. Water is supplied to 

these plots on Saturdays.  If precipitation occurs, the district delays water deliveries for 

a few days according to the estimated changes in net irrigation water requirements. The 

district requires a farmer receiving a water delivery to communicate to the next farmer 

in the schedule when he is going to complete his irrigation. The next farmer is required 

to use the water as soon as the previous user has finished his irrigation. According to 

our experience in the area, this set of rules should only be considered as a principle. The 

actual functioning of water delivery varies according to other unwritten rules and 

running agreements between water users and the district. 

 

 The drainage system of the study area is widespread. The whole drainage 

network is composed of 90 km of open ditch and buried pipe drains. There are two main 

open ditch drainage courses (Fig. 1). The Violada Creek collects irrigation return flows 

produced between the Monegros and the Violada canals. The Artasona Creek collects 

the return flows in the area between the Monegros and Santa Quiteria canals. The water 
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flowing in the main drainage collectors is rarely used for irrigation in the district 

because its elevation is not enough to supply surface irrigation systems by gravity.  

 

Crop water requirements    

 

 Crop distribution in Almudévar varies from year to year in response to market 

demands. The main crops in the arranged demand area during 1994 were: corn (38.2 

%), alfalfa (26.7 %), wheat (22.8 %), sunflower (10.1 %) and other crops (2.2 %). 

Sunflower is not a common crop in the area but in 1994 its area increased due to the 

strong subsidy to this crop by the European Community. 

  

In 1994 the reference evapotranspiration (ETo) was calculated on a daily and 

monthly basis using the Hargreaves (Hargreaves and Samani, 1985)  and Penman-

Monteith (Smith, 1993) methods. Mean monthly values of ETo for the mean year 1929-

1995 were also computed. In this case the Hargreaves method was used.  

  

Crop coefficients (Kc) were developed for the main crops according to the FAO 

guidelines (Doorenbos and Pruitt, 1977) and local agronomic information of the crops. 

For alfalfa a mean Kc of 0.89 was used. Monthly effective precipitation (Pe) was 

calculated for 1994 using the USDA, SCS method (Cuenca, 1989). Monthly values of 

net irrigation requirement (NIR) were computed as the difference between crop 

evapotranspiration (ETc) and Pe. 
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Hydrologic analysis of district water deliveries and use 

 

 The district database consists of 19 files containing irrigation water management 

and billing information, including: size of the plots, name of the owner, name of the 

irrigator, service discharge (cubic meters per 24 hours), crop, code of the district-owned 

ditch, date of the irrigation request and the date and volume of each irrigation event. 

The personal information needed to contact and bill farmers was included in the data 

base but was not used in this study.  

 

During the irrigation season water orders as well as the delivery dates and the 

volumes delivered to each plot are written in the corresponding data files. Water 

delivery records of 1994 were used to analyse: 1) the structure of land tenure and 

irrigation management units, 2) the relationships between land tenure and water billing, 

3) the total daily volumes of water billed to the farmers, 4) the time interval between the 

date of water order and the date of water delivery, and 5) the mean irrigation intervals 

for the main crops. 

  

A seasonal irrigation performance index (SIPI) was used to characterise the 

global irrigation management practices in the district. The SIPI was defined as the 

seasonal percentage of the NIR to the volume of irrigation water delivered to the crops 

(Bensaci, 1996). SIPI is a practical implementation of Irrigation Efficency (IE), as 

defined by Burt et al. (1997), and Clemmens and Burt (1997). Three simplifications 

were introduced in the IE concept to develop the SIPI: the increment of storage of 

irrigation water over the season was assumed to be zero, the seasonal NIR was used 

instead of the volume of irrigation water beneficially used by the crop, and water billed 
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was used instead of water applied. A relevant feature of the proposed index is that if a 

crop is water stressed, the value of SIPI can be higher than 100%. In fact, if the SIPI is 

higher than the potential application efficiency of the irrigation system, the crop will be 

water stressed. 

 

The other index used to characterise water use in the area was the irrigation 

interval, also obtained from the database. Both the SIPI and the irrigation interval were 

computed for each crop and for all the area irrigated on a LRA schedule. 

  

These indexes were represented using maps. Geostatistical techniques (Isaaks 

and Srivastava, 1989) were used to generate these maps using a set of georeferenced 

observations.  In order to do so, the district was divided into several water distribution 

units. These units were delineated dividing the area irrigated by each district-owned 

ditch so that the average area of each unit fell between 15 and 20 ha. A total number of 

155 units were defined. The water records of the plots in each unit were processed to 

compute estimates of the SIPI and the irrigation interval. The co-ordinates of the central 

point of each water distribution unit were digitised using a geographic information 

system.  
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Results and discussion 

 

Climate 

 

The mean annual temperature of 1994 in Almudévar was 16.8ºC. This value is 

significantly higher than the 66 year average mean temperature (12.8ºC). Monthly 

temperatures in 1994 were higher than the normal year, except for the months of 

October, November and December. Spring temperatures (April, May and June) were 

extremely high for the season, with an average increase over the average year of 8.3ºC. 

The total annual effective precipitation in 1994 (363.1 mm) was similar to the average 

year (384.9 mm). However, the distribution along 1994 was quite irregular. Only 15.9 

mm of effective precipitation occurred during the months of June, July and August of 

1994, while the average effective precipitation for these months totalled 79.3 mm 

(Table 1). 

  

Annual reference evapotranspiration (ETo) in 1994 calculated by the Hargreaves 

method was 1326.9 mm. Data availability for the year allowed to compute ETo with the 

Penman-Monteith method. The results (Table 1) show a lower yearly value (1190.4 

mm). The discrepancies in ETo between both methods are particularly important in 

spring, with  the Hargreaves ETo  47% higher than the Penman Monteith figures (for 

the above mentioned three month period). A comparison between both methods under 

local conditions (Fuertes, 1995) revealed that, for a period of 14 years, Hargreaves-

computed ETo was 11% higher than Penman Monteith ETo. Following FAO guidelines 

(Smith, 1993), the Penman-Monteith figures for 1994 were used to compute crop water 

requirements and the SIPI. Mean monthly values of ETo were maximum in July with a 
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value of 212.8 mm which represents 6.9 mm day -1, and minimum in December with a 

value of 23.5 mm (0.8 mm day -1).  

  

Table 2 presents the crop water requirements for the main crops in the study 

area. Data are presented for 1994, the average year and a dry year characterised by a 

20% return probability. ETc for all crops in 1994 was higher than the average year and 

also higher than the dry year. This gives an indication of the drought conditions that 

occurred in Almudévar in 1994.  

 

Soils 

  

Figure 2 shows the spatial variability of soil depth in the study area. A 

geostatistical analysis (data not shown) indicated that this variable does not have a 

spatial structure at the sampling scale. Possible reasons for this finding are the limited 

number of samples and the experimental restriction of soil sampling to 120 cm. Due to 

the limited number of bulk density samples, no attempt was made to characterise its 

spatial structure.  

 

The areas with shallow soils are located in the Northeast range of the study area. 

The soils in this area also have a coarse texture, a high percentage of stoniness 

(sometimes higher than 30%), and a bulk density of about 1.2 g cm-3 . Locally, these 

soils are called  “sasos”, and are located on high platforms some 15 m above the level of 

the creeks. The soils in the rest of the area (mainly constituted by the valley bottoms 

along the creeks) are deeper, with lower stoniness (not above 4 %), and bulk density on 

the order of 1.4 g cm-3.  
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The field capacity of the soils varies between 20 and 50 % in volume and the 

wilting point varies between 10 and 30 % in volume. The lower values for both 

variables are found at the platforms and the higher values at the valley bottoms. 

  

The geostatistical analysis performed on MAD revealed a spatial structure for 

this variable. The semivariogram was of spherical type with a nugget value of 400 mm2, 

a sill of 960 mm2 and a range of 3,300 m (Figure 3). The range indicates that for 

distances larger than about 3 km the MAD is statistically independent. 

  

Figure 4 presents the MAD of the soils in the Almudévar area. In the high 

platforms, the MAD is very low, often lower than 50 mm. However, in the rest of the 

district water retention increases up to 100 mm. These differences are mainly due to the 

differences in soil depth, water retention, and stoniness. A comparison between figures 

2 and 4 reveals the high association between soil depth and MAD. Soils with low values 

of MAD are not well suited for border irrigation, since the application depths are often 

higher than the soil water retention capability. Poor efficiencies should therefore be 

expected in the high platforms. 

 

Land tenure and irrigation management units 

 

Figure 5 presents the cumulative histograms for the plot, the farm and the 

irrigation management unit areas. The average plot area is about 3 ha, and all plots are 

smaller than 28 ha. The farm size is considerably higher (approximately 10 ha on 

average) and 80% of the farmers own areas smaller than 25 ha. The irrigation 
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management units are larger than the farms (with an average size of 15 ha) and 70 % of 

the farmers manage areas smaller than 25 ha.  

 

A common procedure in Spain is to consolidate the properties of a district as a 

first step of the rehabilitation process. As a result of this process, a farmer would get a 

single plot in the district with an area similar to the amount of land he owned before the 

property consolidation. The consequence of such a measure, as shown in Fig. 5, is that 

the plot curve would move to the right to meet the farm curve. This change would 

greatly simplify irrigation and infrastructure management. Unfortunately, this would not 

be a complete solution to the land tenure problem, since the farm size would not be 

changed. The resulting farms would remain too small to ensure the economical 

sustainability of full-time farmers with the current crop mix of cereals and alfalfa. The 

long-term solution to the problem seems to be an increase in the area of the irrigation 

management units. Farmers should therefore concentrate their efforts on the creation of 

large management units based on land leasing. 

 

A study was conducted to assess the relationship between plot size and the 

seasonal volume of water billed to each plot. The volume of water billed was inversely 

proportional to plot size (Figure 6). The average volume of water billed to the farmers 

in 1994 was 14,109 m3 ha-1. The mean seasonal volume of water billed to plots smaller 

than 0.5 ha was 49,170 m3 ha-1 while the mean values for plots bigger than 5 ha was 

only 9,100 m3 ha-1.  

 

There are several reasons for this strong inverse relationship. First, the irrigation 

district of Almudévar bills the farmers in multiples of 1,000 m3. This volume is the 



 17

minimum amount that can be charged to a farmer, independently of the volume of water 

actually diverted to the plot. This administrative rule actually allows multiple billing of 

a given volume of water to different farmers, particularly in small plots. A second 

reason could be that the water ordered but not used is lost in the form of operational 

spills. The district management perceives that this is particularly true in small plots and 

during the night. Finally, figure 6 could indicate that small plots are less efficient than 

large plots. Clemmens and Dedrick (1992) found the same kind of relationship when 

analysing a surface irrigated district in the Southwest of the USA, although farm sizes 

were substantially larger than in the present study.  

 

Water delivery management 

 

Figure 7 presents the daily volumes of water billed by the Almudévar irrigation 

district during the irrigation season of 1994. Irrigation started on January 8th and 

finished on October 7th . Daily volumes had high fluctuations along the irrigation 

season, varying between 326,000 m3 on July 21st and 1,000 m3 on October 1st. The 

season begins with scattered water deliveries attributed to non-standard practices. Early 

in spring deliveries increase due to irrigation of winter cereals and alfalfa. Deliveries 

further intensify in March-April, when farmers apply the pre-planting irrigation for 

corn. At this time, peak deliveries are attained for the first time of the season. The drop 

in water deliveries that occurs at the end of May is due to the end of the irrigation 

season for winter cereals, a period of low NIR for corn (following planting), and 

increased precipitation (69.7 mm in May). 
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The second peak period of the season was attained in summer, between the 

middle of June and the beginning of September, when corn and alfalfa are frequently 

irrigated. The mean volume in this period is 250,000 m3 day-1. It is interesting to note a 

localised drop that occurs the second week of September, when the farmers enjoy the 

local holidays of Almudévar and reduce the agricultural activities to a minimum for a 

period of five days. 

 

Figure 8 presents the evolution of the delay time (the time between an order and 

its delivery). Delay times were higher in the summer season (day 180 till day 260) than 

in the spring season (day 80 till day 150). In the summer season 60 % of the delay times 

had a duration between 7 and 8 days, while in the spring season 64 % of the delay times 

had only a duration between 3 and 4 days. The delay time is highly correlated with the 

daily volumes of water billed (data not presented). 

 

Analysis of figures 7 and 8 suggest that the maximum system delivery capacity 

was attained in spring, and maintained through the summer. Nevertheless, water 

demand continued to grow during the summer, as indicated by an increasing delay time. 

These results suggest that the system capacity constrained the farmers irrigation 

practises. Originally, the district delivery system was designed for supplementary 

irrigation to winter cereals. The use of more intensive crops has made system capacity a 

limiting factor, although farmers are continuously involved in construction works aimed 

at increasing the conveyance capacity. 

 

The interval between irrigations can be used in Almudévar as an indication of 

irrigation adequacy. This is due to the fact that in this type of surface irrigation the 



 19

irrigation depth can not be controlled by the farmer. Actually, the irrigation depth 

depends on physical factors such as infiltration, roughness, discharge, slope or field 

dimensions (Walker, 1989). 

 

From the number and dates of water deliveries, the mean interval between 

irrigations was estimated for corn and sunflower. Figure 9 shows the contour maps of 

these intervals district-wide. Mean values of 12.4 and 16.8 days were obtained for corn 

and sunflower, respectively. To estimate the variability of the irrigation interval, the 

percentage area comprised between the contour lines for the average irrigation interval 

± one day was computed for each crop respect to the total area. The resulting values 

were 75% and 57% for corn and sunflower, respectively (i.e., 75% of the map area for 

corn shows irrigation intervals between 11.4 and 13.4 days). These figures confirm the 

visual observation that the irrigation interval in corn is lower and more uniform than in 

sunflower.  

 

Some water deficit could occur in sunflower as compared to corn, because of the 

extended irrigation interval. Both crops do not differ much in their water requirements 

(616 mm for corn vs. 539 mm for sunflower), although sunflower is much more drought 

resistant than corn (Bremmer and Preston, 1990; Lamm et al., 1994). Sunflower was 

heavily subsidised during the study year, with subsidies applied by the hectare. 

Sunflower yield was not considered the main source of income by the farmers, who 

were more interested in collecting the subsidy. At the same time, Almudévar farmers 

are not very experienced in cropping sunflower. These could be additional reasons for 

the large irrigation intervals detected in this crop. The district was free to buy from the 

canal management as much water as required to irrigate all crops satisfactorily. 
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However, the limiting factor was the conveyance capacity within the district (see Figs. 7 

and 8), leading to some drought. Under these circumstances, farmers preferred to devote 

their water to crops where the economic value of the yield was high, like corn. 

 

The irrigation interval contours (Figs. 7 and 8) differ from those obtained for  

MAD (Fig. 4). Therefore, the irrigation interval does not appear to depend on the soil 

water holding characteristics. Nevertheless, some similarities can be appreciated 

between both irrigation interval maps and the MAD map at the area surrounding the 

middle course of the Violada creek. In this area the irrigation intervals for corn and 

sunflower are above the mean and MAD is at its maximum (over 75 mm). The large 

value of MAD permits irrigation intervals between 2 and 4 days above the average for 

both crops. 

 

 From the maps, it can be concluded that some irrigation planning was applied 

for corn, whereas sunflower was irrigated whenever it was possible. Actually, in 

sunflower, some irrigation intervals are greater than 25 days, a value that seems highly 

inappropriate, considering the values of MAD and sunflower NIR. 

 

Analysis of the seasonal irrigation performance index (SIPI) 

 

Contour maps of the SIPI for corn and sunflower are presented in Figure 10. The 

SIPI district-wide mean values were 50% and 116% for corn and sunflower, 

respectively. The average corn SIPI seems reasonable for an index that resembles 

irrigation efficiency (Burt et al., 1997; Clemmens and Burt, 1997). The value obtained 

for sunflower can not be interpreted as an estimation of efficiency, because of the 
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presumably low irrigation volumes applied to this crop. Under these conditions, SIPI 

gives unrealistic estimations of efficiency, because the numerator of the index 

corresponds to the NIR. To highlight the differences between both crops, the percentage 

of the area with SIPI values between 20 and 60% was computed. The resulting values 

were 75% and 4% for corn and sunflower, respectively.  

 

The SIPI map for corn shows certain similarity with the MAD map (Fig. 4), 

indicating that the seasonal volumes of water delivered to corn were influenced by the 

soil characteristics. Since the relationship between MAD and the irrigation interval was 

not very clear, we believe that the application depths for individual irrigations were 

much higher in the platforms than in the valley bottoms. Irrigation depths are large in 

the high platform areas because of the high infiltration rates associated with coarse soil 

textures and high stoniness. In the valley bottoms, soil texture is fine, infiltration is low 

and water applications are smaller. In the Northwest corner of the SIPI corn map, there 

is a small area with SIPI values greater than 150%, indicating insufficient irrigation to 

this crop. This could be due to the marginality of plots in this area: the high gypsum 

content of the soil induces piping erosion at the field dikes and makes surface irrigation 

a very complicated task. 

 

The sunflower SIPI behaved very differently from the corn SIPI. In general, the 

SIPI values were higher and more variable for the former than for the latter. It is 

believed that this result is due to sunflower being subsidised in 1994, coupled with lack 

of experience in cultivating sunflower in this area. A spot with SIPI values beyond 

150% can be located in the central-eastern part of the district, suggesting that this area 
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was virtually not irrigated during the season. It is possible that district records do not 

reflect the actual irrigation practices in this area. 

  

In order to obtain a global view of the behaviour of the Almudévar irrigation 

district, the contour map of the SIPI values for the whole area is presented in Figure 11. 

The mean SIPI value was 70%, indicating that the volumes of billed irrigation water 

were around 43% higher than the net irrigation requirements of the crops. The 

percentage of the area with SIPI values comprised in the 20 to 60% interval was 41%. 

Again, the range of SIPI values is greater than that found for corn, due to the inclusion 

of all crops cultivated in the study area. Sunflower and winter cereals (data not shown) 

introduced large amounts of variability due to the low economic revenue of the crop 

yield (sunflower) and the low number of irrigations (cereals). Nevertheless, the 

resulting map shows some similarity with the corn SIPI map (Fig. 10 a) and the MAD 

map (Fig. 4).  

 

Conclusions 

 

The methodology used in the analysis of irrigation management in the 

Almudévar irrigation district has been a useful tool to characterise and quantify the 

principal irrigation management problems of the study area. The average total volume 

of water billed to the farmers in 1994 was 14,109 m3 ha-1 . This value is higher than the 

net crop water requirements of the combination of crops cultivated in the district in 

1994. However, the average irrigation interval was too long, at least for sunflower, 

indicating that some water stress was produced. Farmers applied the water stress to 

crops where yield reductions could produce less damage to their economies. 
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The seasonal volumes of irrigation water billed to the plots were inversely 

related to the plot size. In plots smaller than 0.5 ha the average seasonal volume of 

irrigation water billed was an astonishing 49,170 m3 ha-1, while in plots larger than 5.0 

ha this value was only 9,100 m3 ha-1. The administrative practices of the district are 

partly responsible for this type of relation between size of the plot and water billing. 

The district delivers water in amounts multiple of 1,000 m3 and this amount can be 

much larger than the irrigation requirement of a very small plot. With this practice the 

excess water that the farmer does not use is billed to the next farmer too or it is lost in 

the form of operational spills. The district database would therefore assign the same 

volume of water twice, creating some over estimation of water delivery in the records. 

 

The distribution system of the district was not able to provide a flexible and  

dependable supply of irrigation water to the farmers. In the summer months the farmers 

had to wait to irrigate for 7 to 8 days on average from the date they requested the water 

to the district. In the spring months, with a lower irrigation water demand, the average 

delay time was of 3 to 4 days. 

 

The seasonal irrigation performance index (SIPI) showed important irrigation 

problems in the studied area. For sunflower, the mean SIPI was 116%, indicating that 

the seasonal volumes of billed irrigation water were lower than the net sunflower 

irrigation requirements. However, the SIPI for corn had a mean value of 50%, 

indicating that the billed volumes of irrigation water doubled the net irrigation 

requirements. Since corn was properly irrigated to protect its high economic yield, we 

believe that the SIPI for corn could be used as an estimation of irrigation efficiency. 
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Problems of very low SIPI were identified at the high platforms, which had low MAD 

and high infiltration rates. The average SIPI value for the whole area was 70%. 

 

This study has evidenced the complex nature of irrigation management in the 

traditional irrigation district of Almudévar. Often, the relationships between the district 

management and the farmers follow unwritten rules that can make district records 

insufficient for the analysis,  inaccurate or difficult to interpret. In this sense, our 

findings agree with those of Palmer et al. (1991).  

 

The small size of the farms, the high number of plots managed by the same 

farmer, the limitations of the water distribution system, the irrigation shifts lasting 24 

hours, and the presumed low irrigation efficiency make irrigation practices difficult and 

unsustainable. In the actual situation, a rehabilitation process of this district is much 

needed in order to maintain its productivity and to avoid the actual sociological and 

economical problems. In a companion paper some modernisation scenarios are studied.  
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Tables 
 
 

Table 1. Monthly climatic data for the average year (1929-1995 series) and 1994 in 
Almudévar: Mean temperature, reference evapotranspiration (ETo), using the 
Hargreaves and Penman-Monteith methods and effective precipitation (Pe). 

 
 
 
 
 
 
 
 Average year 1994 
 
 

Mo. 

Mean 
Temp. 

 
(ºC) 

ETo 
Hargreaves 

 
(mm) 

Pe 
 
 

(mm) 

Mean 
Temp.

 
(ºC) 

ETo 
Hargreaves 

 
(mm) 

ETo 
Penman- 
Monteith 

(mm) 

Pe 
 
 

(mm) 
Jan.      4.1 27.0 25.2 4.5 36.0 38.0    12.1 
Feb.      5.5 39.8 26.0 10.8 44.0 49.5    33.5 
Mar.      8.7 73.5 32.1 13.3 89.6 85.9      1.3 
Apr.    11.1 101.7 39.4 17.3 145.2 97.8      8.9 
May.    14.8 142.0 47.4 25.8 206.2 119.7    69.7 
Jun.    19.3 172.5 36.1 27.1 227.1 176.0      6.9 
Jul.    22.3 196.2 19.0 25.7 184.1 212.8      4.0 
Aug.    22.1 170.5 24.2 23.3 171.4 185.1      5.0 
Sept.    18.7 115.2 34.2 17.6 88.5 121.6    92.7 
Oct.    13.5 70.1 33.4 12.2 69.8 49.0    54.3 
Nov.      8.1 36.0 35.5 11.7 32.1 31.5    59.2 
Dec.      5.0 24.8 32.4 12.1 32.9 23.5    15.7 
Ann     12.8 1169.3 384.9 16.8 1326.9 1190.4 363.1 
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Table 2. Monthly evapotranspiration (mm) for the main crops in Almudévar for 1994, for 
the average year (1929-1995 series) and for a dry year (characterised by a return 
probability of 20%). The Penman-Monteith method was used for 1994, and the 
Hargreaves method was used for the rest. 

 
 
 
 
 
 
 
 
 
 
 
 

 Alfalfa Corn Wheat Sunflower 
Mo. 1994 Ave. Dry 1994 Ave. Dry 1994 Ave. Dry 1994 Ave. Dry 
Jan. 33.4 8.0 18.5  29.3 7.3 17.5   
Feb. 43.6 11.3 26.3  46.0 18.1 29.3   
Mar. 75.6 41.3 59.2  92.8 55.1 75.8   
Apr. 86.1 55.6 77.5  106.6 75.0 99.4   
May. 105.3 88.5 113.5 64.6 44.9 64.3 128.1 113.

3
140.9 43.0 43.2 62.4

Jun. 154.9 118.7 148.7 133.8 102.8 131.9 64.5 65.9 90.2 126.
7 

92.7 121.3

Jul. 187.2 150.9 166.0 229.8 191.8 210.2 232.
0 

193.
6 

212.4

Aug. 162.9 125.7 145.4 205.5 162.5 184.7 201.
8 

159.
3 

181.3

Sept. 107.0 73.0 95.0 116.7 85.9 109.4 52.7 50.1 68.3
Oct. 43.1 35.9 54.7 4.8 28.4 51.2   
Nov. 27.7 7.6 17.7    
Dec. 20.7 6.8 15.3  17.4 8.1 19.2   
Total 1048 723 938 755 616 752 485 343 472 656 539 646
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Figures 
 

Figure 1. Location of the Almudévar irrigation district. Axes values in UTM co-ordinates. 
 
 

694000 696000 698000 700000 702000

4652000

4653000

4654000

4655000

4656000

4657000

4658000

4659000

4660000

Not irrigated

Not irrigated

Not ir
rig

ate
d

Not 
irr

iga
ted

 Z
ara

goza
-H

uesc
a h

ighway

Valsalada road

V
io

la
da

 c
re

ek

Not irrigated

Artasona creek

Almudévar

Artasona

Valsalada

Santa Quiteria canal

Vi
ol

ad
a 

ca
na

l

Monegros canal

Spain

Ebro
  River

Almudévar Irrigation District

 



 31

Figure 2. Contour  map of soil depth (cm). Axes values in UTM co-ordinates. 
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Figure 3. Experimental (symbols) and theoretical (lines) Semivariograms for Management Allowable Depletion (MAD, mm). 
 
 
 

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000
Distance (m)

Semivariance
(mm2)



 33

Figure 4. Contour  map of Management Allowable Depletion (MAD, mm). Axes values in UTM co-ordinates. 
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Figure 5. Structure of land tenure: cumulative histograms of the area of plots, farms and irrigation management units. 
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Figure 6. Gross irrigation volume of water billed to the farmers  vs. plot area. 
 
 
 

0 10 20 30 40 50

< 0.5

0.5 - 1.0

1.0 - 1.5

1.5 - 2.0

2.0 - 3.0

3.0 - 5.0

> 5.0

Plot
Area
(ha)

Gross irrigation volume (103 m3 ha-1)



 36

Figure 7. Daily volumes of irrigation water delivery vs. day of the year (DOY). 
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Figure 8. Delay time vs. day of the year (DOY). 
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Figure 9. Contour maps of the interval between irrigations (days) for corn (a) and sunflower (b). Axes values in UTM co-ordinates. 
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Figure 10. Contour maps of the seasonal irrigation performance index (SIPI, %)   
for corn (a) and sunflower (b). Axes values in UTM co-ordinates. 
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Figure 11. Contour map of the seasonal irrigation performance index (SIPI, %) for the whole area. 
 Axes values in UTM co-ordinates. 
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