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ABSTRACT 

Pressurized liquid extraction (PLE), an environmentally friendly technique, has been 

used to obtain antiviral compounds from microalgae commonly used as carotenoids 

sources: Haematococcus pluvialis and Dunaliella salina. The antiviral properties of 

PLE extracts (hexane, ethanol and water) were evaluated against herpes simplex virus 

type 1 (HSV-1) at different stages during viral infection. Pre-treatment of Vero cells 

with 75 g mL
-1

 of H. pluvialis ethanol extract inhibited virus infection by approx. 85%, 

whereas the same concentration of water and hexane extracts reduced the virus 

infectivity 75% and 50% respectively. D. salina extracts were less effective than H. 

pluvialis extracts and presented a different behaviour, since water and ethanol extracts 

produced a similar virus inhibition (65%). Moreover, H. pluvialis ethanol extract was 

also the most effective against HSV-1 intracellular replication.  

The antiviral activity of water PLE extracts was found to correlate with polysaccharides, 

since the polysaccharide-rich fraction isolated from these extracts showed higher 

antiviral activity than the original water extracts. A GC-MS characterization of the H. 

pluvialis ethanol extract showed the antiviral activity of this extract could be partially 

related with the presence of short chain fatty acids, although other compounds could be 

involved in this activity; meanwhile, in the case of D. salina ethanol extract other 

compounds seemed to be implied, such as: β-ionone, neophytadiene, phytol, palmitic 

acid and α-linolenic acid.  

Results demonstrated the use of PLE allows obtaining antiviral compounds from 

microalgae used as carotenoids sources, which gives both microalgae biomass an added 

value. 
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INTRODUCTION 

Microalgae have been used as food in ancient civilizations in Asia, Africa and South 

America for centuries. However, microalgae biotechnology only really began to develop 

in the middle of last century. Since then, these microorganisms have become the focus 

for extensive screening of novel compounds with interesting biological activities which 

may lead to therapeutically useful agents (Mendes et al., 2003; Mayer and Hamann, 

2005; Spolaore et al, 2006). At present, microalgae offer great possibilities for the 

isolation of natural substances of significant commercial interest in industries such as 

pharmaceuticals, alimentary or cosmetic products. This fact makes microalgae raw 

materials with a great deal of added value.  

The fact that algae may produce antiviral agents is already well-known (Damonte et al., 

2004; Mayer et al, 2009).  However, only few reports have shown the existence of 

compounds inhibiting viral infection from marine microalgae. Calcium spirulan, a 

sulfated polysaccharide isolated from Spirulina platensis has been indicated to possess 

antiviral activity (Hayashi et al., 1996; Lee et al., 2001). Rechter et al. (2006) also 

described spirulan-like molecules with pronounced antiviral activity in the absence of 

cytotoxic effects. Moreover, Fabregas et al. (1999) screened the in vitro inhibition of 

viral replication of extracts obtained from several marine microalgae, indicating that the 

aqueous extracts from Porphyridium cruentum, Chorella autotrophica and Ellipsoidon 

sp. produced a significant inhibition of the in vitro replication of haemorrhagic 

septicemia virus and African swine fever virus. The antiviral activity of the red 

microalga Porphyridium sp. was also confirmed by Mahmoud et al. (2002) against 

herpes simplex viruses. 
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Dunaliella salina is a unicellular green alga belonging to family Chlorophyceae that 

accumulates carotenoids in response to stress conditions and under ideal conditions can 

yield 400 mg β-carotene m
-2

 of cultivation area (Dufossé et al., 2005). Haematococcus 

pluvialis is also a green microalga known for its ability to accumulate astaxanthin, a 

ketocarotenoid, up to 0.2-2% (on dry weight basis) (Sommer et al., 1991). H. pluvialis 

changes from a motile, flagellated cell to a non-motile, thick-walled aplanospore during 

the growth cicle; the astaxanthin is contained in the aplanospore (Borowitzka et al., 

1991).  At present, these two microalgae are cultivated commercially to produce β-

carotene and asthaxanthin, since these natural carotenoids are potent antioxidants and 

strong coloring agents (Dufossé et al., 2005). However, D. salina and H. pluvialis 

biomass has been poorly screened for the presence of other active compounds. Thus, 

several studies reported the presence of antimicrobial compounds (Herrero et al., 2006, 

Santoyo et al., 2009) and extracellular polymeric substances (Mishra and Jha, 2009) in 

these microalgae, but no studies have evaluated their potential to produce antiviral 

agents. 

Pressurized liquid extraction (PLE) is an emerging technique that has important 

advantages over traditional extraction ones. Traditional solvent extraction techniques 

use a large quantities of toxic organic solvents, are labor intensive, need long extraction 

times, posses low selectivity, and/or low extraction yields and can expose the extracts to 

excessive heat, light and oxygen. In comparison, PLE uses less solvent in a shorter 

period of time, is automated and involves retaining the sample in an oxygen and light-

free environment (King, 2000). Whereas other environmentally-friendly techniques, 

such as supercritical fluid extraction (SFE), are frequently used to obtain functional 

compound from natural sources, PLE has not been widely applied as a routine tool in 

natural product extraction. However, recent studies have proposed PLE as an efficient 



5 

 

extraction technique for bioactive compounds from algae and microalgae (Denery et al., 

2004, Santoyo et al, 2006; Rodriguez-Meizoso et al., 2008), including antiviral 

compounds (Santoyo et al., 2010a,b). 

The goal of the present work was to study the ability of PLE to obtain antiviral 

compounds against Herpes simplex virus type 1 (HSV-1) from microalgae used as 

carotenoids sources: D. salina and H. pluvialis. Simultaneously the antiviral activity of 

the extracts at different stages during viral infection cycle was also determined and 

attempts were made to effectively correlate this activity with the chemical profile of the 

PLE extracts. 

 

MATERIALS AND METHODS 

Haematococcus pluvialis (BNA 10/024, National Bank of Algae, Canary Islands, Spain), 

were grown in modified Bold´s Basal Medium (Nichols & Bold, 1964) enriched with 

NaNO3 (0.75 g L
-1

). Cells (green phase) were cultured in 20 L carboys bubbled with air, 

at 25°C, in light:dark cycles (16:8) with white fluorescent lamps providing 80 µmol m
-2

 

s
-1

. To induce astaxanthin biosynthesis (red phase) exponentially grown cultures were 

transferred to nitrogen deprived medium and continuously at an irradiance of 200 µmol 

photons m
-2

 s
-1

 during 6 days. Cells were collected by centrifugation, freeze dried and 

stored at inert atmosphere until extraction.  

Dunaliella salina sample consisted on freeze dried microalgae supplied by NBT Ltd. 

(Jerusalem, Israel) stored under dry and dark conditions until use.  

Glucose, fructose, arabinose, galactose, xylose, myo-inositol, rhamnose, fucose, 

mannose, tagatose, glucuronic acid, gluconic acid, galactonic acid, sorbitol, manitol, 
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xylitol, arabitol, β-phenyl-glucoside, pyridine, trifluoroacetic acid (TFA) and 

hexamethyldisilazane (HMDS) were acquired from Sigma-Aldrich (St. Louis, USA). 

 

Pressurized liquid extraction (PLE) 

The samples were pretreated by freezing and mashing the microalgae with liquid 

nitrogen in a ceramic mortar. The process was repeated three times in order to increase 

extraction. 

Extractions of microalgae were performed using an accelerated solvent extractor (ASE 

200, Dionex, Sunnyvale, CA, USA), equipped with a solvent controller. Three different 

solvents (i.e., hexane, ethanol, and water) were used to obtain extracts with different 

compositions. When employing H. pluvialis biomass, extractions were performed at 

100ºC for 20 min, whereas for D. salina extractions were carried out at 160ºC for 15 

min. All extractions were done using 11 mL extraction cells, containing 1.5 g of sample 

in ethanol extracts, 1 g in water extracts and 0.8 g in hexane extracts. When water was 

used for the extraction, the extraction cell was filled with sand between the sample (6.0 

and 2.0 g of sand at the bottom and top, respectively) to prevent the clogging of the 

system. 

Extraction procedure was as follows: (i) sample was loaded into cell, (ii) cell was filled 

with solvent up to a pressure of 1500 psi (1 psi. = 6894.76 Pa), (iii) heat-up time was 

applied, (iv) static extraction took place in which all system valves were closed, (v) cell 

was rinsed (with 60 % cell volume using extraction solvent), (vi) solvent was purged 

from cell with N2 gas and (vii) depressurization took place. Between extractions, a rinse 

of the complete system was made in order to overcome any carry-over. The extracts 

obtained were protected from light and stored under refrigeration until dried. 
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For solvent evaporation, a Rotavapor R-210 (from Büchi Labortechnik AG, Flawil, 

Switzerland) was used for the extracts obtained using organic solvents. For water 

extracts, a freeze-dryer (Labconco Corporation, Missouri, USA) was employed. 

 

Antiviral assays 

Cells and viruses 

Vero cells (African green monkey kidney cell line) were obtained from the American 

Type Culture Collection (ATCC), Rockville, MD. They were used as host for HSV-1. 

The cells were grown using Eagle’s Minimum Essential Medium (MEM) supplemented 

with 5% foetal bovine serum (FBS), 1% penicillin-streptomycin, 1% hepes buffer 1M, 

1% non essential amino acids and 1% L-glutamine. Maintenance medium for Vero cells 

was as described above but with 2% FBS. 

Herpes virus simplex type 1 (HSV-1) (KOS) was obtained from the Americam Type 

Culture Collection (ATCC), Rockville, MD, prepared in aliquots and stored at –80ºC 

until use. Virus titer was determined by plaque assay in Vero cells and expressed as 

plaque forming units (pfu) per ml. 

Cytotoxicity assay 

The cytotoxic effect of the different extracts on Vero cells was tested using MTT assay, 

according to a published method (Mosmann, 1983). 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) (Sigma, Spain) is a yellow water soluble 

tetrazolium dye that is reduced by live cells, but not dead to a purple formazan product 

that is insoluble in aqueous solutions. Monolayers of Vero cells in 24-multiwell plates 

were incubated with MEM containing different concentrations of the extracts for 48h at 

37ºC. Cells were then washed with PBS and 0.5 mg mL
-1

 of MTT was added to each 
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well and incubated 4h at 37ºC. Supernatants were discarded and formazan crystals 

dissolved in an extraction solution (10% sodium dodecyl sulphate in a mixture of 

dimethyl formamide and water 1:1 v/v, adjusted to pH 4.7 with acetic acid) overnight at 

37ºC. Formazan quantification was performed by measuring the optical density at 570 

nm using a multiscanner autoreader (Sunrise, Tecan, Germany) with the extraction 

solution as a blank. The data were plotted as dose-response curves, from which the 

concentration required to reduce 50% the number of viable Vero cells (CC50) after 48 h 

of incubation with the different extracts was obtained. 

Evaluation of virucidal activity 

Virus samples containing 10
5
 pfu mL

-1
 were mixed and incubated at 37ºC for 1h with 

MEM containing different extracts concentrations or MEM alone (control). Samples 

were then diluted and used to infect confluent Vero cells for 1h at 37ºC. After 

incubation, the virus inocula was removed, the cells washed with PBS and then overlaid 

with maintenance medium (with 0.5% agarose) for 48 h at 37ºC. The infected cells were 

fixed acetone:methanol (50:50) at 4ºC, stained with a 1% solution of crystal violet and 

the number of the plaques counted. The percentage of inhibition of plaque formation 

was calculated as follows: [(mean number of plaques in control) – (mean number of 

plaques in test)] / (mean number of plaques in control) x 100 

Influence of various treatment periods on the anti-HSV-1activity of the extracts 

Vero cells and viruses were incubated with the extracts at different stages during the 

viral infection cycle in order to determine the mode of antiviral action. (1) Cells 

pretreatment: monolayers of Vero cells in 24-multiwell plates were pretreated with 

MEM containing different concentrations of the extracts for 3h at 37ºC. Cells were then 

washed with PBS and infected with 120 pfu of HSV-1. After incubation for 1h at 37ºC, 

the virus inocula was removed, the cells washed with PBS and then overlaid with 



9 

 

maintenance medium (with 0.5% agarose) for 48 h at 37ºC. The infected cells were 

fixed, stained and the number of the plaques counted. Control consisted of untreated 

cells infected with HSV-1. (2) Adsorption period: cells were infected with 120 pfu of 

HSV-1 in presence of different concentrations of the extracts for 1h at 37ºC. Then, the 

virus inocula and the extract were removed, the cells washed with PBS and then 

overlaid with maintenance medium (with 0.5% agarose) for 48 h at 37ºC. The infected 

cells were fixed, stained and the number of the plaques counted. Control consisted of 

cells infected without extract. (3) Intracelullar replication: cells were infected with 120 

pfu of HSV-1. After incubation for 1h at 37ºC, the virus inocula was removed, the cells 

washed with PBS and then overlaid with maintenance medium (with 0.5% agarose) 

containing different concentrations of the extracts or only medium (control). After 

incubation for 48 h at 37ºC, the infected cells were fixed, stained and the number of the 

plaques counted. The concentration of a substance required to reduce plaque number in 

Vero cells by 50% (IC50) as compared to control, was calculated from the dose-response 

curves generated from the data. 

 

Isolation of polysaccharides and determination of total carbohydrate content 

Polysaccharides were isolated according to Jeurink et al. (2008). Briefly, the freeze-

dried water extracts were mixed with sterile distilled water at 90ºC (1g 100 mL
-1

) for 20 

min and cooled down to 4ºC. Polysaccharides were precipitated by adding two volumes 

of cold ethanol, vigorous stirring, and allowing polysaccharide precipitation overnight 

at 4ºC. The precipitated polysaccharides were collected by centrifugation (10,000g for 

20 min at 4ºC), re-dissolved in distilled water and the whole precipitation procedure was 

repeated once. The precipitated polysaccharides were dialyzed with Spectra/Por 3 

molecular-porous membrane tubing (MWCO 3500; Spectrum Medical Industries Inc.) 
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against distilled water to remove small compounds during at least 24 hours with three or 

four changes of the distilled water. After dialysis, the polysaccharides were lyophilised 

and the sample weight estimated. The lyophilised polysaccharides were stored at –20ºC 

until further use. 

The polysaccharides extracts were analysed for their total carbohydrate content with the 

modified phenol-sulphuric acid method described by Fox and Robyt (1991). Test 

solutions (25 L) or standards of know glucose concentrations with 25 L of 5% (w/v) 

phenol were added to an eppendorff. The tube was stirred in a vortex for 30s, placed on 

crushed ice, added 125 L of concentrated H2SO4 and heated in a water bath at 80ºC for 

30 min. After that, the absorbance was determined at 490 nm. 

 

GC-MS analysis of carbohydrate content  

Firstly, freeze-dried polysaccharides were hydrolyzed with 4 M trifluoroacetic acid 

(TFA) at 100°C for 4 h and the TFA solution evaporated to dryness in a Rotavapor R-

210 (Büchi Labortechnik AG, Switzerland) at room temperature. β-phenyl-glucoside 

was used as internal standard (I.S.) at a concentration of 0.2 mg mL
-1

. Dry residues were 

treated with 500 μL pyridine (containing 2.5 g hydroxylamine hydrochloride/100 mL) 

and heated for 30 min at 70ºC. The cooled samples were then trimethylsilylated with 

1000 μL HMDS and 100 μL TFA for 60 min at 100ºC. Thereafter the solutions were 

ready for the analysis. The amount of derivatized stock solutions injected into the GC-

MS system was 2 μL. Glucose, fructose, arabinose, galactose, xylose, myoinositol, 

rhamnose, fucose mannose, tagatose, glucuronic acid, gluconic acid, galactonic acid, 

sorbitol, manitol, xylitol and arabitol were used as reference standards.  
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GC-MS analyses were performed in an Agilent-6890N GC system with a programmed 

split/splitless injector coupled to an Agilent-5973N quadrupole mass spectrometer 

(Agilent, USA). The system was controlled by means of Agilent MSD Chemstation 

software. To analyze the derivatized solutions a 30 m long, 0.25-mm internal diameter 

fused silica capillary column coated with a 0.25-μm layer of SE-54 (HP-5MS, Agilent) 

was used. The injector was heated to 250ºC in split mode (ratio 1:20). Helium was used 

as carrier gas (7 psi). The oven temperature was programmed as follows: from 60ºC as 

the initial temperature (maintained for 2 min) to 120ºC in 3 min at 20 ºC min
-1

, then 

from 120ºC to 155ºC in 5.83 min at 6ºC min
-1

, maintaining this temperature 10 min 

before reaching 250ºC at 13ºC min
-1

 in  7.30 min, this temperature was maintained for 

12 min and then from 250ºC to a final temperature of 330ºC in 4 min at 20ºC min
-1

. The 

final temperature was held for 10 min. Sugars were identified by MS in SCAN mode, 

using a mass interval ranging from 35 to 450. Their spectra were compared with those 

in a MS library (Wiley Registry of Mass Spectral Data), and with standards. 

 

GC analysis of volatile fraction 

Volatile fraction of the hexane and ethanol extracts obtained was analyzed using the 

same apparatus and column as described before. The injector was heated to 250ºC in 

split mode (ratio 1:20). The oven temperature was programmed as follows: from 40ºC 

as the initial temperature (maintained for 2 min) to 150ºC in 24 min at 5 ºC min
-1

, and 

then from 150ºC to a final temperature of 300ºC at 15 ºC min
-1

. Volatiles were 

tentatively identified by MS in SCAN mode, using a mass interval ranging from 35 to 

450. Their spectra were compared with those in an MS library (Wiley Registry of Mass 

Spectral Data), with data found in the literature and with standards when available. 
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Additionally, to identify compounds more precisely, their linear retention indices (RIs) 

were calculated. 

 

RESULTS  

Usually, the first step of the screening includes the selection of the different solvents 

(covering a wide range of dielectric constants) and the optimization of extraction 

conditions (extraction temperature and time). Hexane, ethanol and water were selected 

as solvents to evaluate the influence of their polarity in the extraction of antiviral 

compounds from the microalgae. Extractions temperature and time were fixed at 100ºC 

and 20 min for H. pluvialis and at 160ºC and 15 min for D. salina, based in previous 

results obtained with these microalgae in our laboratatory (Herrero et al, 2006, Santoyo 

et al., 2009). The extraction yield (% of dry weight) obtained from H. pluvialis biomass 

(table 1) was maximum when the extractions were carried out with water and minimum 

with hexane. However, when D. salina biomass was used for the extractions, the highest 

yield was obtained with ethanol, followed by hexane and finally water. These results 

suggest that medium-highly polarity substances are more abundant in H. pluvialis 

whereas D. salina contained mainly medium-low polarity compounds. 

Prior to evaluating the antiviral activity of the different extracts, their cytotoxicity on 

preformed monolayers of Vero cells was studied, using the MTT method. The CC50 

(Table 2) indicated that all extracts showed a low toxicity, although hexane extracts 

were more cytotoxic than ethanol and water ones for both microalgae. 

 

Virucidal activity of PLE extracts from H. pluvialis and D. salina 
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In order to analyze the possibility that PLE extracts may act directly on the virus 

particle leading to infectivity inactivation, a virucidal assay against HSV-1 was carried 

out. A virus suspension was treated at 37º C for 1h with different concentrations of the 

microalgae extracts. Pre-incubation of HSV-1 with both microalgae PLE extracts 

resulted in dose-dependent reduction of remaining virus infectivity when compared with 

the untreated control. However, the concentrations with 50% virucidal activities against 

the virus were higher than 10 mg mL
-1

 for all extracts, indicating that PLE extracts 

almost lacked extracellular virucidal activity.  

 

Influence of various treatment periods on the anti-HSV-1 activity of the H. 

pluvialis and D. salina extracts. 

Further experiments were performed to determine if H. pluvialis and D. salina extracts 

presented antiviral activity against HSV-1. Extracts were added to Vero cells before 

virus infection, simultaneously with virus and after virus infection. When cells were 

pre-treated for 3 h with different concentrations of extracts, before virus infection, the 

results (Figure 1) indicated an inhibition in virus infectivity. Thus, 75 g mL
-1

 of H. 

pluvialis ethanol extract inhibited virus infection by approx. 85%, whereas the same 

concentration of water and hexane extracts reduced the virus infectivity 75% and 50%, 

respectively. D. salina extracts were less effective than H. pluvialis ones and showed a 

different behaviour, since water and ethanol extracts produced a similar virus inhibition 

(65%).  

Additional assays were performed with extracts added simultaneously with virus to 

assess their effects. Under these conditions, the efficacy of the extracts decreased 

(Figure 2) since 150 g mL
-1

 of H. pluvialis ethanol extract reduced virus infectivity by 
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75%. Water and hexane extracts were also less effective than when added before the 

virus.  When 150g mL
-1

 of D. salina ethanol and water extracts were applied, the virus 

infectivity was only reduced by 20%. 

The antiviral activity on the intracellular replication of the virus was evaluated adding 

different concentrations of the extracts to previously HSV-1 infected Vero cells and 

incubated for 48 h at 37ºC. All extracts showed a dose-dependent inhibition of virus 

replication. In this assay, H. pluvialis ethanol extract was also more efficient against 

HSV-1 replication than water and hexane extracts, showing the lowest IC50 values 

(Table 2). However, when D. salina extracts were applied, the highest inhibition of 

virus intracellular replication was obtained with water extracts. 

Taking into account that antiviral activities of several microalgae water extracts have 

been frequently related to sulphated polysaccharides (Lee et al, 2001; Rechter et al. 

2006), a polysaccharide-rich fraction from the water extract was extracted. Further 

more, since microalgae ethanol and hexane extracts also showed important antiviral 

effects, these extracts were analysed by GC-MS in order to identify potential antiviral 

components.  

 

Antiviral activity of polysaccharide-rich fraction isolated from H. pluvialis and D. 

salina water extracts 

The percentage of carbohydrates found in lyophilised polysaccharide-rich fraction 

obtained from the water extracts was 36.76% for H. pluvialis and 42.95% for D. salina. 

A GC-MS analysis of carbohydrate composition of fractions from the two microalgae 

showed a quite different composition between them (Table 3). Polysaccharide-rich 

fraction from H. pluvialis showed the presence of mannose as its main component, 
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together with high amounts of glucose and galactose, whereas D. salina fraction 

contained a 94.34% of glucose.  

In order to correlate the antiviral activity found in the water extracts to the 

polysaccharide-rich fractions, the cytotoxicity and antiherpetic assays were measured 

under the same conditions as previously described for the water extracts, except for 

virucidal effects. This activity was not measured in the polysaccharide fractions since 

water extracts had a very small virucidal activity. The cytotoxicity assays of these 

polysaccharide-rich fractions (Table 2) indicated lower toxicity than the water extracts.  

When Vero cells were pre-treated with microalgae polysaccharide-rich fractions, the 

inhibition of the virus infection increased by 10-15% (Figure 1), compared to the water 

extracts. Moreover, if polysaccharide-rich fractions were applied during virus 

adsorption period, the virus infectivity was also reduced (Figure 2), respect to values 

shown when microalgae water extracts were used. This suggests that polysaccharides 

are the compounds responsible of the antiviral activity found in the water extracts when 

added either before the virus or simultaneously with the virus. 

The antiviral activity of the polysaccharide-rich fractions on the intracellular replication 

of the virus was also evaluated, showing IC50 values lower than those obtained when 

water extracts were applied, for both microalgae (Table 2). The polysaccharide fractions 

increased the antiviral action of the water extracts on the intracellular replication step by 

25-37%. 

 

GC-MS characterization of ethanol and hexane extracts from H. pluvialis and D. salina. 

In an attempt to identify the compounds responsible of the antiviral activity found in 

ethanol and hexane extracts, these extracts were characterized by GC-MS. The results 



16 

 

are shown in Tables 4 and 5, where a tentative identification has been carried out based 

on the comparison of mass spectra and retention index (RI).  

Several compounds were identified in the H. pluvialis samples, mainly fatty acids, 

alkanes, phenols and compounds such as neophytadiene (table 4). By comparing the 

ethanol and hexane extracts, the main difference is due to the presence of short chain 

fatty acids such as propanoic/lactic and butanoic acids in the ethanol extract. In total, the 

short chain fatty acids account for more than 52% of the total content of the volatile 

composition of the sample.  

Table 5 shows the volatile compounds detected in the D. salina samples. As can be 

observed, 16 compounds could be identified, mainly naptalene, β-ionone, neophytadiene, 

hexacecanoic acid and 9,12,15-octadecatrienoic acid methyl ester.  By comparing the 

relative amount of each compound (in terms of normalized areas %), D. salina hexane 

and ethanol extracts seem to have a similar composition.  

 

Disccusion 

This work studied the ability of PLE to obtain antiviral compounds against HSV-1 from 

microalgae traditionally used as carotenoids sources: D. salina and H. pluvialis. 

Pressurized liquid extraction is an emerging extraction technique proposed to obtain 

bioactive compounds from different algae, including antiviral compounds (Santoyo et 

al. 2010a, b).  

Dunaliella and Haematococcus PLE extracts (hexane, ethanol, and water) were added at 

different stages during viral infection cycle to determine its mode of action. Extracts 

were added to Vero cells prior to viral infection, simultaneous with the virus and after 

viral infection, and also virucidal assays were carried out. The results indicated that all 
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the extracts tested lacked extracellular virucidal activity, although when cells where pre-

treated for 3 h with those extracts, prior to virus infection, 75 μg mL
−1

 of the extracts 

produced an important reduction in virus infectivity. Thus H. pluvialis ethanol extract 

stood out by inhibiting virus infection by approx. 85%, whereas D. salina water extract 

reduced virus infectivity by 70%. Assays performed with the extracts added to cells 

simultaneously with the virus also demonstrated an important reduction of viral 

infection, although under these conditions, the efficacy of the extracts decreased. Taking 

H. pluvialis ethanol extract as reference, 150 μg mL
−1

 of the extract were necessary to 

inhibit virus infection by 75%. Finally, PLE extracts also provided an important 

inhibition of virus intracellular replication, outstanding also in this case, H. pluvialis 

ethanol extract. All these data suggest that the inhibitory action of the extracts against 

HSV-1 replication is unlikely to be mediated by its virucidal activity or some non-

specific interference on viral particles. The mechanism by which H. pluvialis and D. 

salina extracts inhibit viral replication could be explained by the inhibition of viral 

attachment to the host cells, virus–cell fusion, and/ or virus penetration. 

Taking into account that antiviral activities of algae water extracts have been frequently 

related to diverse types of polysaccharides (Damonte et al, 2004), the isolation of a 

polysaccharide-rich fraction from the water extracts was carried out. Besides microalgae 

ethanol and hexane extracts also showed important antiviral effects, so these extracts 

have been analyzed by GC–MS to identify the potential antiviral components.  

Though Dunaliella salina is often described as naked or wall-less, electron micrographs 

revealed the existence of a fibrous extracelular matrix on the cell surface, mainly 

consists of polysaccharides (Nakayama et al, 1996). It is thought that the production of 

these exopolysaccharides is an additional mechanisms to keep the cells safe from 

salinity (Abbasi and Amiri, 2008; Mishra and Jha, 2009). There were few studies focus 
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on these exopolysaccharides composition. Dai et al (2010) reported that glucan, sulfated 

proteoglycan and sulfated heteropolysaccharide mainly containing glucose were the 

main components of these exopolysaccharides. Zheng et al (1997) and Dai et al (2010) 

studies showed that monosaccharide composition of the exopolysaccharides from D. 

salina was mainly constituted by a large quantity of glucose followed by minor amounts 

of galactose, xylose, mannose and rhamnose. Polysaccharide-rich fraction showed 

similar monosaccharides composition. Therefore, it can be inferred glucan, and minor 

amounts of heteropolysaccharides were its main constituents. 

Opposite to D. salina cells, H. pluvialis mature red cysts have been described to possess 

a thick cell wall. Several studies have shown algaenan, a complex cell wall polymer that 

is resistant to several chemical and enzimatic treatments, together with diverses 

polysaccharides are the main components of H. pluvialis cell wall (Montsant et al, 2001; 

Hagen et al, 2002; Damiani et al, 2006). Regarding to polysaccharide fraction, Hagen et 

al (2002) reported mannans as the main polysaccharide of the multilayered cell wall 

aplanospores, where minor amounts of cellulose from the original cristalline layer 

remain in the cysts. Similar results were obtained by Damiani et al (2006). Therefore, in 

this study polysaccharide-rich fraction obtained from H. pluvialis seems to be composed 

mainly by mannans together with other heteropolysaccharides. 

The antiviral assays performed with this fraction indicated that polysaccharides could be 

the compounds responsible of the antiviral activity found in the water extracts. These 

results are in agreement with the mechanism by which microalgae polysaccharides are 

reported to inhibit virus replication. In that sense, the inhibitory effect of these 

compounds appeared to be based mainly on their ability to interfere with the initial 

attachment of the virus to the target cell, and consequently leading to the blockade of 

viral entry.  During in vitro assays, these compounds seemed to be effective only when 
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added simultaneously with the virus or immediately after virus infection (Damonte at 

al., 2004). Thus, several authors reported the antiviral activity of alga polysaccharides, 

mainly galactans from red seaweeds and fucans from brown seaweeds. Duarte et al. 

(2001) showed that sulphated galactans from the marine alga Bostrychia montagnei 

inhibited HSV-1 replication when these compounds were added during the virus 

adsorption period and Mandal et al. (2007) also reported that the mode of action of 

sulphated fucans from Cystoseira indica could be mainly ascribed to an inhibitory effect 

on virus adsorption. Regarding green algae, Ghosh et al. (2004) reported the in vitro 

anti-herpetic activity of polysaccharide fractions from Caulerpa racemosa when cells 

were infected in presence of these fractions. The antiviral activity of polysaccharides 

isolated from cyanobacteria also have been studied and Rechter et al. (2006) indicated 

that antiviral effects of polysaccharides from Artrospira platensis against herpes viruses 

were more pronounced when the cells were preincubated with these compounds prior to 

the addition of the virus, indicating that antiviral action may be primary targeted to virus 

entry.  

In an attempt to identify the compounds responsible of the antiviral activity found in 

ethanol and hexane extracts from H. pluvialis, a characterization by GC-MS of these 

extract was performed. The main difference between these extracts was the high amount 

of short chain fatty acids such as propanoic/lactic and butanoic acids found in ethanol 

extract. Also ethanol extract presented an important quantity of hexadecatrienoic acid 

which was not detected in hexane extract. However both extracts had a high percentage 

of hexacecanoid acid (palmitic acid) and 9,12,15-octadecatrienoic acid (α-linolenic 

acid). These results are in agreement with the highest antiviral activity showed by the 

ethanol extract since lactate is a recognized antimicrobial agent (Cherrington et al., 

1991; Mbandi and Shelef, 2002). Besides, hexadecatrienoic acid has also been reported 
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to present a moderate antiviral activity (Guang-Zhou et al, 2004). The antiviral activity 

of hexane extract could be explained by the presence of the hexadecanoid acid (palmitic 

acid) that  have been proposed to possess antibacterial and antiviral activities in some 

cases (Yff et al. 2002; Orhan et al. 2009).  

The GC-MS analysis of Dunaliella hexane and ethanol extracts allowed identification 

of several compounds with antimicrobial and antiviral effects, such as: β-ionone, 

neophytadiene, phytol, hexadecanoic acid and 9, 12, 15-octadecatrienoic acid 

(Aranzaldi et al., 1999; Yff et al., 2002; Orhan et al., 2009; Santoyo et al., 2010a).  

Since most of these compounds are present in a higher amount in the ethanol extract 

than in the hexane extract, these data could explain why ethanol extract showed a higher 

antiviral activity.  

In conclusion, all PLE extracts from H. pluvialis and D. salina presented important 

antiviral activities against herpes simplex type 1, overall H. pluvialis ethanol extract. 

These extracts mainly disrupt the step of attachment of the virus, although they were 

also able to inhibit HSV-1 intracellular replication. Polysaccharides in the water extracts 

of both microalgae can be suggested as the compounds responsible for the antiviral 

activity found in these extracts. The activity of the H. pluvialis ethanol extract could be 

partially related with the presence of short chain fatty acids, although other compounds 

could be involved in this activity; whereas, in the case of D. salina ethanol extract other 

compounds seemed to be involved, such as: β-ionone, neophytadiene, phytol, palmitic 

acid and α-linolenic acid.  

It is worth mentioning that the use of PLE allows antiviral compounds to be obtained 

from microalgae used as carotenoids sources, which gives both microalgae biomass an 

added value. 
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Table 1.  PLE conditions (solvent, temperature and extraction time) of Haematococcus 

pluvialis and Dunaliella salina extractions and yield produced (% dry weight). 

Sample Solvent Extraction 

temperature (ºC) 

Extraction time 

(min) 

Yield (%) 

 

Haematococcus 

pluvialis 

Hexane 

Ethanol 

Water 

100 

100 

100 

20 

20 

20 

5.88 

14.26 

21.19 

 

Dunaliella 

salina 

Hexane 

Ethanol 

Water 

160 

160 

160 

15 

15 

15 

17.7 

31.4 

9.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

 

Table 2. Antiviral activities of different extracts obtained from the microalgae 

Haematococcus pluvialis and Dunaliella salina against herpes simplex virus type 1. 

 

Sample CC50 (g mL
-1

) IC50 (g mL
-1

) SI 

Haematococcus Hexane 

Haematococcus Ethanol 

Haematococcus Water 

Haematococcus Polysaccharide-

rich fraction 

677.24  14.27 

736.24  10.45 

1608.82  16.32 

1866.78  23.14 

189.58  3.18 

99.59  2.36 

133.98  5.53 

98.61  3.78 

3.57 

7.39 

12.01 

18.93 

Dunaliella Hexane 

Dunaliella Ethanol 

Dunaliella Water 

Dunaliella Polysaccharide-rich 

fraction 

486.56  9.02 

622.94   12.42 

1578.95  21.30 

1711.45  29.31 

168.81  5.25 

152.73  4.56 

137.53  7.69 

85.34  5.89 

2.88 

4.07 

11.48 

20.05 

 

CC50 (cytotoxic concentration 50%): concentration required to reduce 50% the number of viable 

Vero cells after 48 h of incubation with the compounds. IC50 (inhibitory concentration 50%): 

concentration required to reduce plaque number in Vero cells by 50%. Each value is the mean 

of four determinations  standard deviation. SI (selectivity index): ratio CC50/IC50. 

 

 

 

 

 

 

 



29 

 

Table 3. Carbohydrate composition of polysaccharide-rich fractions obtained from 

Haematococcus pluvialis and Dunaliella salina water extracts. 

 

Carbohydrate  Haematococcus 

pluvialis  (%) 

Dunaliella 

salina  (%) 

Glucose 19.70 94.34 

Galactose 17.49 1.9 

Fucose 3.18 -- 

Arabinose 4.53 -- 

Mannose 52.22 1.02 

Xylose 1.87 1.07 

Rhamnose 0.85 0.88 

Myo-inositol 0.15 -- 

Glucuronic acid -- 0.77 
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Table 4. GC-MS identification, peak area contribution (normalized area %) and 

retention indices (RI) of compounds found in ethanol and hexane PLE extracts of 

Haematococcus pluvialis (100°C). Rt: retention time; NI: not identified. 

 

Rt Identification RI Ethanol 

Normalized  

Area (%) 

Hexane 

Normalized  

Area (%) 

4.9 Octane  - 43.2 

5.5 Butanoic acid 815 11.8 - 

6.1 Cyclobutanone,2,3,3,4- tetramethyl 837 - 2.7 

7.9 

Propanoic acid,2-hydroxy, methyl ester  

(methyl lactate) 
903 40.3 - 

11.7 L-Limonene 1025 - 3.0 

13.4 NI 1080 - 1.7 

19.8 NI 1302 - 2.5 

20.0 NI 1311 - 3.7 

20.3 NI 1319 - 2.5 

24.9 Phenol 2,4-bis (1,1-dimethylethyl) 1511 - 2.5 

25.0 Phenol 2,6-bis (1,1-dimethylethyl) 1513 2.9 3.4 

26.8 Methanone, diphenyl 1637 2.5 - 

27.4 Cyclododecane 1701 2.2 - 

27.6 Octadecane 1719 - 1.3 

28.8 Neophytadiene 1844 1.7 2.4 

29.3 Nonadecane 1905 0.9 2.4 

29.8 Hexadecanoic acid  1965 13.5 4.0 

30.0 Hexadecanoic acid, ethyl ester 1995 5.5 12.8 

31.0 Hexadecatrienoic acid, methyl ester  2123 7.3 - 

31.1 Ethyl linoleate 2168 4.5 4.7 

31.2 9-Octadecenoic acid(Z)-ethyl ester 2171 2.9 3.0 

31.3 9,12,15-Octadecatrienoic acid, ethyl ester 2174 3.8 4.6 

TOTAL 

 SUM  
 

2127319 318255 
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Table 5. GC-MS identification, total peak area, peak area contribution (normalized area 

%) and retention indices (RI) of compounds found in the PLE extracts (hexane and 

ethanol at 160 ºC) from Dunaliella salina. Rt.: retention time; NI: not identified. 

 

Rt. 

(min) 

 

Compound 

RI Hexane 

Normalized 

Area (%) 

Ethanol 

Normalized 

Area (%) 

4.4 Benzene, methyl  2.15 1.06 

6.9 Benzene, 1,4,-dimethyl 866.4 1.94 0.81 

14.2 2,6-dimethyl-cyclohexanol 1107 0.79 1.11 

17.5 β-cyclocitral 1220 0.93 1.05 

18.6 NI 1259 1.83 1.64 

19.2 3,3-dimethyl-2,7-octanedione 1281 2.26 2.14 

21.3 Naptalene,1,2,3,4-tetrahydro-1,1,6-

trimethyl 
1359 10.78 6.97 

22.5 Naptalene,  2,7-dimethyl 1405 2.94 2.31 

23.1 α-ionone 1430 2.18 3.10 

24.5 β-ionone 1488 8.88 10.17 

25.4 2(4H)-benzofuranone, 5,6,7,7a-

tetrahydro-4,4,7a-trimethyl 
1539 5.45 7.20 

27.3 1-heptadecene 1688 4.30 6.30 

28.8 neophytadiene 1841 6.47 8.83 

29.8 Hexadecanoid acid 1969 12.95 13.59 

30.8 2-hexadecen-1-ol,3,7,11,15-

tetramethyl  
2115 3.64 3.90 

31 9,12,15-octadecatrienoic acid methyl 

ester 
2145 16.12 14.79 

31.1 NI 2160 9.71 7.96 

37.2 Vitamin E 3476 6.71 7.06 

TOTAL 

 SUM  
 35775710   63653028 
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FIGURE LEGENDS 

 

Figure 1. Effect of pre-treatment with H. pluvialis and D.salina extracts and 

polysaccharide-rich fractions on HSV-1 infectivity. Each bar is the mean of four 

determinations ± standard deviation. From left to right: Haematococcus hexane, 

Haematococcus ethanol, Haematococcus water, Haematococcus polysaccharides-rich 

fraction, Dunaliella hexane, Dunaliella ethanol, Dunaliella water, Dunaliella 

polysaccharides-rich fraction. 

 

Figure 2. Effect of H. pluvialis and D.salina extracts and polysaccharide-rich fractions 

on HSV-1 absorption period. Each bar is the mean of four determinations ± standard 

deviation. From left to right: Haematococcus hexane, Haematococcus ethanol, 

Haematococcus water, Haematococcus polysaccharides-rich fraction, Dunaliella 

hexane, Dunaliella ethanol, Dunaliella water, Dunaliella polysaccharides-rich fraction. 
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