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Abstract  

Natural amino-acid substitution by single-site nucleotide polymorphism can become a valuable tool for 

structure-activity correlations, especially if evidence for association to disease parameters exists. 

Focusing on the F19Y change in human galectin-8, connected clinically to rheumatoid arthritis, we here 

initiate the study of consequences of a single-site substitution in the carbohydrate recognition domain of 

this family of cellular effectors. We apply a strategically combined set of structural and cell biological 

techniques for comparing properties of the wild type and variant proteins. The overall hydrodynamic 

behavior of the full-length protein and of the separate N-domain is not noticeably altered, but 

displacements in the F0 β-strand of the β-sandwich fold in the N-domain are induced, as evidenced by 

protein crystallography. Analysis of thermal stability by circular dichroism spectroscopy revealed 

perceptible differences for the full-length proteins, pointing to an impact of the substitution beyond the N-

domain. In addition, small differences in thermodynamic parameters of carbohydrate binding are detected. 

On the level of two types of tumor cells, characteristics of binding appeared rather similar. In further 

comparison of influence on proliferation, the variant proved to be more active as growth regulator in the 

six tested lines of neuroblastoma, erythroleukemia and colon adenocarcinoma. The seemingly subtle 

structural change identified here thus has functional implications in vitro, encouraging further analysis in 

autoimmune regulation and, in a broad context, work with other natural single-site variants, using the 

documented combined strategy. 

Introduction 

The growing awareness of the unsurpassed coding capacity of carbohydrates provides increasing 

incentive to study the expression and structures of mammalian lectins [1]. These sugar-binding proteins 

translate glycan-encoded messages into responses on the level of cells [2]. By targeting distinct β-

galactosides of selected glycoconjugates, the members of the galectin family do so, the formation of a 

lectin-glycan complex then initiating signaling, for example for growth regulation, or facilitating 

glycoprotein delivery to distinct cell types or within apical or axonal transport [2-4]. Obviously, these 

effectors are an attractive object to study the molecular route from coding by glycans to function. 

A common way to delineate structure-function correlations for proteins is the strategic introduction of 

single-site mutations. For human galectins, the essential nature of a sequence signature, especially a 

strictly conserved Trp residue for ligand contact, could hereby be documented, starting with work on 

human galectin-1 (hGal-1) [5]. Later, long-range effects that alter thermodynamic parameters of ligand 

binding were detected, explicitly for the C2S and R111H mutants of this lectin [6]. These studies 

underline the significance of work with engineered variants, revealing that even small sequence changes 

can alter protein properties beyond the site of substitution. Considering the natural occurrence of single-
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nucleotide polymorphisms (SNPs), the comparative analysis of the resulting mutant proteins offers an 

attractive approach for structure-activity research. Of particular note, these deviations from the common 

genotype may show correlations to clinical parameters, giving work on the variant proteins a biomedical 

dimension. Herein, we initiate the structural and functional characterization of SNP-based variation in the 

carbohydrate recognition domain (CRD) of galectins. 

Up to now, SNP identification in this lectin family mostly concerned other regions of the genes. For 

galectins-1 and -2, these are the promoter as well as 5’- and 3’-flanking sequences and introns 1 and 2, 

with indications for an association to autoimmune myasthenia gravis (hGal-1) and myocardial infarction 

(hGal-2) [7-10]. As to SNP presence in the coding region, two allelic variations had been discovered in 

the sequence section for collagen-like repeats of chimera-type galectin-3, at positions 191 (P64H) and 292 

(T98P) [11]. The P64H substitution, only found in humans, confers resistance to cleavage by matrix 

metalloproteinases (MMPs), especially MMPs-2/-9, on the level of the protein, and to doxorubicin for 

cells, increases sensitivity to death receptor-mediated apoptosis and appears to be associated with 

increased incidence of breast cancer but reduced risk for prostate carcinoma [12-14]. Occurrence of the 

T98P change has been reported to be increased in Taiwanese patients with rheumatoid arthritis and 

Chinese glioma patients as well as related to shortened survival in Chinese non-small cell lung cancer 

patients [15-17]. In contrast the P64H substitution showed no correlation to disease onset or progression 

in these three studies. Recently, four non-synonymous SNPs in exons of the gene for human galectin-8 

(hGal-8) have been pinpointed. SNP rs2737713 (A>T, which causes a F19Y substitution) was selected for 

quantitative trait-association study and found to be significantly associated with rheumatoid arthritis [18]. 

Since this is the first SNP hitting a galectin’s CRD examined, which is related to a clinical parameter, we 

addressed the question on alterations of structure and cell biological functions using an interdisciplinary 

approach. 

Gal-8 is a tandem-repeat-type protein, in which two different CRDs are connected by a linker [19]. 

Phylogenetically, its representation in the galectin network is rather conserved; e.g. the chicken genome 

harbors an orthologue as the only tandem-repeat-type galectin [4, 20]. It is widely present in human 

tissues, localized extra- and/or intracellularly (cytoplasm and/or nucleus), secreted from cells, and useful 

for diagnostic and prognostic assessments in histopathology, with an expression profile different from 

those of other galectins [21-26]. As cellular effector, it induces apoptosis or growth arrest in immune 

(synovial fluid cells of rheumatoid arthritis patients, CD4highCD8high thymocytes) and tumor cells, and also 

modulates cell adhesion, here by virtue of reactivity with integrins such as the α3β1-heterodimer and 

integrin counterreceptors [27-31]. A tangible role in autoimmune regulation is further substantiated by its 

concentration-dependent activity to promote T cell proliferation without antigen (high concentration) and 

to act as co-stimulator together with antigen (low concentration) [32, 33]. Moreover, it assists Gal-1 in 
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differentiating mature B cells into plasma cells [34]. Fittingly, sera of patients with autoimmune disease 

contain autoantibodies against this galectin, whose production in patients with systemic lupus 

erythematosus reached the status of an independent biomarker for secondary anti-phospholipid syndrome 

[35, 36]. 

On the level of glycans as ligands, 3’-sialylated/sulfated β-galactosides, N-acetyllactosamine repeats 

and histo-blood group ABH epitopes are preferred binding partners of the lectin, with affinity differences 

between the N- and C-domains, when tested separately [37-42]. Crystallographic analyses of the N-

domain pinpointed Arg-59 as the most critical amino acid for the up to nM affinity toward 3’-

sialylated/sulfated lactosides, and its absence in the C-domain explained the marked disparity in the 

respective affinity when examining both domains [43, 44] and also galectin-9’s N-domain [45]. Recently, 

the crystal structures of a linker-trimmed variant of hGal-8 and of the separate C-domain in complex with 

a peptide of the autophagy cargo receptor NDP52 have become available [46, 47]. The carbohydrate 

specificities of the two CRDs and their mode of presentation as pair connected by the linker determine 

Gal-8’s functionality as lectin. Occurrence of the SNP (in exon 1), mentioned above, may affect one or 

both aspects, a question answerable by structural and functional studies. Toward this end, we have 

devised a strategic combination of different approaches. We first report on the hydrodynamic behavior, 

circular dichroism (CD)-based analysis of structure and thermal stability of wild type and variant proteins, 

followed by presenting the crystal structures of the N-domains, then a detailed thermodynamic analysis of 

ligand binding, and finally function-oriented results on galectin binding to cells, regulation of growth in 

six different tumor cell lines and mediation of aggregation of erythrocytes. 

Results 

Quaternary structure and hydrodynamic properties 

We started the comparative analysis of wild type hGal-8 and its F19Y mutant, working in parallel with 

the sets of full-length proteins and the N-domains, by characterizing their behavior in sedimentation 

equilibrium in the absence and presence of 0.1 M lactose. Data obtained at loading concentrations in the 

range of 0.3-1.3 mg/ml could invariably be fitted to a model with a single ideal component with weight-

average molecular masses comparable to the theoretical masses of the monomers and to those 

experimentally determined by mass spectrometry (Table 1). The experimental values were independent of 

rotor speed, indicating homogeneity of protein preparations. Thus, in this range of concentrations, all the 

proteins behaved in solution predominantly as monomers. 

Gel filtration analysis was performed in the presence of 0.1 M lactose to block any carbohydrate-

dependent interaction with the resin. All the proteins eluted as a single sharp peak with no evidence for 

aggregate formation. Apparent molecular masses calculated from the elution times (Table 1) were in very 
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good agreement with monomer theoretical masses, showing that the hydrodynamic features of the full-

length proteins and separate N-domains do not deviate significantly from those expected for globular 

proteins. Sedimentation velocity experiments further supported gel-filtration and sedimentation 

equilibrium results. The proteins were found to migrate as a main peak with almost identical s°20,w values 

in the absence and presence of lactose (Table 1). This result excludes major changes in the hydrodynamic 

shape of the proteins by ligand loading, which had been encountered for hGal-1 as reduction of the 

gyration radius or increase of the diffusion constant [48, 49]. Frictional coefficient ratios (f/fo) of about 1.1 

for the separate N-domains and 1.35 for the full-length proteins were calculated. In comparison, the 

frictional ratio for human hGal-1 was 1.3 [50], suggesting that there are no main differences in the overall 

hydrodynamic shape between these two tandem-repeat-type proteins and the proto-type galectin, apart 

from a predictable mass-proportional alteration of the length. 

Overall, the results of the gel filtration and ultracentrifugation analyses documented that the F19Y 

mutation does not have any traceable impact on the association state or hydrodynamic properties of either 

the separate N-domains or the full-length proteins. Besides, they indicated that dimers of full-length 

hGal-8 or its N-domain detected by chemical cross-linking at 5 µM protein concentration in the presence 

of a 50-fold molar excess of bis(sulfosuccinimidyl) suberate [40] can be interpreted as covalent trapping 

of rather transient contacts. In the quest to detect any differences between wild type and mutant proteins 

CD spectroscopy was next applied. 

CD-based analysis of the structure and thermal stability in solution  

The far-UV CD spectrum of hGal-8 showed the presence of a negative band centered at 218 nm (Fig. 

1A), consistent with β-sheet structure. No differences were detected in the spectra of the wild type and 

F19Y proteins. When normalized per mole of molecule, the ellipticity signals for the full-length proteins 

approximately doubled those registered for the separate N-domains, in agreement with their expected total 

content in β-sheet structure. Interestingly, a slightly higher negative ellipticity in the 215-225 nm region 

was detected for the wild type N-domain compared to its F19Y mutant, hinting at a potentially distinctive 

feature of the β-sandwich arrangement of this domain resulting from the Phe to Tyr substitution. When 

monitored in the presence of 0.1 M lactose, spectra obtained for all the proteins maintained their profiles, 

indicating that there were no significant changes in secondary structure upon ligand binding (data not 

shown). 
The near-UV CD spectrum of hGal-8 was characterized by the presence of a broad positive signal, 

from 260 to 300 nm, with well-defined bands at 264, 272, 282 and 291 nm (Fig. 1B), attributable to fine 

structure of Phe, Tyr and Trp residues. The spectrum was sensitive to the F19Y substitution, with a 

noticeable decrease in intensity of the peaks at 272 and 282 nm. Differences were proportionally higher 

when comparing the spectra of the N-domains, most probably due to the greater relative contribution of 
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residue 19 (Phe vs Tyr) to the overall spectrum of the molecule. In all cases, a significant increase in the 

ellipticity signals at 282 and 291 nm, in the tyrosine/tryptophan region, was observed when the spectra 

were obtained in the presence of lactose, while changes in the 264-272 nm region were very minor or not 

even present (Fig. 2A-D), suggesting that the environment of phenylalanine residues is only barely 

perturbed by lactose binding. However, for all the proteins, loading with 3’-sialyllactose affected the 

whole spectrum, including the region attributable to phenylalanine residues (Fig. 2A-D), revealing that 

binding of this ligand has a larger impact than lactose on the environment of aromatic residues and/or 

protein dynamics. Whether the noticed differences in the near-UV CD spectra are translated into different 

properties of the wild type and mutant proteins was first examined by measuring their thermal stability in 

the absence and presence of ligands.  

Stepwise heating of all the proteins (full-length and N-domains) resulted in the loss of secondary 

structure, as evidenced by a progressive decrease in the intensity of the far-UV negative band. Therefore, 

the denaturation process was monitored by measuring the change in ellipticity at 218 nm as a function of 

temperature. A phenomenological analysis of the curves using a sigmoidal function yielded the T1/2 values 

compiled in Table 1. Of note, the full-length proteins apparently denatured in a single cooperative process 

(Fig. 1A, inset), as also observed for the separate N-domains. However, while the thermal stability of the 

N-domains was very similar, the T1/2 of the full-length form of the F19Y variant was 2.5 ºC higher than 

that of the wild type protein. This result identifies an impact of the F19Y substitution on the level of the 

full-length protein not confined to the N-terminal domain. 

In all cases, thermal stability increased with lactose binding (Fig. 1A, inset and Table 2). T1/2 values 

were 9.1 to 9.5 ºC higher for the N-domains and wild type hGal-8, whereas the increase for the F19Y 

variant was 7.4 ºC, again unveiling distinctive features for this protein. In view of the differences in near-

UV CD spectra run in the presence of 3’-sialyllactose, a similar analysis of the effect of protein loading 

with 3’-sialyllactose was performed. It yielded a different picture. In particular, the stabilization induced 

by this ligand was similar for wild type and F19Y hGal-8 but the T1/2 increase was considerably higher 

(more than 6 ºC) for the separate N-domains than for the full-length proteins. As only the N-terminal 

CRD is responsible for 3’-sialyllactose binding and the affinities are similar for all proteins (please see 

below), the lower degree of 3’-sialyllactose-induced stabilization of the full-length forms should be 

related, again, with denaturation features of regions beyond the N-domain. Having herewith delineated 

significant differences in thermal stability, a meticulous examination of possible alterations at the atomic 

level was performed using X-ray crystallography. Attempts to crystallize the full-length proteins were not 

successful. In fact, no crystal structure of a full-length mammalian tandem-repeat-type galectin has been 

solved to date, only the structure of a non-physiological linker-trimmed hGal-8 variant having been 

reported [44]. Thus, we focused on the N-domains for comparative analysis, as described below, the 



 

7 
 

position of the sequence variation being suited for this processing.  

Crystal structure of the N-domains in complex with lactose  

The three-dimensional structure of the N-domain of wild type hGal-8 loaded with lactose was determined 

at 1.35 Å resolution. The final model comprised 148 protein residues, 252 water molecules, one lactose 

molecule, one Zn2+, one Na+ and one molecule of glycerol (for details, please see Table 2). The structure 

presents the canonical “jelly roll” topology, with two sets of antiparallel β-sheets forming the β-sandwich 

arrangement typical of all known mammalian galectins. In addition to the common six- and five-stranded 

β-sheets (S1-S6, F1-F5), the structure reveals the presence of a previously unassigned extra β-strand [43, 

44], termed F0 (Fig. 3A), as similarly found for the separate N-domain of human galectin-9 [45]. Strand 

F0 runs in antiparallel manner to the carboxy-terminal F1 strand, the two strands establishing a network 

of backbone hydrogen bonds (Fig. 3B). The carbohydrate-binding site is formed by residues from β-

strands S4-S6 (Fig. 3C). Arg-69 interacts through hydrogen bonds with the OH-3 of the glucose unit of 

lactose, while the galactose unit stacks with the indole ring of Trp-86 as well as establishes direct 

hydrogen bonds with Arg-45, His-65, Asn-67, Asn-79 and Glu-89 and, through a water-mediated network, 

with Arg-59 and Trp-86. A strong electron density close to OH-3’ of galactose was modeled as a Na+ 

cation. In addition, a molecule of glycerol (the additive used for cryoprotection) was identified close to 

Tyr-141.  

Superposition with the structure available for the same complex at lower resolution (2.33 Å, PDB 

entry 3AP4 [43]) showed only minor differences (Fig. 3D), as reflected by an RMSD value between Cα 

atoms of 0.23 Ǻ, whereas comparison with the structure of the ligand-free form (PDB entry 3AP5, RMSD 

value 0.33 Ǻ for all Cα atoms) revealed changes in the position of residues at the binding site. Arg-69 and 

Glu-89 move towards lactose for establishing hydrogen bonds with the sugar. Furthermore, the position of 

Arg-45, which exhibits a double conformation in the ligand-free form, is found to be stabilized upon 

lactose binding, and a small shift (around 1 Å) of Trp-86 is also noticed. Yet, the biggest changes are 

observed for the loop connecting strands S3 and S4, which moves 1.5 Å towards the sugar, thereby 

narrowing the ligand-binding site and displacing 2 Å the side chain of Arg-59 from its position in the 

ligand-free form (Fig. 3D). All these ligand-induced rearrangements within the carbohydrate-binding site 

are likely to affect the environment of Trp-86 and Tyr-141, hereby providing a structural explanation for 

the differences observed in the near-UV CD spectra of the hGal-8 N-domain in the absence and presence 

of lactose. Of note, no similar changes are detected when comparing the ligand-free and lactose-loaded 

crystal structures available for human galectins-1, -3, -7 and -9, the readjustment observed for the hGal-8 

N-domain thus appearing as a distinctive feature of this CRD. 

The crystal structure of the mutant N-domain in complex with lactose was solved in parallel at 1.9 Å 

resolution. A total of 291 residues (145 in chain A and 146 in chain B), 2 molecules of lactose and 99 of 
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water constituted the final model (Table 2). In the crystallographic dimer, the long loop connecting 

strands F5 and S2 of one subunit establishes 9 hydrogen bonds and 4 salt bridges with the edge of strands 

F2-F3-F4 from the neighbor subunit. According to the complex formation significance score of the PISA 

web server [51], these interactions, however, may not be sufficient for physiological homodimer 

formation, in agreement with the monomeric status determined in solution by gel filtration 

chromatography and analytical ultracentrifugation. 

A superposition of the structures of the F19Y and wild type N-domains reflected a highly similar 

global structure (Fig. 4A), with RMSD between Cα atoms being only 0.2 Å. Furthermore, the 

carbohydrate-binding sites exhibit identical architecture and geometry of lactose binding (Fig. 4B). 

Focusing on the position 19, the lateral chain of Tyr-19 superposes with wild type Phe-19 (Fig. 4C). 

However, the presence of the tyrosine hydroxyl group induces a shift of β-strand F0, leading to a series of 

displacements of residues from position 15 towards the N-terminus, with Ile-11, Tyr-13, Asn-14 and Pro-

15 being significantly displaced from the position occupied in the wild type structure. In the full-length 

protein, this strand precedes the linker peptide that connects the N- and C-terminal domains. Previous 

studies on the impact on human galectin-1 of single-site mutations introduced at some distance from the 

binding site revealed that the effects are not locally confined [6]. On the contrary, they are transmitted 

throughout the CRD even affecting the binding thermodynamics. Thus, it seems likely that the shift of the 

F0 strand observed in the F19Y variant may also be transmitted to other sections of the protein, even 

beyond the N-domain, thereby accounting for the observed differences in thermal stability. This reasoning 

prompted us to examine whether the thermodynamic parameters of ligand binding to the N-domains and 

to the full-length proteins could also be affected by the F19Y substitution. Thus, we next performed 

isothermal titration calorimetry (ITC), testing lactose and 3’-sialyllactose as in the CD-based experiments. 

Thermodynamic parameters of ligand binding  

Representative curves of calorimetric titrations with lactose and also with 3’-sialyllactose are shown in 

Fig. 5, and the thermodynamic parameters derived from the analysis are summarized in Table 3. Titration 

curves of full-length proteins with lactose were fitted to two-independent sets of sites (one per CRD) with 

binding constants of 1.1×104 M-1 and 310-460 M-1. Comparison of binding parameters with those 

obtained for lactose binding to the N-domains enabled the unambiguous assignment of the high-affinity 

site to the N-terminal CRD (Table 3). By contrary, data obtained upon titration of full-length proteins with 

3’-sialyllactose were consistent with the presence of only one set of binding sites per molecule; the one of 

the N-terminal CRD as titration of separate domains with 3’-sialyllactose proved (Fig. 5 and Table 3). Of 

note, the thermodynamic parameters indicate differences in ΔH and ΔS contributions to the affinity in a 

compensatory manner, with more negative values in the case of the full-length mutant and lactose (high-
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affinity site). In all other cases both contributions are more negative for the wild type complexes. 

In spite of sharing almost identical binding-site architectures, the enthalpic contribution to the binding 

of lactose to the separate F19Y N-domain was about 1 kcal/mol lower than for the wild type domain. This 

smaller ∆H was counterbalanced by a reduced entropic penalty, resulting in same binding affinities. It 

seems therefore reasonable to assume that observed differences in ΔH and ΔS can arise from distinct 

contributions of ligand-induced protein rearrangements beyond the carbohydrate-binding site. On the 

other hand, the affinity of both N-terminal sites for 3’-sialyllactose was comparable and one order of 

magnitude higher than its affinity for lactose, generally due to a substantially greater enthalpic 

contribution to the binding (Table 3). This increase is most probably attributable to near contacts of the 

sialic acid moiety with the protein, as observed in the crystal structure of the wild type N-domain – 3’-

sialyllactose complex [43]. In direct comparison, the enthalpic contribution to the binding of 3’-

sialyllactose to the F19Y N-domain is about 0.3 kcal/mol smaller than for the wild type domain, again 

being counterbalanced by a slightly lower entropy loss. The difference between binding thermodynamics 

is notably more pronounced for the full-length proteins than for the respective separate N-domains (Table 

3). With ΔΔH of -1.3 kcal/mol and ΔΔS at -4.2 cal/(mol·K) and standard deviations of +/-(0.1/0.1) 

kcal/mol or +/-(0.2/0.7) cal/(mol·K), the F19Y substitution makes its presence clearly felt in the full-

length proteins. 

The lower accuracy of the thermodynamic parameters derived for lactose binding to the C-terminal 

CRD (low-affinity site) in full-length proteins precludes to reliably postulate a small effect of F19Y 

substitution at the site distant to position 19 (Table 3). The listed indications for alterations in binding 

parameters (but not overall affinity) of the N-domains and the full-length proteins for two types of free 

ligand prompted a comparative evaluation of the cell binding and effector activities of the wild type and 

F19Y hGal-8 proteins. 

Comparison of functional properties  

Since galectins are known to affect cell properties after carbohydrate-dependent surface binding, we 

measured affinity of association to cells and effects of this binding on cell growth in vitro for the two 

proteins in direct comparison. As test systems, we selected a line already studied with several other 

galectins (neuroblastoma), a leukemic and four carcinoma lines, thus representing different histogenetic 

origins. Binding to human neuroblastoma (SK-N-MC) cells was nearly completely blocked by the 

presence of glycan inhibitors (150 mM lactose and 0.5 mg/ml asialofetuin) in both cases. Measuring the 

extent of binding with increasing lectin concentrations, the two curves for the wild type protein and its 

variant were very similar, with calculated KD-values (Bmax-values) of about 118 nM (4.6 x 105 

molecules/cell) for the wild type protein and 102 nM (4.9 x 105 molecules/cell) for the variant (Fig. 6). 
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The binding behavior at the level of cells therefore was in line with the similar binding affinities 

determined for simple sugars by ITC. Of note, the presence of ganglioside GM1-specific cholera toxin B-

subunit only slightly reduces the extent of cell binding (Fig. 6). In contrast to homodimeric galectins-1, -2 

and -7 whose sites of binding are masked by the bacterial protein, ganglioside GM1 apparently is not a 

key counterreceptor of hGal-8 on these cells. However, this difference in target specificity did not abolish 

the activity of hGal-8 as growth inhibitor. Both proteins were significantly active in this respect (Fig. 7). 

Besides presenting the effects of each protein relative to the control without galectin (Fig. 7A), we set the 

data obtained with the two proteins also into direct comparison. This data processing came up with a 

slightly increased inhibitory activity of the F19Y variant at p ≤ 0.05 (Fig. 7B). To further examine this 

feature comparatively with cells of different histogenetic origin we next tested erythroleukemia (K562) 

cells.  

Again, the two proteins reduced cell growth significantly, and the variant clearly proved to be more 

potent in this respect (Fig. 8). At the highest concentration tested, the significance threshold of p ≤ 0.005 

was surpassed. Thus, the detected, seemingly subtle structural changes arising from the F19Y substitution 

do appear to have functional implication. As documented above, extent of erythroleukemia cell binding 

appeared to be rather similar, as was sensitivity to the presence of lactose (Fig. 9). A similar pattern for 

affecting cell proliferation was determined on four human colon adenocarcinoma lines (Fig. 10). In these 

cases, the SNP-derived variant form was more potent to reduce growth, with differences in concentration 

dependence between the lines. Overall, the data on proliferation support to the presence of a quantitative 

difference between the two types of proteins in growth regulation of the tested cell systems. 

Besides characterizing the effect on proliferation, likely caused by cross-linking counterreceptors in 

cis-configuration on the cell surface, we determined the potency of the proteins to form cell aggregates in 

classical haemagglutination. Herein, rabbit erythrocytes are cross-linked in trans-configuration by the 

bivalent proteins. The minimal concentration for a positive response was 600 ng/assay for the wild type 

protein, and 1000-1200 ng/assay for the variant. Sensitivity for lactose presence was higher for the variant 

(concentrations above 0.8 mM blocked agglutination at 1400 ng) than for the wild type protein (at least 

1.5 mM required at 1000 ng). 

Discussion 

The natural occurrence of SNP-based protein variants presents an attractive model for analyzing 

structure-activity relationships. Whether the amino acid substitution can affect protein properties will 

have a notable bearing on trait prediction from genotype data, prone to diverse pitfalls [52]. We have here 

initiated this line of research for galectins, focusing on the F19Y substitution in the N-terminal CRD of 

hGal-8. The seemingly small change, i.e. addition of a hydroxyl group to an aromatic side chain, is not at 

a site of direct contact with the carbohydrate ligand but part of the F0 β-strand. Our biophysical 
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characterization combining the analysis of the crystallized protein and protein in solution teaches a series 

of lessons: 

a.) All the proteins are present as monomers in solution, tested under conditions that have detected 

concentration-dependent changes in the status of aggregation of a plant lectin [53], and the hydrodynamic 

behavior is not measurably altered by the Phe to Tyr replacement. 

b.) The substitution causes displacements of amino acid side chains in its vicinity, defined by 

crystallography. 

c.) The consequences of the F19Y substitution are not locally confined. Instead, they apparently extend 

through the tandem-repeat-type protein, as revealed by measuring thermal denaturation and 

thermodynamic binding parameters. Such an effect might be facilitated by the shift of the F0 β-strand 

caused by the F19Y substitution, as this strand positionally precedes the linker connecting the N- and C-

terminal CRDs. 

d.) The characteristics of impact on ligand binding, in comparison to the wild type protein, appear to 

depend on the nature of the carbohydrate ligand. The measurements with two common ligands (lactose 

and its 3’-sialylated derivative) led to distinct data sets in terms of enthalpy/entropy compensation, 

suggesting that the same may likely be true for cellular activities, if involving different counterreceptors. 

Of note, such a case has recently been reported for an engineered mutant of human galectin-2 [54]. 

At this stage, the structural analysis of the variant allowed to infer that the single-site substitution has 

consequences beyond its local vicinity, in principle in line with the hypothesis of possible functional 

correlations. On the level of the tested cell types, binding properties were rather similar for the wild type 

and variant proteins. As seen in ITC, affinity was not affected, when quantitating extent of binding of 

labeled (iodinated or biotinylated) protein. Of note, the application of the cholera toxin B-subunit revealed 

that ganglioside GM1 is not a neuroblastoma cell counterreceptor for galectin-8, as it is for homodimeric 

galectins [55-57] and also for tandem-repeat-type galectin-4 [58]. As consequence, galectin-8 will then 

also likely not trigger ganglioside GM1-dependent anergy/apoptosis of activated effector T cells, as 

galectin-1 does [59, 60]. Obviously, this observation signifies that members of the galectin family can 

differ drastically in distinct aspects of target selection. 

Probing into functional aspects, the variant proved to be more active as growth inhibitor on the three 

types of tumor cells than the wild type protein. Structural changes induced by the presence of the 

hydroxyl group thus translate into enhanced effector potency, with quantitative differences between lines 

of the same histogenetic origin. In addition to measuring proliferation, we determined the two 

proteins´capacity for cross-linking cells, using trypsin-treated, glutaraldehyde-fixed rabbit erythrocytes. 

Stable aggregate formation (with interactions established in trans) required less protein and was more 

resistant to presence of lactose with the wild type protein. These results on forming stable aggregates 
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point to the perspective to further examine binding properties when applying force. Equally important, 

since hGal-8 is known to be present in cytoplasm and nuclei (21-26), it should be kept in mind that not 

only glycans are physiologic counterreceptors. Galectins in general are multifunctional, and are endowed 

with capacity to interact with distinct peptide motifs besides their reactivity with glycans, and this at 

different sites [61]. A protein interacting with hGal-8´s C-domain is an autophagy cargo receptor [46, 47, 

62]. In this sense, our results on actual effects of a subtle change encourage further detailed comparisons 

with the two proteins using various binding partners. Along this line, the other known polymorphisms of 

the hGal-8 gene clearly deserve attention, as do the aspects of physiological linker-length variation by 

alternative splicing and of sequence divergence in phylogenesis. 

Beyond the given focus on (ga)lectins, our results strongly recommend the analysis in other cases 

beyond evident loss-of-function occurrence, as in dectin-1´s early-stop-codon (Y238X) mutant or in 

variants in which sites with direct ligand contact are hit, as seen for K131Q in siglec-9 [63, 64]. In 

addition to galectins, ficolin-L (product of the FCN2 gene), here variants exhibiting substitutions 

T236M/A258S in the vicinity of the contact site [65-67], or the product of the S128R polymorphism in E-

selectin, with the change located in the epidermal growth factor-like domain and triggering tethering of 

myeloid cells [68], are other examples of candidates for respective analysis along the lines presented 

herein. 

Considering the aspect of interplay of (ga)lectins with specific counterreceptors inspires the idea of a 

pairing in association studies on SNPs. In fact, functional correlations to glycogenes, via orchestrated co-

regulation by a master regulator such as a tumor suppressor [69-71] or the detection of importance of 

distinct glycan determinants in tumor growth/host defense by Gal-1 [72, 73], can identify partner genes 

for setting up meaningful combinations. Case studies on core 2 N-acetylglucosaminyltransferase connect 

a variant (i.e. S158C) to Gal-1-induced T lymphoma growth inhibition [74] and a second variant (i.e. 

V152I) to increased risk of prostate cancer [75]. Collectively, our data thus reveal an unsuspected 

broadness of effects of the natural deviation at a single site (F19Y), establishing a precedent for further 

investigations, and reported information points to the potential of guided candidate selection to design 

paired association studies based on functional cooperation.  

Experimental procedures 

Protein preparation  

Wild type and variant proteins (full-length proteins with 34-amino-acid linker and the separate N-

domains) were obtained by recombinant production followed by chromatographic purification and 

rigorous quality controls as described [18, 41]. Protein concentrations were routinely determined using 

the theoretical molar adsorption coefficients. 
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Mass spectrometry 

MALDI-MS measurements were performed on a Voyager DE-PRO mass spectrometer (Applied 

Biosystems, Foster City, CA) equipped with a pulsed nitrogen laser (λ = 337 nm, 3 ns pulse width, and 3 

Hz frequency) and a delayed extraction ion source. Ions generated by laser desorption of samples were 

introduced into a time of flight analyzer (1.3 m flight path) with an acceleration voltage of 25 kV, 90-93% 

grid voltage, 0.01-0.1% ion guide wire voltage, and a delay time of 350 ns in the linear positive ion mode. 

Mass spectra of the separate N-domains were obtained over the m/z range 10-25 ku, using thioredoxin 

(Escherichia coli, oxidized) and apomyoglobin (Calibration Mixture 3 of Sequazyme Peptide Mass 

Standards Kit; Applied Biosystems) for external mass calibration. Spectra of the full-length proteins were 

obtained over the m/z range 25-50 ku. Carbonic anhydrase and enolase from Saccharomyces cerevisiase 

were used in this case for external mass calibration. Sinapinic acid at 10 mg/mL in TFA 0.3%:acetonitrile 

70:30 (vol/vol) was used as matrix. Samples were mixed with the matrix at a ratio of ~1:4 (vol/vol), and 1 

µl of this solution was spotted onto a flat stainless-steel sample plate and dried in air. 

Analytical gel filtration and ultracentrifugation  

Gel filtration was performed with a Superose 12 10/300 GL column (void volume: 7.8 ml; GE 

Healthcare) at a flow rate of 0.5 ml/min in 5 mM sodium phosphate buffer (pH 7.2) containing 0.2 M 

NaCl (PBS), 4 mM β-mercaptoethanol, 0.02% NaN3, and 0.1 M lactose. BSA (66 kDa), ovalbumin (42.7 

kDa), carbonic anhydrase (29 kDa), cytochrome C (12.4 kDa), aprotinin (6.5 kDa), and vitamin B12 (1.35 

kDa) were chromatographed under similar conditions for column calibration. Sedimentation equilibrium 

experiments were carried out by centrifugation of 80 µl samples, adjusted to different protein 

concentrations, at 15,200, 18,000 and 25,000 rev/min for the N-domains and 10,000, 11,800 and 20,400 

rev/min for the full-length proteins, as described previously [53]. Sedimentation velocity experiments 

were run at 45,000 rev/min for 5 h using 400 µl samples. All measurements were performed at 20 ºC in an 

Optima XL-A analytical ultracentrifuge (Beckman Coulter, Krefeld, Germany) with an AN50-Ti rotor. 

Weight-average molecular weights were calculated using the HeteroAnalysis program, version 1.1.2 

(http://www.biotech.uconn.edu/auf/). Differential sedimentation coefficients were calculated by least-

squares boundary modeling of the experimental data with the program SEDFIT [76]. Solvent density and 

viscosity at 20 °C were computed using the Sednterp software. The partial specific volume and degree of 

hydration of the proteins were calculated from the amino acid composition using the same program. 

Circular dichroism 

CD spectra were measured with a J-810 spectropolarimeter, equipped with a Peltier temperature control 

system, using a bandwidth of 1 nm and a response time of 4 s. Far-UV spectra were recorded in 0.1 cm 
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path-length quartz cells at a protein concentration of 0.2 mg/ml, and near-UV spectra at 1.0 mg/ml in 1 

cm path-length cuvettes. Routinely, the corresponding buffer baseline was subtracted. The spectra were 

representative of three to four independent measurements. Thermal denaturation experiments were carried 

out by increasing the temperature from 20 °C to 90 °C at a scanning rate of 0.66 °C/min. Variations in 

ellipticity at 218 nm were monitored at steps of 0.2 °C. Thermal denaturation profiles were described in 

terms of the following sigmoidal function: 

  Θ(T) = ΘD(T) – [ΘD(T) + ΘN(T)] /{1+exp[A(T-T1/2)/RTT1/2]} 

where T is the absolute temperature, T1/2 is the half-transition temperature, R is the gas constant, A is the 

constant accounting for the variation with temperature of native and denatured states, and ΘD(T) and 

ΘN(T) denote the ellipticity of the denatured and native states at temperature T. ΘD and ΘN were 

approximated as linear functions of temperature, as described previously [77]. The fitting of the sigmoid 

to the experimental data was carried out by non-linear minimum-squares, using the Origin software. 

Crystallization, data collection and processing 

The N-domains of wild type and F19Y proteins were concentrated to 20 mg/ml using Amicon Ultra 

centrifugal filter units (Millipore). Crystals were grown using the sitting drop vapor diffusion method at 

22 ºC, by mixing 1 μl of protein solution with 1 μl of reservoir solution. The wild type N-domain was 

crystallized in 20% w/v PEG 4000, 100 mM HEPES sodium salt (pH 7.2) and 10 mM zinc chloride. The 

N-domain of the F19Y mutant was crystallized in 30% w/v PEG 4000, 100 mM MES sodium salt (pH 

6.5). Crystals were transferred to a cryoprotectant solution consisting in the reservoir solution 

supplemented with 20% v/v glycerol (wild type N-domain) or 20% ethylene glycol (F19Y mutant N-

domain) and subsequently flash-cooled in liquid nitrogen.   

X-Ray diffraction data were collected at Beamlines ID23-1 and ID29 of the European Synchrotron 

Radiation Facility (ESRF) and at the PROXIMA-1 beamline SOLEIL Synchrotron (France). 

Crystallographic data were processed using XDS [78] and Aimless [79]. The space group of crystals and 

unit cell dimensions are specified in Table 2. The structures have been solved in two different crystal 

forms. For the wild type N-domain, the tetragonal crystals contained one monomer, while the 

orthorhombic crystals of the F19Y variant contained a dimer in the asymmetric unit. Likewise, previously 

reported crystal structures of the wild type N-domain in complex with several ligands were solved in three 

crystal forms with dissimilar number of protein molecules (from 1 to 4) in the asymmetric unit [43], the 

different crystal packing interactions not affecting the overall fold. The Mathews coefficient for a 

monomer in the asymmetric unit was 2.74 Å³/Da for the wild type N-domain and 2.15 Å³/Da for a dimer 

of the F19Y mutant, which correspond to a solvent content of 55.2% and 42.7%, respectively [80]. 

The atomic coordinates and structure factors (codes 4BMB, 4BME) have been deposited in the Protein 
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Data Bank.  

  

Structure determination and refinement 

The structures were determined with the molecular replacement method implemented in the Phenix 

software suite [81], using the structure at 1.92 Å-resolution available for the N-domain of wild type hGal-

8 (Protein Data Bank entry code 2YV8) as model. The translation-libration-screw (TLS) groups were 

defined using the TLMSD server [82]. Repetitive cycles of refinement and manual building were done 

using Phenix [81] and Coot [83]. Water molecules were added to the model during the last steps of 

refinement. Final R/Rfree values were 0.16/0.18 and 0.23/0.28 for the wild type and F19Y mutant 

structures, respectively. Validation of final models was performed using the Molprobity software [84]. 

Protein-protein interactions were analyzed using the PISA web server [51]. Details of structure refinement 

and quality of final models are presented in Table 2. Structural figures were generated using Pymol [85]. 

Isothermal titration calorimetry  

Calorimetric titrations were performed at 25 ºC with a Microcal VP-ITC microcalorimeter (GE 

Healthcare, Northampton, MA, USA), as recently described for chicken galectins [86]. The proteins were 

exhaustively dialyzed against PBS containing 4 mM β-mercaptoethanol (PBSβ) and sugar solutions were 

prepared with the final dialysate. Titrations were performed by stepwise injections of the sugar-containing 

solution into the reaction cell loaded with the protein solution at concentrations of 165-170 µM. The heat 

of ligand dilution was determined separately and subtracted from the total heat produced following each 

injection. Titration data were analyzed assuming binding models with either one or two classes of binding 

sites using the Microcal-ITC Origin software. 

Cell assays  

Haemagglutination was performed with trypsin-treated glutaraldehyde-fixed rabbit erythrocytes in V-

shaped microtiter plates in V-shaped microtiter plates using 25 µL of a 5% suspension and 25 lL galectin-

containing solution (serial two-fold dilution of freshly prepared stock solutions of different initial 

concentrations). Cells for the proliferation assays were grown in RPMI 1640 medium supplemented with 

1.75% fetal calf serum (erythroleukemia (K562) cells), Eagle’s minimal essential medium containing 10% 

fetal calf serum (neuroblastoma (SK-N-MC) cells) and Dulbecco’s minimal essential medium containing 

10% fetal calf serum (colon adenocarcinoma cell lines derived from microsatellite-instable (HCT116, 

Colo60H) or microsatellite-stable (SW480, SW707) tumors). All media additionally contained antibiotics 

(100 U/ml penicillin and 100 µg/ml streptomycin). Lectin binding to cell surfaces was analyzed either 

with biotinylated proteins in FACScan analysis using fluorescent streptavidin-R-phycoerythrin as reporter 
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or with iodinated proteins (wild type protein: 195 KBq/µg, F19Y variant: 219 KBq/µg, prepared with 

carrier-free Na125I (Hartmann Analytic, Braunschweig, Germany) and Iodobeads (Pierce, Bonn, 

Germany)) following optimized protocols [55, 56]. Competition assays with cholera toxin B-subunit 

(Sigma, Munich, Germany) were performed with iodinated galectins, adding the ganglioside GM1-

specific probe 1 h prior to the labeled protein as described [58]. Cell growth was assessed in parallel 

assays using the blue chromogen 3-(4,5-dimethyl-thiazol-3-yl)-2,5diphenyl-tetrazolium bromide (0.5 

mg/ml; Sigma) or a commercial kit (CellTiter 96; Promega, Mannheim, Germany) [58]. 
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Figure Legends 

Fig. 1. CD spectra of wild type and F19Y mutant proteins. Far-UV (A) and near-UV (B) CD spectra 

obtained for the full-length wild type hGal-8 (continuous lines), its F19Y mutant (dash-dot lines), and for 

the respective wild type (dash lines) and mutant (dot lines) N-domains. Ellipticity values are normalized 

per mole of molecule. Spectra were recorded at 20 ºC for 0.2 mg/ml (A) or 1 mg/ml (B) protein solutions 

in PBSβ. Inset in A, changes with temperature in the ellipticity at 218 nm of the full-length wild type 

(squares) and F19Y mutant (circles) proteins in the absence (open symbols) and presence (filled symbols) 

of 0.1 M lactose. The continuous lines correspond to the fit of a sigmoidal function to experimental data 

(see Experimental procedures). 

Fig. 2. Effect of ligand binding on the near-UV CD spectra of wild type and F19Y proteins. Spectra of 1 

mg/ml solutions in PBSβ of full-length wild type hGal-8 (A), its F19Y mutant (B), and the respective wild 

type (C) and mutant (D) N-domains were recorded at 20 ºC in the absence (solid lines) and presence of 

0.1 M lactose (dash lines) or 1 mM 3’-sialyllactose (dot lines). 

Fig. 3. Crystallographic structure of the N-domain of wild type hGal-8. A, ribbon model of the domain in 

complex with lactose, showing the two sets of antiparallel β-strands (F0-F5 and S1-S6) that form the β-

sandwich motif. B, close view of F0 and F1 β-strands highlighting interactions shorter than 3 Å which 

stabilize the N-terminal F0 β-strand. C, architecture of the carbohydrate-binding site, and D, superposition 

of our structure (light grey) with known structures of the N-domain in complex with lactose (dark green, 

PDB 3AP5 (43)) and in ligand-free form (light green, PDB 3AP4 (43)). 

Fig. 4. Comparison of crystallographic structures of the F19Y mutant and wild type N-domains of hGal-8. 

A, ribbon model of the F19Y mutant (yellow) in complex with lactose (A chain) superposed to the 

structure of the respective complex of the wild type protein (blue). B, comparison of the carbohydrate-

binding sites of the F19Y mutant (C atoms in yellow) and wild type (C atoms in light grey) N-domains. C, 

detailed comparison of the relative positioning of F0 and S1 strands in the F19Y mutant (in yellow) and 

wild type N-domains (in light grey). Residue 19 is labeled with an asterisk, and water molecules in the 

structure of the mutant protein are shown as pink spheres.  

Fig. 5. Calorimetric titration of wild type and F19Y mutant proteins with lactose and 3’-sialyllactose. A, 

representative plots of the heat released per mole of lactose injected during the titration of wild type () 

and F19Y () hGal-8 as a function of the sugar/protein molar ratio. B, titration of wild type hGal-8 () 

and its N-terminal domain () with 3’-sialyllactose. Solid lines correspond to the best fit of the 

experimental data using two-sets-of-sites (A) and one-set-of-sites (B) models. 
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Fig. 6. Binding analysis of I25I-labeled proteins to human neuroblastoma cells. Carbohydrate-dependent 

binding of labeled wild type (circles, solid/short dash lines) and variant (triangles, solid/long dash lines) 

proteins was measured in series with increasing galectin concentration using cells cultured for five days 

(final density: 105 cells per well), in the absence (filled symbols, solid lines) or presence of 250 µg/ml 

cholera toxin B-subunit (open symbols, dash lines). Results are the means of three independent 

experiments. Inset: Scatchard analysis of galectin binding. Measurements were performed at 37 ºC. 

Fig. 7. Effect of lectins on neuroblastoma cell growth. Proliferation was measured after 48 h incubation in 

the presence of wild type (black bar) and variant (grey bar) proteins, using untreated cultures (white bar), 

set to 100%, in parallel as control and reference for statistical data processing (A). Results of calculating 

statistical significance of differences between the two data sets in direct comparison between wild type 

and mutant proteins are given in (B). Presented data are the means of four independent experiments ± SD, 

level of significance is graded into three categories: * 0.05 ≥ p > 0.01, ** 0.01 ≥ p ≥ 0.005 and *** p < 

0.005. 

Fig. 8. Effect of lectins on erythroleukemia cell growth. Proliferation was measured after indicated 

periods of time in the presence of given concentrations of wild type (black bar) and variant (grey bar) 

proteins using untreated cultures in parallel as control, set to 100%, and as reference (A). Statistical 

evaluation of the two data sets in direct comparison is given in (B). Results are the means of five 

independent experiments ± SD and two independently prepared protein batches. For grading of statistical 

significance, please see legend to Fig. 7.  

Fig. 9. Cytofluorometric analysis of galectin binding to human erythroleukemia cells and its sensitivity to 

lactose. Cell surface staining (percentage of positive cells/mean fluorescence intensity) by labeled wild 

type (A) and F19Y mutant (B) proteins at 2 µg/ml and sensitivity to presence of 1 mM, 5 mM, 10 mM and 

20 mM lactose (grey area: background in the absence of lectin), all numbers given from bottom (no 

lactose added) to top (highest lactose concentration at 20 mM and finally the background control). 

Aliquots of cell suspensions from the same batch were tested in parallel in three independent series with 

SD-values not exceeding 12.4% after data normalization. 

Fig. 10. Effect of lectins on colon adenocarcinoma cell growth. Proliferation of cells of four lines derived 

from microsatellite-instable (Colo60H, HCT116) or microsatellite-stable (SW480, SW707) tumors was 

measured after 48 h incubation in the presence of wild type (black bar) and variant (grey bar) proteins, 

using untreated cultures in parallel as control and as reference, set to 100% (A). Statistical evaluation of 

the two data sets in direct comparison is given in (B). Results are the means of four independent 

experiments ± SD. For grading by statistical significance, please see legend to Fig. 7. 
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Table 1. Parameters of wild type version and F19Y variant of full-length hGal-8 and separate N-

domains. Thermal stability in the absence and presence of ligands was analyzed using circular 

dichroism. + Mw, weight-average molecular mass; * Mapp, apparent molecular mass. 

 Ligand Full-length proteins N-domains 

  Wild type F19Y Wild type F19Y 

Predicted M (Da) – 35,676.9 35,692.4 18,063.1 18,079.3 

Mass spectrometry      

   M (kDa) – 36.00 ± 0.05 36.0 ± 0.1 18.2 ± 0.1 18.19 ± 0.07 

Sedimentation equilibrium     

   Mw
+ (kDa) – 33± 2 36 ± 1 22.5 ± 1.5 20.5 ± 0.7 

 0.1 M lactose 33 ± 1 36.0 ± 1.5 20± 2 20.5 ± 2.1 

Sedimentation velocity     

   s0
20,w (S) – 2.7 ± 0.2 2.8 ± 0.1 2.0 ± 0.1 2.1 ± 0.2 

 0.1 M lactose 2.6 ± 0.1 2.75 ± 0.35 2.1 ± 0.1 2.1 ± 0.1 

   f/f0 – 1.37 1.34 1.12 1.09 

 0.1 M lactose 1.42 1.36 1.07 1.04 

Gel filtration chromatography     

   Elution time (min) 0.1 M lactose 27 ± 0.2 27 ± 0.2 29.5 ± 0.1 29.5 ± 0.1 

   Mapp
* (kDa) 0.1 M lactose 34.5 ± 1.5 34.5 ± 1.5 18.5 ± 0.5 18.5 ± 0.5 

Thermal stability      

   T1/2 (ºC) – 51.4 ± 0.1 53.9 ± 0.1 53.4 ± 0.1 53 ± 0.1 

 0.1 M lactose 60.6 ± 0.1 61.3 ± 0.1 62.5 ± 0.1 62.5 ± 0.1 

 1 mM 3’-sialyllactose 55.6 ± 0.1 58.3 ± 0.1 64.0 ± 0.1 63.7 ± 0.1 
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Table 2. X-Ray diffraction data and refinement statistics for the wild type version and F19Y 

variant of the N-terminal hGal-8 domain  

 Wild type F19Y 

Data Collection   

Space group P43212 P212121 

Unit cell parameters (a, b, c) ( Å) 49.52, 49.52, 160.50 55.36, 66.64, 83.99 

Resolution range (Å) 47.31-1.35 (1.37-1.35) 46.22-1.91 (1.96-1.91) 

No. of measured reflections* 344152 (16309) 94382 (6368) 

No. of unique reflections* 43869 (2068) 24528 (1679) 

Completeness (%)* 98.1 (93.4) 99.1 (94.3) 

Rmeas (%)* 5.6 (168) 7.2 (118) 

Multiplicity* 7.9 (7.9) 3.8 (3.8) 

I/σ (I)* 22.1 (1.5) 8.6 (1.0) 

CC (1/2)* 1.0 (0.5) 0.99 (0.6) 

Mosaicity 0.15 0.21 

Refinement   

Rcryst/Rfree 15.8/17.7 22.9/28.3 

Ramachandran outliers (%) 0.0 0.0 

Ramachandran favoured (%) 99.3 97.6 

No of atoms   

Protein 1206 2388 

Solvent 252 99 

Lactose 23 46 

Additives 1 - 

Ions 2 - 

RMS angles (º) 1.17 1.10 

RMS bonds (Å) 0.006 0.007 

PDB accession ID 4BMB 4BME 

 

*values in parentheses are for outer-resolution shell 
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Table 3. ITC-derived thermodynamic parameters for the binding of lactose and 3’-sialyllactose to the wild type version and F19Y 

variant of full-length hGal-8 and separate N-domains 

 Lactose 3’-Sialyllactose 

 
K1·10-4 

(M-1) 

ΔH1 

(kcal/mol) 

ΔS1 

(cal/(mol·K)) 

K2 

(M-1) 

ΔH2 

(kcal/mol) 

ΔS2 

(cal/(mol·K)) 

K1⋅10-5 

(M-1) 

ΔH1 

(kcal/mol) 

ΔS1 

(cal/(mol·K)) 

Full-length protein          

Wild type 1.1 ± 0.3 -11.2 ± 0.9 -19 ± 2 310 ± 150 -10 ± 2 -22 ± 6 2.6 ± 0.2 -12.8 ± 0.1 -18.2 ± 0.2 

F19Y 1.1 ± 0.1 -11.7 ± 0.6 -21 ± 2 460 ± 100 -10.6 ± 0.9 -24 ± 3 2.5 ± 0.5 -11.5 ± 0.1 -14.0 ± 0.7 

N-domain          

Wild type 1.3 ± 0.1 -11.3 ± 0.1 -19.2 ± 0.1 - - - 2.1 ± 0.2 -13.1 ± 0.1 -19.7 ± 0.1 

F19Y 1.3 ± 0.1 -10.2 ± 0.2 -15.5 ± 0.5 - - - 2.1 ± 0.2 -12.8 ± 0.1 -18.7 ± 0.1 
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