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This paper proposes a general approximate method of predicting the variattion of 

temperature at the thermal centre and the mean temperature during the cooling of bodies 

of any geometrical shape. The method is based on graphically determining the initial 

and exponential half-cooling times in simple geometric shapes. For this purpose, two 

Figures have been constructed to depict these dimensionless times, plus the prime root 

of the Biot Equation and other useful variables for indirect approximate calculation of 

thermophysical parameters. 
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Introduction 

In refrigeration, the term half-cooling time is used to refer to the time required for a 

50% reduction in the difference between the temperature, , of the cooling body at any 

point in time and the lowest attainable temperature, e(equivalent to the temperature of 

the cooling medium)1. In cooling processes where the temperature of the cold source 

may be considered constant, after a certain time the temperature of the cooling body 

drops exponentially so that half-cooling time is constant thenceforth constant and its 

value remains constant at all points within the object, thus providing a reliable indicator 

of the speed of the process. If initial half-cooling time is further determined for the 

thermal centre and at a point in the body representative of its mass, it is possible to 

predict the total duration of cooling and the heat load to be dissipated.

In the cooling of bodies with simple geometric shapes, it is enough to know the first 

solution to the Biot Equation, which can be obtained through tables2,3, to be able to 

perform an analytical calculation of the initial and exponential half-cooling times. 

Although there are obvious advantages to be obtained in terms of speed and accuracy by 

using personal computers for this calculation, graphic techniques are still valuable due 

to the overall view that they lend to the analysis of any process, and to their simplicity 

of application in either direct or reciprocal processes. For these reasons, it was decided 

to construct graphs which would provide a simple, direct determination of initial and 

exponential half-cooling times in the centre of the body and of mean temperatures for 

three simple geometries: an infinite slab, an infinite cylinder and a sphere. Details are 
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also given of the use of such graphical calculations for compound geometries. The 

Figures are applicable to bodies of any shape through simple general Equations which 

allow the process to be reduced to one dimension. On the basis of half-cooling times 

calculated in this way, it is not very difficult, as the various examples show, to arrive 

with reasonable accuracy at the evolution of mean temperatures and temperatures at the 

centre of most solid bodies.

Development of the general model

The solution to the Equation for heat transfer by conduction in simply-shaped, 

homogeneous and isotropic bodies, without internal heat sources and subject to 

homogeneous external conditions, is given by the sum of a series of infinite terms2-6 the 

general Equation of which is:
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the parameter  taking values 0, 1 or 2, respectively, in the cases of the infinite slab, 

infinite cylinder or sphere, and where:

    nn cos  for an infinite slab   (3,a)

    nn J 0  for an infinite cylinder  (3,b)
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n are the solutions to the Biot Equation for boundary conditions:
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while the remaining variables are defined as follows:
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The roots n derived from Equation (4) are discrete values increasing with the terms of 

the series, so that from (Fo)min onwards, normally exceeded for values of Y0,87, only 

the first term in the series is significant and Equation (1) may be replaced with sufficient 

accuracy5,7 by the Equation:
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The thermal centre

If we take Equation (8) for  = 0 and replace Fo, we arrive at the dimensionless time 

required to attain a given Yc value at the body's thermal centre:
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Taking Yc = 1/2 in Equation (9), we arrive at a simplified Equation of initial 

dimensionless half-cooling time:
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Then, if Equation (9) is applied for values of Yc = 1/4, 1/8, ..., and Equation (10) is 

taken into account, the differences yield:
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The constant Zs is the standard dimensionless half-cooling time corresponding to the 

exponential zone. The difference between this and Fo1/2 coincides with lag time7.

The dimensionless temperature Yc may be related to the number of half-coolings, NH, 

through the Equation:
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Equations (9), (10), (11) and (12) immediately provide the dimensionless time (Fo) 

required for the centre of the body to reach a given temperature:

  sZNHFoFo 12/1       (13)

Conversely, if real cooling times t1/2 and t1/4 are known for the thermal centre, by 

applying Equation (7) we may write:
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Equations (11) and (14) yield:
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By applying Equation (10) and writing 
1

2





D

D , we obtain: 
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Once A is known, Equations (2), (3) and (4) may be used to calculate the particular 

value of Bi corresponding to the cooling process. Although the values Fo1/2 and Zs can 

be used as comparative indicators of the intensity of transfer between two processes, 

they are not in themselves suitable for showing the inherent efficacy of the operation.

We consider that this may be more suitably expressed in terms of the relative rate. For 

this purpose, the rate at which dimensionless temperature drops may, taking Equation 

(9) as the basis, be expressed by:
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Now, given that the maximum dimensionless cooling speed for a value of Yc will be 

obtained when Bi, that is when 2
1  is maximum:
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the quotient of Equations (17) and (18) will indicate to what extent the cooling speed 

approaches its maximum possible value. Applying Equation (11), this may be expressed 

as:
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Calculation Figure

The Figure in Figure 1 has been designed to determine the initial and exponential half-

cooling times at the thermal centre. For simple handling, it is divided into four zones, 

numbered a to d.

Zones a and b serve to determine these values directly. Zone a shows Fo1/2 versus Bi for 

the three geometries, Equations (2), (3) and (10). In zone b , curves A , B and C 

reproduce 2
1  versus Bi according to Equations (3) and (4), while curve D relates Zs 

(upper horizontal scale) with 2
1  in terms of Equation (11).



Zones c and d contain auxiliary curves which facilitate the indirect determination of 

thermophysical parameters. Zone c shows A1 versus 2
1  according to Equations (2), (3) 

and (4). Zone d shows A1 versus D according to Equation (16).

The range chosen for Bi was from 0.1 to 100, as this covers all practical cases of 

cooling food, and is a manageable range. In any case, where Bi  200, half-cooling 

times are practically minimum values, so that where Bi  100, these may be taken as 

approximate (error  2%). Hence, the values of (Fo1/2)min are: 0,379 for the infinite slab, 

0,201 for the infinite cylinder and 0,14 for the sphere, while the (Zs)min values are 0,281, 

0,120 and 0.070 respectively.

The Figure is very simple to use, as can be seen from the solution to the following 

problem.

Example 1

To determine the chilling time for a 0,01 m fish fillet (k = 0,45 W.m-1.K-1, a = 1,22 x 10-

7 m2.s-1) from an initial temperature of 26°C to a temperature of 3°C at the centre, by 

means of a turbulent water flow (h = 450 W.m-2.K-1) at 1°C.

Assuming that the fillet is equivalent in thermal terms to an infinite slab of R = 0.005 m, 

Equations (5), (6) and (12) yield respective values of Y = 0,08, Bi = 5 and NH = 3,64. A 

vertical line drawn in zone a at Bi = 5 will give the value Fo1/2 = 0,53 at its intersection, 

in this case with the slab curve. If this vertical line is prolonged into zone b until it 

intersects with the relevant curve, again in this case A , and a horizontal line is drawn 

from this point, its intersection with the x-axis will yield 72,12
1   and its intersection 

with the D curve projected vertically to the upper scale will yield Zs = 0,40. If Equation 

(13) is applied to these values, this gives:

  59,140,0164,353,0 Fo 

Through Equation (7), we obtain the real time of:

st 326
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This value differs by less than 1% from that calculated using Equation (1).

According to Equation (19), the cooling efficiency of the method would be:

70,0
40,0

281,0
 

This would therefore indicate 70% of maximum speed.



Conversely, if the times measured when the centre of the fillet reaches 13,5°C (Yc = 

0.5) and 7,25°C (Yc = 0.25) are 108 and 190 s respectively, then according to Equation 

(14):

76,1
108

190
D 

Starting from this value on the x-axis of zone d, a horizontal line is drawn to intersect 

with the curve there. A vertical line is drawn through this point, yielding Ac = 1,24 on 

the upper horizontal scale. If this vertical line is prolonged into zone c until it meets 

curve A and then continued horizontally from the latter point, this will yield the value 

72,12
1  on the x-axis. If the intersections of this line with curves A and D in zone b 

are projected on to the upper and lower horizontal axes, this will give respective values 

of Bi = 5 and Zs = 0,40. A vertical line in zone a at Bi = 5 will intersect with curve A to 

give Fo1/2 = 0,53. With the data thus derived from the Figure, when R is known, 

Equations (6) and (7) can be applied to determine the approximate mean value for the 

thermal diffusivity of the product and the k/h relationship.

Multidimensional transmission

In the case of bodies assimilable to compound shapes such as finite cylinders and 

rectangular prisms, only the first term of the series is considered to be significant2,3,6
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where  takes the values 1, 2 or 3 depending on the number of simple geometries 

comprising the body. If we choose the body's smallest half-dimension as the 

characteristic length R and define:
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Equation (20) may be written in simplified form:

 FoAYc
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Specifying Yc = 1/2, we arrive at:
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where (Fo1/2)j represents the half-cooling time of each component. The Expression for 

exponential half-cooling time will be analogous to that of the one-dimensional case:
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Application of the values derived from Equations (25) and (26) to Equation (13) will 

yield the dimensionless cooling time.

How the Figure in Figure 1 works for such cases is illustrated in the following example:

Example 2

This example discusses cooling semi-hard cheeses 0,20 m in diameter and 0,10 m thick. 

These are initially at a uniform temperature of 22°C, are piled on grid shelves and are 

subjected to an air current at 7°C. The thermopysical properties taken into account are: 

a = 1,2 x10-7 m2 s-1 and k = 0,45 W.m-1 K-1. The coefficient of mean surface heat 

transfer is estimated at h = 20 W m-2 K-1. We wish to know the time required to reach 

10°C at the centre (ie, when Y = 0.2).

The cheese may be taken to be a finite cylinder 0,10 m in height and 0,20 m in diameter. 

In other words, it may be considered as a compound shape formed by the intersection of 

an infinite slab 0,10 m thick and an infinite cylinder 0,20 m in diameter. According to 

formula (6), the corresponding Biot numbers will be 2,22 and 4,44 respectively.

If these Biot numbers are applied to Figure 1, they yield values of 23,12
11   and 

  70,012/1 Fo for the slab 79,32
12   and   29,022/1 Fo and for the cylinder. 

Application of these data to Equation (22), bearing in mind that according to Equation 

(21) 1 = 1 and 2 = 0.5, will give:

  18,25,079,3123,1 22  

As in this case there are but two components  = 2 and, via Equations (25), (26) and 

(12), this results in:
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These values applied to Equation (13) will give:

  132,0132,258,0 Fo 

Finally, it is concluded from Equation (7) that the real cooling time sought is:
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This result differs by less than 1% from that obtained with the complete series. Again, if 

the values calculated for 1 and 2 and the values of  
maxj

2
1 corresponding to the 

infinite slab and infinite cylinder are applied in Equation (22), this yields:

        91,35,0405,212/ 2222   max  

With an expression analogous to Equation (19), the efficiency of the process can be 

determined: 

  56,0
91,3

18,2
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For more complex geometries, a number of workers4,5,7 have proposed simple formulae, 

applicable in principle to any geometry and based on the use of shape factors, which 

give a simplified calculation with an acceptable degree of accuracy. Thus, Fikiin8 

applies a constant  shape factor for each geometry. Cleland and Earle7 introduce the 

concept of equivalent heat transfer dimensions (EHTD) for the calculation of Zs, 

proposing a dependent relationship between this and the Biot number. Hereafter, similar 

concepts are used to propose a simple, generalized method for solving this kind of 

problem.

If  is the number of times by which the dimensionless half-cooling time of the infinite 

slab is greater than that of the body in point, then
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It is shown mathematically that limit of this function where Bi  0 is:
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It can further be determined that beyond moderate values of the Biot number,  differs 

from  +1 to such an extent that at the other limit, when Bi  ,
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A simple expression fulfilling these conditions would be:
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This function accounts not only for the proportion between the body's geometric 

dimensions (), but also for the dependence on the thermal conditions of the process 

(Bi) and the shape of the body () [A cube and its inscribed sphere have the same 

value ( = 3) and yet in identical conditions the sphere would cool faster].

The same reasoning applies to the calculation of Zs. Thus, if we say:
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whose limits for Bi  0 and Bi  , respectively, are:

1s        (32)

and
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the equivalent to Equation (30) will now be:
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By determining the values of Fo1/2 and Zs for the infinite slab in the Figure in Figure 1 

and applying Equations (30) and (34), the values of Fo and Zs can be calculated for the 

body concerned. If these values are then applied with Equation (13), the dimensionless 

cooling time of the body can be calculated. The parameters  and s are adjustment 

coefficients which may be assigned mean values of 2,4 and 0,6 respectively.

This method has not been checked for irregularly-shaped bodies as no practical values 

are available for initial and exponential half-cooling times at the thermal centre, 

althouth the values given by Fikiin and Fikiina4 for  are applicable. However, it 

has been possible to verify that their accuracy is acceptable (the maximum error found 

was less than 4%) in simple and compound figures for different dimensions and 

boundary conditions, for which an analytical solution does exist and whose thermal 

behaviour is always somewhere between that of the infinite slab and that of the sphere. 



There is therefore no a priori reason to suppose that this method is unsuitable for all 

other intermediate geometries.

In the more general case, if S, V and R are known or measured, a single assay will 

suffice to obtain the values of  and s corresponding to the body in point and to all 

other geometrically similar bodies. Thus, if two points obtained experimentally from the 

thermal centre cooling curve are applied to Equation (13), Fo and Zs can be calculated. 

With Figure 1 and Equations (27), (30), (31) and (34), the values can easily be 

calculated. With these values, thermal behaviour can then be predicted for other 

boundary conditions.

In the case of simple shapes and their perpendicular intersects, ,  and s can be 

calculated immediately. Let us look at some cases: 

Sphere. (Fo1/2)min and (Zs)min are known (0.14 and 0.070 respectively), so that Equations 

(28), (29) and (30) yield: ( = 3,  = 2,707 and s = 4.

Finite cylinder. If R1 is half height and R2 the radius of the base, Equations (21) and 

(28) yield:
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It is further known that the values corresponding to Bi =  are  22
11 2   and 

(Fo1/2)1min = 0.379 for the infinite slab and 783,52
12   and (Fo1/2)2min = 0.201 for the 

infinite cylinder, so that Equations (22) and (25) will easily yield the values of 2
max  and 

(Fo1/2)min for this case. If these are then applied in Equations (29) and (30)
2
2

2
1 561,1666,0        (36) 

666,0
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Rectangular prism. In this instance, the three component geometries are infinite slabs, 

and hence:

       22
13

2
12

2
11 2  maxmaxmax  

and

(Fo1/2)1min = (Fo1/2)2min = (Fo1/2)3min = 0,379

Following the same procedure as before, we arrive at: 
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To illustrate this method, example 2 above may be applied and Equations (35), (36) and 

(37) give:  = 1 + (2 x 0,5) = 2,  = 1,056 and s = 1,586. If these values are 

applied to Equations (30) and (34) for Bi = 2,22 (which corresponds to characteristic 

length), this will give:  = 1,230 and s = 1,763.

At Bi = 2,22, Figure 1 can be used to determine Fo = 0,70 and Zs = 0,56 for the infinite 

slab. Using Equations (27) and (31)

57,0
230,1

70,0
2/1 Fo 

32,0
763,1

56,0
sZ 

If these values are transferred to Equation (13) for NH = 2,3, Equation (7) will give a 

calculated real time of 5.74 hours, which practically coincides with the result in 

Example 2.

Mean temperature

To determine the evolution of mean temperature in the object, the integral value of 

Equation (1) must be calculated and averaged out for volume. By performing this 

integration and applying Equations (2) and (4), we arrive at the Equation: 
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where:
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In infinite slabs and cylinders, the series may be reduced to its first term for the 

calculation of 2/1Fo , with an error of less than 8%. In contrast, the case of the sphere 

requires more terms if the error is to be kept within these bounds.

Figure 2 shows the mean half-cooling times as functions of the Biot number. In this 

case  minFo 2/1 takes the values 0,196 for the infinite slab, 0,063 for the infinite cylinder 

and 0,031 for the sphere. Where regularly-shaped finite bodies are concerned, procedure 

is as in the case of the thermal centre, except that   jFo 2/1  is determined using Figure 2.



The dimensionless time which should elapse until a mean temperature Y is reached, is 

expressed by

ZsNHFoFo )1(2/1      (43)

in which 
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When operating in this way, the results differ by less than 3.5% (for 25,0Y ) from the 

exact analytical solution. 

Considerations such as those for the thermal centre may be applied to irregular shapes, 

thus leading to similar expressions: 
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in which   varies with geometry in the approximate relationship:
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while Zs is the same as for the thermal centre.

Following exactly the same procedure as before and using Equations (43) and 

subsequent, we can calculate the time required to reach a given mean temperature in any 

body with less than 10% error (for 25,0Y ). We shall set forth a practical example to 

illustrate this.

Example 3

With the same data as for Example 2, the aim is to find the mean temperature for the 

cheese once temperature has reached 10°C at the thermal centre, and the time required 

to attain a mean temperature of 10°C in the cheese.

Solution using the intersects method. As seen in Example 2, the following are known: 

1Fo 23,12
11   79,32

12  , 1 = 1, 1 = 0.5, 2 = 2.18 and Zs = 0.32.



With Bi1 = 2,22 and Bi2 = 4,44, Figure 2 yields the respective values   53,012/1 Fo  

and   15,022/1 Fo  

Applying Equation (25): 
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21279,315,023,153,0
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Applying Equation (43):

38,3
132,0

24,01





NH 

Applying Equation (44):

  096,05,0 38,3 Y 

Finally, Equation (41) gives the mean temperature: 

C 44,87096,015  

which differs by less than 1% from the value obtained for the complete series.

The second part of the problem can then be solved immediately. Thus, by analogy with 

Equation (5): 
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Applying Equation (44),
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Applying Equation (43),

  66,032,0132,224,0 Fo 

Applying Equation (7):
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Solution by shape factor method. It is already known that for the infinite slab 

   22
11 2 max  and   196,012/1 minFo , and for the infinite cylinder   783,52

11 max  

and   063,022/1 minFo . 

If these values are applied to Equation (22):

    913,35,0783,512 222   max  

Applying Equation (25): 
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Applying Equation (46): 

955,4
040,0

196,0
  

Applying Equation (48),

056,0
955,425,7

2



  

Applying Equation (47): 

325,2
122,2056,0

955,42
955,4 




  

With Bi = 2,22, Figure 2 yields   53,0slab infinite2/1 Fo 

Then applying Equation (45):

  23,0
325,2

53,0
2/1 Fo  

Equation (43) gives:

41,31
32,0

23,01



NH  

and Equation (44) gives:

  094,05,0 41,3 Y  

Finally, Equation (41) yields: 

C 41,87094,015 (e<1%) 

The second part of the example would be solved in the same way as with the intersects 

method, giving a real cooling time of 3.7 h (e<3%).

Conclusions

This paper proposes a simple method of calculating the evolution of mean temperatures 

and temperatures at thermal centre during the cooling of bodies in general, where initial 

and exponential half-cooling times, as constant parameters inherent in the process, are 

known.

To this end, two charts were devised to enable direct determination of half-cooling 

times in bodies of simple geometric shapes (infinite slab, infinite cylinder and sphere) 

according to the Biot number. When these values are used as components, half- cooling 

times can be calculated for regular compound shapes without difficulty. To arrive at 



such determinations in more complex shapes, a general method (hence also valid, if less 

accurate, for simple and compound shapes) is proposed, based on the calculation of 

shape factors and relating the thermal behaviour of any body to that of an infinite slab in 

the same conditions. This factor is associated, through simple general Equations, with 

the Biot number and the geometric characteristics of the body.

The resulting half-cooling times are used to predict cooling curves for the body. In the 

case of the thermal centre, in none of the cases tested was an error of over 4% detected, 

while the error was less than 10% (for 25,0Y ) in the case of mean temperature, a 

very acceptable degree of accuracy given the current precision normally attained in the 

determination of the thermophysical parameters intervening in these phenomena. 
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Nomenclature 
A1 , An First and nth coefficients of the series 
A The same coefficient in compound-geometry bodies 
Bi Biot number 
D Relationship between quarter- and half-cooling times 

Fo, Fo  Fourier Number or dimensionless time 

Fo1/2, 2/1Fo  Fourier Numbers for half-cooling at the centre and the mean value, 
respectively 

NH, NH  Half-cooling number at centre and mean value 

R Smallest half-dimension of the body (m) 
Rj Half-dimension of the component j in compound bodies (m) 
S Heat transfer surface area (m2) 
V Volume of body (m3) 

Y, Yc, Y  Fraction of temperature yet to drop, with reference to a generic point in 
the body, to its centre and to its mean value, respectively 

Zs Standard or exponential half-cooling time 
a Heat diffusivity of body (m2 s-1) 
h Surface heat transfer coefficient (Wm-2K-1) 
k Heat conductivity of body (W m-1K-1) 
t Real cooling time (s) 
Greek letters  
j Relationship between characteristic length R and half-dimension Rj 
 Parameter dependent on the geometric shape of the body 

 ,, s  Adjustment coefficients 

n nth root of the Biot Equation 
 Weighted root for complex shapes 
 Dimensionless distance from the point considered, with reference to 

characteristic length 

 ,, 0  Temperature at any point in the body, uniform initial temperature and 
mean temperatures of body (°C) 

c Temperature of cooling medium (°C) 
 Efficiency of cooling process 
 Exponent of Equation (16) 
(=1, 2 or 3) Number of simple geometries composing a compound shape 

 ,, s  Shape factors 

  n  Shape-dependent function 

 n  Mean value of   n  

Subscript  
c With reference to the centre of the body 
n nth term of the complete series 
j Component j of a body of compound shape 
max Maximum value 
min Minimum value 
 When Bi;  
1 First term in the series 
 



 

 
Figure 1 Half-cooling times. (A) Infinite slab; (B) infinite cylinder; (C) sphere. (a) 
Zone a Fo1/2 versus Bi; (b) zone b 2

1 versus Bi (A, B and C) and Zs versus 2
1 (D); (c) 

zone c A1 versus D 
 



 
 

 
Figure 2 Mean half-cooling time. 2/1Fo  versus Bi. (A) Infinite slab; (B) infinite 
cylinder; (C) sphere. 
 
 


