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Abstract

Rules of quantization and equations of motion for a finite-dimensional formulation

of Quantum Field Theory are proposed which fulfill the following properties: a) both

the rules of quantization and the equations of motion are covariant; b) the equations of

evolution are second order in derivatives and first order in derivatives of the space-time

co-ordinates; and c) these rules of quantization and equations of motion lead to the usual

(canonical) rules of quantization and the (Schrödinger) equation of motion of Quantum

Mechanics in the particular case of mechanical systems. We also comment briefly on

further steps to fully develop a satisfactory quantum field theory and the difficuties which

may be encountered when doing so.

PACS numbers: 03.65.Bz, 11.10.Ef, 03.70.+k

Keywords: Quantum Mechanics, Field Theory, Equations of Motion.

†This work is partially funded by the Spanish Dirección General de Ciencia y Tecnoloǵıa
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1 Introduction

At present the main goal of Theoretical Physics is to unify Quantum (Field)

Theory and General Relativity. This task will probably require a previous

reformulation of either of these theories or both of them.

The standard way of quantizing a field theory – and hence the actual form

of standard Quantum Field Theory (QFT) – relies on the fact that Classical

Field Theory (CFT) can be considered to be a generalization of Classical

Mechanics (CM) in which the finite number of degrees of freedom of the

latter is replaced with an infinite (continuum) number in the former. In this

formulation the fields are considered to be functions ϕa(x) (t) ≡ ϕa
x
(t); that

is, the spatial co-ordinates are regarded as labels (the discrete superindex

a labels the different fields in the theory). This description is supported

primarily by the fact that it is a direct generalization of Quantum Mechanics

(QM), which, as a theory with a vast range of predictions, is a source of

great confidence. The standard framework requires, nonetheless, the use

of functionals in place of ordinary functions as well as infinite-dimensional

differential calculus, which is plagued with ambiguities. These ambiguities

are at the root of the renormalization problem.

This fact also leads to a problem of foundation: if Classical Field Theory,

which is based on a small number of ordinary functions over the space-time,

gives a description of the world, albeit rough and primitive, why must Quan-

tum Field Theory be described with functionals – that is, functions with an

infinite (continuum) number of arguments?

All this raises the question of whether a description of the quantum theory

of fields in terms of ordinary functions is possible or not.

In fact, the kinematical description of a QFT of this type arises naturally

from CFT provided that the latter, as a generalization of Classical Mechanics,
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is interpreted in a way different from the one that leads to the standard

QFT [10]. In this reading of CFT, all the co-ordinates of the space-time

are considered to be on the same footing, no special role is played by time.

The fields are not taken to be an infinite (continuum) set of functions of

time but rather a discrete set of functions of all the space-time co-ordinates:

ϕa = ϕa(x), with x = (x, t) and a a discrete label. Since there is a finite

number of functions we shall refer to this approach as finite-dimensional QFT

as opposed to the standard or infinite-dimensional QFT.

The first steps towards a covariant finite-dimensional formulation of field

theory were given by Born [1], Weyl [2], de Donder [3] and Carathéodory [4]

as early as the 1930s. Further attempts are due to Good [5] and Liotta [6],

and more recent ones to Tapia [7] and Kanatchikov [8]. However, much of

this effort has been focused on following routes to the quantum theory which

closely mimick the one which, starting from Classical Mechanics, leads to

the standard Quantum Mechanics. These routes pass, therefore, through

developing a covariant canonical (Hamiltonian) formulation of the theory.

The basic idea underlying this approach – which can be referred to as the

bottom to top approach – is that, if a complete canonical formulation of

the finite-dimensional description of Classical Field Theory were found, the

finite-dimensional quantum theory would then naturally follow.

This procedure is legitimate, but it would perhaps be more profitable

to try to construct directly, by whatever the means, a self-consistent finite-

dimensional covariant QFT. After all, Quantum Mechanics should arise as

only a limiting case of this QFT, and nothing guarantees that Poisson brack-

ets, for instance, will play any role in the structure of the more general

theory.

This opposite route, which we might term top to bottom, has, in fact,
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been recently inaugurated with a proposal by Good of rules of quantization

and equations of motion which give rise to a finite-dimensional QFT [9] .

However, in the particular case of mechanical systems, Good’s proposal does

not lead to the standard Quantum Mechanics and, therefore, the resultant

theory does not reproduce basic, long experimentally verified, predictions of

standard QM [10]. The proposal, as a whole, should therefore be discarded.

In this context, the natural next step toward a finite-dimen-

sional QFT should be to find an alternative proposal which, while preserv-

ing the basic features of Good’s framework, give rise to the standard QM in

the case of mechanical systems, hence avoiding the experimental failure of

Good’s rules. The task therefore is to find rules of quantization and equations

of motion such that:

1. Both rules of quantization and equations of motion must be explicitly

covariant; i.e., space and time co-ordinates are treated on the same

footing.

2. Within the limits of mechanical systems these rules of quantization and

equations of motion must reduce themselves to the familiar canonical

rules of quantization and Schrödinger equation of evolution of ordinary

Quantum Mechanics.

3. The equations of evolution must be second order in derivatives and first

order in derivatives of the space-time co-ordinates.

This task in fact constitutes the main goal of the present letter: to show,

using an example to be presented below, that proposals which fulfill all the

requirements above do exist.

Although fully developing a quantum theory is far beyond the scope of

the present letter, some basic guidelines to carry on the present analysis are
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briefly commented in Section 3.

2 An improved proposal for equations of mo-

tion and rules of quantization

Let us consider the Schrödinger equation of ordinary Quantum Mechanics:

i
d

d t
Ψ = ĤΨ (1)

To generalize this equation to field theories, which are defined over a four-

dimensional space-time manifold, we need a generalized Hamiltonian to be

placed on its r.h.s., and a generalized “time derivative” operator to be placed

on its l.h.s. A generalizacion for the Hamiltonian is well known [9, 10]:

the covariant Hamiltonian H which is obtained, from a Lagrangian L =

L(φa, ∂µφ
a), by means of the generalized covariant Legendre transform†:

H = πµ
a∂µφ

a −L . (2)

The covariant momenta πµ
a are defined by:

πµ
a =

∂ L

∂ (∂µφa)
(3)

If we now write the Lagrangian in the following covariant Hamiltonian

form

†If attention is paid to other features of the Hamiltonian in Mechanics, its conservation

properties for instance, the energy momentum tensor Θµ
ν = φa

ν
πa

µ−δµ

ν
L may appear to

be a more natural generalization in field theory. However, for the purposes of the present

letter, the covariant Hamiltonian H is equally good and allows us to keep in line with

Good’s proposal. For the sake of being specific, we shall limit our present discussion to

this case only.
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L = πµ
a∂µφa −H(φa, πµ

a ) (4)

its Lagrange equations of motion will also have a covariant Hamiltonian form:

∂µφ
a =

∂ H

∂ πµ
a

(5)

∂µπµ
a = −

∂ H

∂ φa
(6)

With these ingredients, Good postulated the following quantum equation

of motion [9] (see also [10]):

Good’s quantum equation of motion

−
∂2

∂xν∂xν

Ψ(ϕa, x) = ĤΨ(ϕa, x) (7)

This equation of motion was supplemented with the following rules of quan-

tization:

Good’s quantization rules

ϕa −→ ϕ̂a = ϕa

πµ
a −→ π̂µ

a = −
∂2

∂ϕa∂xµ

(8)

This proposal, along with many attractive features, involves a number of

undesired properties which prevent it from being a good starting point for a

finite-dimensional formulation of QFT:

a) The equation of motion is higher order in derivatives and (at least)

second order in (space-)time derivatives.

b) The proposal does not, in either the quantization rules or the evo-

lution equation, reproduce Quantum Mechanics in the particular case of a

mechanical system.
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Either of these drawbacks is serious enough to rule out this proposal as

a good candidate for a finite-dimensional QFT. Moreover, it was shown in

ref. [10] that this theory leads to (measurable) predictions which do not

agree with standard Quantum Mechanics. Hence, this proposal should be

discarded.

Fortunately, there are other proposals for quantization rules and evolution

equations which are similar to Good’s but behave much better.

To motivate our proposal, let us consider the ordinary harmonic oscillator

and the Dirac field. The respective Lagrangians can be written:

LHO = a∗(iȧ − a) (9)

LD = ϕ̄(i/∂ϕ − ϕ) (10)

where a (a∗) is the annihilation (creation) operator, /∂ ≡ γµ∂µ, with γµ the

Dirac’s matrices, and ϕ̄ = ϕ†γ0.

Eqs. (9) and (10) tell us that the Dirac field is a higher-dimensional gen-

eralization of the ordinary harmonic oscillator. The generalization is accom-

plished by replacing the time derivative d /d t with the operator /∂ = γµ∂µ.

Mimicking that generalization, we can postulate the following equation

of motion for our finite-dimensional QFT, which is intended to generalize

ordinary QM‡

Dirac-like quantum equation of motion

iΓµ∂µΨ = ĤΨ (11)

‡While the present letter was being refereed, Kanatchikov, independently and following

different reasoning from ours, also arrived to this equation, and to other conclusions which

are similar to ours [12].
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Here Γµ are quantities which play a role similar to Dirac’s matrices in the

relativistic theory of the electron. However, we shall see later that further

development of the theory may require the quantities Γµ not to be the Dirac

matrices. For the moment, and for the sake of specificity, we may think of

these as if they were the Dirac matrices, the Kemmer matrices, or similar

ones.

The next step is to construct the operator Ĥ; that is, we need quanti-

zation rules. Fortunately, once the quantities Γµ are at our disposal, it is

straightforward to propose quantization rules as well. These are:

Dirac-like quantization rules

ϕa −→ ϕ̂a = ϕa

πµ
a −→ π̂µ

a = −iΓµ ∂

∂ϕa
(12)

The rules of quantization (12) and the evolution equation (11) fulfill the

three properties listed in the Introduction. In particular, unlike in Good’s

proposal, ordinary Quantum Mechanics is contained in this new proposal.

Therefore, the vast amount of experimental predictions of ordinary QM is

entirely and automatically incorporated into our proposal. Hence, to rule out

the new proposal we would have to look for a test which implied a genuine

field system.

Our proposal, as far as the quantum equation of motion is concerned,

almost revives Good’s proposal. In fact, if we identify the quantities Γµ with

the Dirac matrices and “square” the equation of motion (11), we obtain an

equation similar to Good’s, differing only in that the operator in its r.h.s. is

not the covariant Hamiltonian Ĥ, but rather its square. On the contrary, the

quantization rules are sharply different and give rise to Hamiltonian operators

which also are strongly different.
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3 Discussion and perspectives

Our proposals for rules of quantization (12) and equations of motion (11) ful-

fil the three properties in the Introduction. In this way, we improve Good’s

proposal in fundamental respects and actually solve the most serious objec-

tions which have been raised against it [10].

A detailed analysis of the quantum theories that our proposal – and

related ones – would lead to is a complex task which is beyond the scope of

the present letter. Let us, however, briefly comment on it.

The next step should be to find a proposal with a natural, well-behaved,

positive-definite scalar product < | >. In particular, and in analogy with

QM, it seems natural to require that the scalar product of two wave functions

Ψ, Φ should be space-time independent:

∂µ < Ψ|Φ >= 0 (13)

This can be achieved if the equations of motion can be brought to the form

i∂µΨ = ĤµΨ (14)

with Hµ self-adjoint operators.

Consider now that in our proposal we take Γµ to be the Dirac matrices

γµ. The natural “scalar product” is then:

< Ψ|Φ >=
∫

dϕΨ̄Φ, Ψ̄ = Ψ†γ0 (15)

However, neither is the norm ||Ψ||2 =< Ψ|Ψ > positive-definite nor is the

product (15) preserved by the space-time evolution.

The first problem could be solved in a manner similar to the way in which

the non-positivity of the Hamiltonian is solved when second quantizing the
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Dirac field – by requiring that the wave function Ψ be not a real field but

rather a Grassmannian one. However, this solution raises the question of

whether or not the resultant scalar product is independent on the represen-

tation of the gamma matrices.

That the scalar product is space-time dependent can be seen by consid-

ering wave functions Ψ for which ĤΨ = µΨ, with µ ∈ ℜ. Then eq. (11)

reduces to the Dirac equation, which have solutions in which the scalar prod-

uct (15) is not space-time independent. This problem can be attributed to

the fact that, for the case under consideration, the operators Ĥµ that appear

on the r.h.s. of eq. (14) involve space-time derivatives. In fact, if we multiply

eq. (11) by γµ and use the equality

γµγν = gµν − iΣµν (16)

we get

i∂µΨ =
(
iΣµν∂

ν + γµĤ
)
≡ ĤµΨ (17)

Therefore, a satisfactory development of our proposal would require quan-

tities Γµ which are not the Dirac matrices. We should remark here that no

reason has actually been put forward to identify the quantities Γµ with the

Dirac matrices. By now these quantities remain (almost) completely arbi-

trary; the only requirements are that the equations in which they are involved

should be covariant under changes of reference frame. This can be achieved

with Dirac’s matrices, but also with Kemmer’s and others. The hope is that

further development of our proposal will put stronger restrictions on those

quantities and eventually determine them completely. This would ultimately

justify our introduction of them, which may appear to be a rather arbitrary

ingredient of our proposal.
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A particularly interesting line of development would be to consider, rather

than the covariant Hamiltonian H, the energy-momentum tensor Θµν . In this

regard the developments in ref. [7], where the classical dynamics of fields is

developed in terms of that quantity and generalized Poisson brackets, may

be especially valuable.

Finally, and for the sake of comparation, let us briefly show what the

situation is in the standard QFT.

In the pure Heisenberg picture of (standard) QFT, the momentum oper-

ators Pµ are such that

eiPµaµ

ÔH(x)e−iPµaµ

= ÔH(x + a) (18)

for any operator ÔH(x), in particular the fields ϕ̂(x).

By analogy with the Schrödinger picture of QM, let us remove all the

space-time dependence from the operators and translate it into the wave

functional by defining:

ÔS = e−iPµxµ

ÔH(x)eiPµxµ

Ψ(x)S = eiPµxµ

ΨH (19)

The wave functionals Ψ(x)S now obeys generalized Schrödinger equations

(14):

i∂µΨ(x)S = PµΨ(x)S (20)

In this way, we have recovered a picture of the standard QFT (which can

be called pure Schrödinger picture of QFT), which incorporates much of the

spirit of the finite-dimensional QFT, although not the basic requirement –

that the wave functions must be ordinary functions. On the contrary, the
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functional Ψ in eqs. (19,20) are defined, not over the space of fields ϕa, but

over the phase space of the theory which, in general, is infinite-dimensional

[11].
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