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The relative entropy in two-dimensional field theory is studied for its application as an irreversible
quantity under the renormalization group, relying on a general monotonicity theorem for that quantity
previously established. In the cylinder geometry, interpreted as finite-temperature field theory, one can
define from the relative entropy a monotonic quantity similar to Zamolodchikevismction. On the
other hand, the one-dimensional quantum thermodynamic entropy also leads to a monotonic quantity,
with different properties. The relation of thermodynamic quantities with the complex components of
the stress tensor is also established and hence the entrapieorems are proposed as analogs of
Zamolodchikov’'sc theorem for the cylinder geometry. [S0031-9007(98)07422-5]

PACS numbers: 11.10.Gh, 05.70.Jk, 11.10.Kk

In Euclidean quantum field theory (QFT) it is pos- of the finite-size corrections to the free energy for the
sible to define a type of entropy, the relative entropy,Gaussian model and the Ising model off their CP has been
which is a monotonic function of the couplings and obtained in [6]. There it is briefly discussed their con-
increases in the crossover from one multicritical pointnection with Zamolodchikov's function, concluding that
to another of lower order [1]. Therefore, it is a they differ but making no further analysis. The compact
suitable quantity to embody the irreversibility of the dimensiongB can be used as RG parameter, providing a
action of the renormalization group (RG). There isthermodynamic interpretation of the RG [7,8]. The finite-
also a well-known and celebrated monotonic quantitysize correction to the free energy was used as a candidate
in two-dimensional (2D) QFT, Zamolodchikov’ss  monotonic function in [7], concluding that a thermody-
function [2]. Althougha priori there is no connection namic analog of Zamolodchikov’'s theorem holds for it
between both gquantities, some arguments indicate thdtut only under an additional condition which cannot be
such a connection may nevertheless exist. For exampléeduced from thermodynamics rules. Here, relying on the
Zamolodchikov's ¢ function is supposed to count the monotonicity theorem for the relative entropy [1] we shall
independent degrees of freedom in a model near the critpropose a monotonicity theorem analogous to Zamolod-
cal point (CP). This certainly agrees with the statisticalchikov's. We shall further prove a new thermodynamic
definition of entropy. On the other hand, the centralmonotonicity theorem involving the quantum specific
charge of 2D conformal field theory (CFT), to which entropy.

Zamolodchikov’sc function reduces at the CP, has been Given the cutoff logarithm of the partition function
shown to coincide with a particular type of renormalizedper unit volume W[A, A], the relative entropy is the
entropy, the geometric entropy [3]. These argumentiegendre transform oW[A, A] — W[0, A] with respect

beg for an investigation on whether a relation betweerio the relevant couplings,,

Zamolodchikov’sc function and some type of entropy in W _ _ a

2D exists off the CP. Set = W = Wo = A0, W. @

We study here the properties of the relative entropyNow we select one coupling—or take a common factor
in general 2D models, in regard to its connection withof all the couplings—to evaluate the changeSqf with
Zamolodchikov'se function, with explicit computations respect to it. To be precise, we must use diféerence
for the Gaussian and the Ising models. We shall alway®etween the couplings and their critical values, since the
consider continuum theories with UV cutofAi and CP is taken as the reference for the relative entropy. (The
we shall further introduce an IR cutoff, for example, critical couplings may be null in some cases.) We have
by giving the system a finite size. A particular finite the following general monotonicity theorem [1]
geometry has an interesting interpretation: The classical dSye| 5
partition function in the strip or cylinder of width3 A T ((Ix =) =0, )
is equivalent to the one-dimensional quantum partition . .
function at temperatur€ = 1/8. We can then calculate wherg Ia =h/\f‘1> II'S thﬁ relevant _;()jart of the_ actl(;)n
thermodynamic functions of this quantum system, forcr?ntammgt e coupling t a?t_weaconsr:' ehr.'Let us mtrlo' uce
example, the quantum specific entropy. This entropy will(Ne stress tensor trac® := T, which in gef‘er? IS
also have a role as a monotonic quantity. prop_ortlonal to the relevant part of the action; more

The idea of applying finite-size scaling methods topremsely,

Zamolodchikov's theorem appeared in [4,5]. The form 0 =1xy®, withy=2-d¢y >0,
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wheredy is the scaling dimension of the fiefl. Hence, Ser(r) = W(r) — W(0) — m aw
we can write the monotonicity theorem as e dm
2 2
98w _ 1 _.m m?
8;1 =2 fd2z<[®(z) —(00))][6(0) — (60N Iy (1 +In A2>' (11)
=0 3) The relative entropy is monotonic with? for both mod-
) _ _ _ els. However, the presence of the logarithmic correction
We would like to derive a general expression 1. in the latter case signals that it is not well defined in the
We can use the scaling form continuum limit A — o unless we introduce a renormal-
A2y ization scale or, alternatively, an IR cutoff. This is the
WA, A) = A2f< e ) (4)  general situation for models with logarithmic corrections.
o Lo _ Let us now consider a finite-size geometry, in particu-
In the absence of logarithmic correctiorfg,is an analytic  |ar, a cylinder, equivalent to finite temperature field the-
function [9], soW can be expanded as ory. It provides an IR cutoff with physical interest. The
WLA) = A2F, + FiA2Y + O(A72). 5) partition function isZ = Tre ##, which can be repre-

. o ~sented as a functional integral 6h X R with 8 = 1/T
The UV divergent term is irrelevant for the relative the length of the compact dimension. The specific loga-

entropy and in the infinite cutoff limit rithm of the partition function on a cylinder of widtf
dW y—2 . and lengthL has a finite-size expression As— «:
Sre1(A) = W(A) — W(0) — )‘ﬁ =F17)\/)' —Inz F C(B m)
= — = + ==
(6) I B I eo(A, m)ﬂ B 5 (12)

Taking into account that < 2 andF; < 0 we have that With C(8,m) a universal dimensionless function. Defin-
St1(A) > 0 and it increases with\|. However, given the INgx = m 3, we can write it as a single variable function
simple scaling form of5,.;(A), this statement is not very C(x). At criticality it is proportional to the CFT central

informative. We will obtain a more illuminating version charge,C(0) = —mc/6 [10,11]. One can readily calcu-
when we introduce a finite geometry. late the 1D energy

Let us now consider solvable models, namely, the E alnZ/L 1 9C
Gaussian modeldgp = 0) and the Ising modeldgp = 1), T g T ,32<C - B C')B> (13)

which, on_the other hand, exhlblt logarithmic correctlons.From the energy we can compute the thermodynamic
The relative entropy per unit volume of the Gaussian

. . . e entropy
model calculated using dimensional regularization was
given in [1]. It can be expressed as S _ 8 E-F _ _2£ + € _ mc + 0(1)

L L B aB 3B '
~ I'l¢4 - a)/2] d/2 (14)
S = (47)d/2d ’
o ] The specific ground state energy does not contribute
whichind = 2 yields to the entropy, which vanishes in the ground state, in
¢t accord with the third law of thermodynamics. At the
S = S’ (7 cp S/L = wc/38, which is reminiscent of the relation

. ) . between geometric entropy for a CFT and central charge
witht = r — r. = r = m*, m being the mass parameter. ¢ ,14'in 3]

It is more illustrative to start with the expression of the 115 theorem of increase of the relative entropy (3)
cutoff logarithm of the partition function per unit volume holds in general on a finite geometry and guarantees

_ 1 Adtp pra4r that S.1(A, B) increases withA or, alternatively, with
Wr)=-Inz==x= fo 2m)? In—%5 (8) o A, At the CP the theory is conformal invariant
) . ) and®(z) = 0; henceAdS1/0A = (m/y)dS1/dm = 0.
fs(i)g;r]:;eeltbg:r?gsé(iLrjmit)ggerrazla%n()e:z;clzf;]:rzgnjglzrsmIons (IowerTherefore, we propose to define an off-critical “central

charge”
2

W(r) = igiﬂ[—/\z + rln AT +r o+ O(A_z)}, ©) C(x) = B*Swalm. B), (15)

. . o which is monotonic withx and plays a similar role to
exhibiting a quadratic and a logarithmic divergence. Wezamqjodchikov'se function. Thus we can express the
have in the infinite cutoff limit monotonicity theorem in terms of dimensionless quantities

aw simply as
Srel(r) = W(r) - W(O) — r ; = é’ (10) dgy Bz
o= _ P 2 _ B
for the Gaussian model, in accord with the dimensional 4 ]d Z{[O(z) = (BONI[6(0) — (O0))]).
regularization result. For the Ising model, (16)
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While this form resembles that of Zamolodchikov, it N T 1 m? 4
is not quite the same. The correlator @fs in the L 33 2 " mt '8477 oD@
second term appears integrated. Furthermore, a detailed
calculation of Zamolodchikov’s functioa(m) for the free

boson or fermion shows that it differs fror@ (m) = F ©

For the Ising model we have instead an ideal Fermi gas,

dp —Be
C(x)lg=1. The cause is actually geometrical: A crucial B =eB— | gln(l + ¢ Pelr))
step in the proof of Zamolodchikov's theorem relies on xw
the assumption of rotation symmetry [2], which does — e + m Z (=) (mB). 22)

not exist on the cylinder. Hence, one cannot obtain
the theorem for it, contrary to the assertion in Ref. [8]. _ . _
However, the absence of rotation symmetry is traded fowhere the one-particle spectrum close to the CP is again
the appearance of a new parameter, the leggytiwhich  e(p) = 4/p> + m? and the integral is computed like the
can be used to obtain the monotonicity theorem above. bosonic one. The smatl-expansion yields
Besides, we may consider the behavior of the absolute )
C(x) 2 «x X 1
= In E + vy - =

n=1

1D quantum entropy with respect toB: _s9 4

s 8 OE 92(BF 2m 4m> 2 2
= e - pr - ple - pTED s
21 21—1
We have again monotonicity, f@ F is a convex function + l;( ! )x (1 =2779¢@ = 1).(23)

of B, as deduced from the expression of its second

derivative as the average((H — (H))?) with H thetotal ~ Now the specific entropy is

Hamiltonian, that is, including the kinetic term, unlike the S - 2

monotonicity in [1]. This monotonicity is in principle 7= 68 B yp + 0(m%). (24)

unrelated with the monotonicity of,.; with respect ton.

It allows us to define another monotonic dimensionless On the cylinder, the relative entrogy.;(A, 8) includes

function, C(x) = S/Lm. At the CP S/L = wc/3B, a finite-size contribution fromC but in general differs

implying thatC (x) diverges akt = 0, wherea<’ (0) = 0.  from the 1D absolute entropy. Let us see if there is a

On the other hand, in the IR zone> 1, C diverges as relation between them for solvable models. We calculate

C (x) ~ x2, wherea< (x) decays exponentially. the relative entropy foW = —InZ/(8L) = F/L. For
We illustrate the form of finite-size corrections againthe Gaussian model,

with solvable models. For the Gaussian model the

correction to the free energy can be expressed as the free See1(r, B) = W(r,B) — W(0,B) — r aW(r, B)

energy of an ideal Bose gas, ar
©dp ~Be 1 9
B f — B [oo 27 In(1l = e Per), (18) = Sre1(r) + ,8_<C Cc() - ra—f>
where the one-particle energy is(p) = /p? + m2.
This formula can also be obtained by an explicit calcula- _r_S5 .7 (25)
tion of the finite-size corrections [6]. Whem = 0 it can 87  2LB 682

be used to calculate the central charge [11]. However, apor the Ising model the relative entropy is related instead
expansion in powers of is not advisable: The ensuing to the 1D energy. Thus only for the Gaussian mo@el
integral at the next order is IR divergent; that is to sayandC are closely related. In any event, for both Gaussian
the expression (18) is nonanalyticrat= 0. Fortunately, and Ising models it is easy to derive series expansions of
the integral can be computed by changing the integratiog or ¢ .

variable toe and expanding the logarithm in powers of = The components of the stress tensor can also be
e P¢. One obtalns calculated exactly for free models. Definirg := T¢

,3 LI Z —Kl(nm,B) (19) andT := Ty, — Tx»n — 2iT; we obtain [12]

wherek; (x) is a mOdIerd Bessel function of the second (©(0)) = +2— (KO(O) +2 Z("‘)"Ko(nmﬁ)) (26)
kind. For largex = mB/2# the correction is exponen-

n=1

tially negligible but a smalk expansion yields m2 o
C) _ (@, x, _<| x o1 ) (T(0)) = i—(Kz(O) +2Z(i)”Kz(nt)>, 27)

n— +vy 2w =

21 277'2 2 2 2 2 n=1

1/2 with the same sign convention as before. The modified
+ Z( / >x21§(21 - 1). (20)  Bessel functions are divergent at zero, namély(0) is
1=2 logarithmic divergent andk,(0) is quadratically diver-
The first term{(2) = 7%/6 gives the usual critical part gent. These are UV divergences, like thedivergent
and central charge = 1. The specific entropy (14) is terms ofW.
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Using the recursion relations satisfied by the Bessethe temperature, of pure thermodynamic nature, which
functions we can write the free energy (19) or (22) as  leads to another monotonic functiod, = (8/m){(T).
P s, The former function is well defined in the UV region
B— =¢eB T mp Z(i)"[Kz(nm,B) — Ko(nmpB)] whereas the latter is well defined in the IR region. As has
L 2m 5 been remarked before, a function monotonic with the RG
is not unique [14]. Unlike Zamolodchikov’s function,
= —§<T(O) — 0(0)) = B{T2(0)), (28)  the quantitiesC or C have a clear physical origin.

N : . . Therefore, the entropic monotonicity theorems proposed
showing its relation with the expectation values of the . . : . X
here constitute an interesting alternative formulation.

components of the stress tensor, which generalizes off the X s
Let us make two comments on possible generalizations.

CP the standard relation [10]. Notice that it implies a\ gifferent approach uses the Wilson RG [15]. It is cus-

definite form foreo, namely,eq = + 17 1Ko(0) — K2(0)], tomary to try to prove the monotonicity theorem for the
to be compared with (9). free energy. However, we believe that in that approach it
Similarly, we can calculate is also some entropy the appropriate monotonic function,
9 de 1 & 1 according to arguments presented previously [1]. Finally,
a—vf = a—ro ey > (=)' Ko(nmpB) = 2 (0(0)), the results in this paper can be generalized to higher di-
n=1 (29) mensions{ = 3 or 4) and we expect them to contribute
E - to the efforts to find a higher dimensional version of
L _ o Lm S\ Zamolodchikov'sc theorem.
L “=on n;(_) [Konmp) + Kolnmp)] I acknowledge hospitality at the Nuclear Research
1 Institute of Dubna (Russia), where this work was started,
9 (T(0) + 6(0)) =<(Tu(0)). (30)  and partial support under Grant No. PB96-0887. | thank
D. O'Connor for early conversations and M. A. R. Osorio
fbr conversations on finite temperature QFT.

The first equation is just a particular case of the expressio
of the derivative ofW with respect ta- as the expectation
value of the “crossover part” of the action [1], sin€eis
proportional to it. Furthermore,
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