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Abstract 11 

The impact of dough hydration level and particle size distribution of the rice flour on the gluten 12 

free bread quality and in vitro starch hydrolysis was studied. Rice flour was fractionated in fine 13 

and coarse parts and mixed with different amounts of water (70%, 90% and 110% hydration 14 

levels) and the rest of ingredients used for making gluten free bread. Larger bread specific 15 

volume was obtained when coarser fraction and great dough hydration (90-110%) were 16 

combined.  The crumb texture improved when increasing dough hydration, although that effect 17 

was more pronounced when breads were obtained from fine fraction. Estimated glycaemic index 18 

was higher in breads with higher hydration (90-110%). Slowly digestible starch (SDS) and 19 

resistant starch (RS) increased in coarse flour breads. Coarse fraction complemented with great 20 

dough hydration (90-110%) was the most suitable combination for developing rice bread when 21 

considering bread volume and crumb texture. However, the lowest dough hydration limited 22 

starch gelatinization and hindered the in vitro starch digestibility. 23 

24 

Keywords: Gluten-free bread; particle size; water content; starch digestibility 25 

26 
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1. Introduction 27 

28 

Celiac disease (CD) has become an increasingly recognized autoimmune enteropathy triggered 29 

by the ingestion of some cereal prolamines. In Europe, the prevalence of CD is between 0.3 and 30 

2%, depending on the geographic area evaluated (Mustalahti et al., 2010). Along with genetic 31 

susceptibility, environmental factors may play a role in the development of celiac disease 32 

(Niewinski, 2008), also timing of the introduction of gluten in infancy was demonstrated to be 33 

an important factor (Norris et al., 2005). The individual's intolerance to gluten is lifelong and 34 

self-perpetuating, being the only treatment a strict adherence to gluten-free diet (GFD). Despite 35 

the benefits of a GFD on symptoms, numerous negative sequelae have been reported: lower 36 

intakes of essential micronutrients, vitamins and minerals and higher intakes of sugar (Wild, 37 

Robins, Burley & Howdle, 2010).  38 

Given the changes in diet and in the small intestinal absorptive function following the gluten-39 

free diet treatment, significant changes in body mass index may be expected (Dickey & Keame, 40 

2006; Ukkola et al., 2012). Moreover, CD is usually related to associate diseases such as 41 

anaemia and type I diabetes. Nevertheless, type I diabetes is diagnosed first than CD in the 90% 42 

of the cases (Holmes, 2001). Since celiac disease is associated with a high incidence of type I 43 

diabetes (Cronin & Shanahan, 1997), they should maintain good glycaemic control whilst 44 

adhering to a strict gluten-free diet.  45 

The glycaemic index (GI) defined as "the area under curve of blood glucose after eating a food 46 

containing a determined quantity of carbohydrate" provides an indirect measure of the ability of 47 

a food to raise blood glucose and a direct one of the absorption of carbohydrates. The glycaemic 48 

index classification of foods has been used as a tool to assess prevention strategies for diseases 49 
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where glycaemic control plays an important role, such as obesity and diabetes. So far, celiac 50 

patients were advised only to avoid gluten in their diet but taking into account nutritional quality 51 

of gluten-free products left unsaid. On this line, Esfahani, Wong, Mirrahimi, Srichaikul, Jenkins 52 

and Kendall (2009) compiled some studies showing a significant protective effect against the 53 

risk of developing diabetes with the lowest dietary glycaemic index intake.  54 

Enzymatic digestion of starch can be affected by many factors such as granule structure, the 55 

presence of lipids, proteins or minerals, amylose:amylopectin ratio, digestion conditions and 56 

particle size (Al-Rabadi, Gilbert & Gidley (2009). The presence of proteins or lipids influences 57 

starch digestion reducing glycaemic response by limiting starch accessibility encapsulating it 58 

(Fardet, Leenhardt, Lioger, Scalbert & Rémésy, 2006). And the effect of particle size is usually 59 

related to the surface area available for enzymatic action. In this regard, Blasel, Hoffman and 60 

Shaver (2006) found the degree of starch access by α-amylase to decrease by 26.8g/kg starch for 61 

each 100μm increase in particle size in ground corn grain. Regarding bread, Fardet et al. (2006), 62 

studying gluten containing breads, considered the physical structure as the most important factor 63 

influencing GI, stating that the more compact the structure, the lower the glycaemic response. 64 

Nevertheless, there is no information about how that could be beneficial when obtaining gluten 65 

free breads, and neither if by controlling process conditions or raw materials is possible to 66 

modulate the glycaemic index, and therefore the starch hydrolysis, of the gluten free bread.              67 

The aim of this study was to assess the effect of particle size of rice flour (fine and coarse) and 68 

dough hydration , one of the most critical parameters in gluten free breadmaking, on the physical 69 

quality and starch enzymatic digestion of gluten-free breads.   70 
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71 

2. Materials and methods 72 

2.1 Materials 73 

74 

Commercial rice flour supplied by Harinera Castellana (Medina del Campo, Spain) had moisture 75 

and protein of 12.19 g/100g and 7.22 g/100g, respectively. Salt, sugar, and sunflower oil were 76 

purchased from the local market. Dry yeast (Saf-instant, Lesaffre, Lille, France) and 77 

hydroxypropyl methylcellulose (HPMC) (Methocel K4M, Dow Chemical, USA) were used. 78 

79 

2.2 Flour Obtaining Process 80 

81 

Flour was sifted in a Bühler MLI 300B (Bühler AG, Uzwil, Switzerland) with screens of 132 82 

and 200 μm to obtain fine and coarse fractions. The so-called fine flour had particle size lower 83 

than 132µm, and the coarse fraction contained particles which size ranged between 132µm and 84 

200µm. Those particle sizes were selected based on authors’ previous research (de la Hera, 85 

Talegon, Caballero & Gomez, 2012) conducted with corn, that pictured the influence of the 86 

particle size of corn flour on gluten free bread performance concluding that coarser flours (>180 87 

μm) provide breads with higher volume and softer crumbs.  88 

Fine and coarse flours were used as raw material for gluten free bread making. Since flour 89 

hydration is crucial for gluten free breadmaking performance (Marco & Rosell, 2008), three 90 

different hydrations were applied to determine whether they could affect starch features and 91 

consequently glycaemic index of the resulting bread.    92 

93 
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2.3 Bread Making Process 94 

95 

A straight dough process was performed using a Kitchen-Aid Professional mixer (KPM5, 96 

KitchenAid, St. Joseph, MI, USA) with a dough hook (K45DH). The following ingredients (as 97 

% on wet flour basis) were used: sunflower oil (6%), sucrose (5%), salt (1.8%), dry yeast (3%), 98 

HPMC (2%) and water (70, 90 or 110%). Water content or dough hydration was referred to the 99 

amount of water used in each recipe. All ingredients were mixed during 8 minutes at speed 2 (in 100 

a scale 1-10 of the mixer). Dough pieces (250g) were placed into aluminium pans (232 x 108 x 101 

43.5 mm) and fermented in a proofing chamber at 30ºC and 90% relative humidity for 60 102 

minutes. After proofing, dough was baked in an electric oven for 40 minutes at 200ºC. Then 103 

loaves were removed from the pans, cooled for 50 minutes at room temperature, and packed in 104 

sealed polyethylene bags to prevent dehydration. Analytical measurements were made within 24 105 

hours. Two batches were made for each sample.   106 

107 

2.4 Analytical Methods 108 

109 

Flour protein content was determined following AACC method 46-30, performed with a Leco 110 

TruSpec®N nitrogen/protein analyser.  111 

Bread moisture content was determined following AACC method 44-01.01 (AACC, 2000). 112 

Weight loss during baking was assessed by weighing the pans before and after baking. Bread 113 

volume was determined using a laser sensor with the BVM-L 370 volume analyzer (TexVol 114 

Instruments, Viken, Sweden). The bread specific volume was calculated as the ratio between the 115 
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volume of the bread and its weight. These measurements were carried out in three breads of each 116 

batch.  117 

Crumb texture was determined using a TA-XT2 texture analyzer (Stable Microsystems, Surrey, 118 

UK) with the ‘‘Texture Expert’’ software. A 25 mm diameter cylindrical aluminium probe was 119 

used in a ‘Texture Profile Analysis’ (TPA) double compression test to penetrate to 50% depth, 120 

with a test speed of 2 mm/s, and a 30-second delay between the first and second compressions. 121 

Hardness, cohesiveness, springiness and resilience were calculated from the TPA plot. 122 

Measurements were made on two central slices (20 mm thickness) from three breads of each 123 

batch.  124 

125 

2.5 In vitro Starch Digestibility and Estimated Glycaemic Index 126 

127 

Two slices were freeze dried for determining in vitro digestibility. Enzymatic hydrolysis of 128 

gluten-free bread was determined following the method reported by Gularte and Rosell (2011) 129 

using 100 mg of powdered freeze dried breads. According to the hydrolysis rate of starch, three 130 

different fractions were quantified as suggested Englyst, Veenstra and Hudson (1996). Rapidly 131 

digestible starch (RDS) was referred to the percentage of total starch that was hydrolyzed within 132 

30 min of incubation, slowly digestible starch (SDS) was the percentage of total starch 133 

hydrolyzed within 30 and 120 min, and resistant starch (RS) was the remnant starch after 16 h of 134 

incubation. The percentage of total starch hydrolyzed at 90 min (H90) was also calculated. 135 

The in vitro digestion kinetic was calculated in accordance with the procedure established by 136 

Goñi, Garcia-Alonso and Saura-Calixto (1997). A nonlinear model following the equation [C = 137 

C∞ (1−e−kt)] was applied to describe the kinetic of starch hydrolysis, where C was the 138 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-33750457646%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D1f06816fa2c6695262ae8009ff7d4734&_acct=C000046200&_version=1&_userid=857027&md5=502e81f1e2c2026cf3a99b70273d4086
http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6VP9-4JNF07S-2-C&_cdi=6201&_user=857027&_pii=S0268005X06000701&_check=y&_origin=search&_coverDate=03%2F31%2F2007&view=c&wchp=dGLbVtb-zSkzk&md5=fa23e9fd324da879dc0b91cacd9d58f5&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VP9-4JNF07S-2&_user=857027&_coverDate=03%2F31%2F2007&_fmt=full&_orig=search&_origin=search&_cdi=6201&view=c&_acct=C000046200&_version=1&_urlVersion=0&_userid=857027&md5=802fca3b15fceca56168581fdef8ced4&ref=full
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WMV-4X9NVCJ-1&_user=857027&_coverDate=04%2F30%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000046200&_version=1&_urlVersion=0&_userid=857027&md5=032489666b780a588446ffcdd9a046cc&searchtype=a#bbib15
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concentration at t time, C∞ was the equilibrium concentration or maximum hydrolysis extent and 139 

k was the kinetic constant. The hydrolysis index (HI) was obtained by dividing the area under 140 

the hydrolysis curve (0–180 min) of the sample by the area of a standard material (white bread) 141 

over the same period of time. The estimated glycaemic index (eGI) was calculated using the 142 

equation described by Granfeldt et al. (1992): eGI = 8.198 + 0.862HI. 143 

144 

2.6 Statistical Analysis 145 

146 

Data were subjected to a two-way analysis of variance (ANOVA) to study the differences in 147 

bread quality induced by particle size and dough hydration. A one-way ANOVA was carried out 148 

for analysing texture parameters of breads individually, that analysis being necessary when 149 

missing experimental data. Fisher's least significant difference (LSD) test was used to describe 150 

means with 95% confidence. A correlation analysis was also carried out to determine possible 151 

relationships among parameters. Statgraphics Plus Centurion XVI (Statpoint Technologies, 152 

Warrenton, USA) was used as statistical analysis software. 153 

154 

3. Results and Discussion 155 

3.1 Physical characteristics of gluten-free breads 156 

157 

Breads obtained from the two different rice flour fractions were physically characterized (Table 158 

1, Figure 1). The specific volume significantly increased when coarse flour was used to obtain 159 

breads, and also a steady increase of specific volume was also observed when enhancing water 160 

content of dough. The fact that coarse flour yields better loaf specific volume was also observed 161 
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by de la Hera et al. (2012) in corn bread made with different particle size fractions. It seems that  162 

small particles form a weak dough structure, which is probably unable to retain the gas released 163 

during fermentation, yielding lower volumes (de la Hera et al., 2013). In addition, de la Hera et 164 

al. (2013) found no significant relationship between the particle size of the fractions and the 165 

level of damage starch. Therefore, results obtained with the different flour fractions could not be 166 

attributed to possible differences in the level of damage starch. The impact of water content was 167 

readily evident in the volume of breads obtained from fine flour (Figure 1). The plasticizer effect 168 

of the water is crucial when making gluten-free breads because it contributes to the extensional 169 

properties of the dough during mixing (Marco & Rosell, 2008). It must be stressed that fine 170 

particles increase the contact surface, thus greater amount of water is necessary for hydrating the 171 

raw material and later on for swelling starch granules. This could be the explanation of the very 172 

low specific volume achieved by breads obtained from fine flour and low water content (70%). 173 

Nevertheless, that deficiency was partially corrected when the amount of water increased 174 

allowing the hydration of the particles (Table 1). Han, Cho, Kang and Koh (2012) reported that 175 

excessive water caused overexpansion during baking resulting in large-volume breads. 176 

Nevertheless, too much water led big holes in the crumb (Figure 1), and that effect was more 177 

visible in coarse flour containing breads. The combined effect of flour particle size and recipe 178 

water content can be observed in the two-way ANOVA interaction graphic (Figure 2).  Plots in 179 

figure 2 indicated that differences in bread specific volume derived from diverse particle size 180 

can be minimized increasing the water content. Specific volume of breads made with coarse 181 

flour and 90 or 110% of water did not show significant differences, suggesting that optimal 182 

water content for this particle size is around 90-110%.  183 
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Coarse flour led to breads with lower water retention ability as indicated its significantly higher 184 

weight loss, which also increased with higher water content (Table 1). The lower water retention 185 

might be attributed to the lower hydration ability of the coarse particles compared to the fine 186 

ones. In fact, de la Hera, Gómez and Rosell (2013) reported that behaviour and it was explained 187 

by the lower surface area of large particles in comparison with small ones. A significant positive 188 

correlation was obtained between the weight loss and the specific volume (r=0.7440; P≤0.05), 189 

which indicated that the greatest the surface in contact with air inside the oven the highest water 190 

evaporation during baking and thus high weight loss.  191 

Crumb texture parameters (Table 2) were measured to assess the bread quality. Bread made with 192 

fine flour and 70% of water content could not be assessed because its volume was not high 193 

enough to allow compression with full contact between crumb and probe surface.  Hardness 194 

decreased significantly in breads made with coarse flour compared to the ones obtained from 195 

fine flour. A reduction of the hardness was observed when increasing the water content in the 196 

recipe, although no significant differences were detected between water content of 90% and 197 

110% in breads made with coarse flour. Hardness was inversely correlated with specific volume 198 

(r=-0.8931; P≤0.001), thus lower bread specific volume results in greater hardness due to denser 199 

crumb and more compact cells. Crumb hardness of the rice breads obtained in this study was 200 

much lower than the one reported for commercial gluten free breads (Matos & Rosell, 2012), 201 

probably due to the use of starch instead of flour.  202 

Cohesiveness, which quantifies the internal resistance or cohesion of food structure, 203 

significantly increased in breads made with fine flour. The effect of water was only significant 204 

with 70 and 90% hydration, decreasing cohesiveness in parallel to the increase of water content 205 

in formulation. In fact, cohesiveness showed high significant correlation with bread moisture 206 
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content (r=0.9008; P≤0.001). Low cohesiveness indicates high susceptibility of the crumb to 207 

fracture or crumble. Considering volume results, besides hardness and cohesiveness, it seems 208 

that in breads obtained from 70% dough hydration the limited amount of water impeded 209 

intermolecular interaction among ingredients and prompted water competition among 210 

ingredients (Parada & Aguilera, 2011). Conversely, springiness, indicative besides resilience of 211 

the crumb elasticity, was affected by water content in breads made with coarse flour. In those 212 

breads, the highest water content led to the highest springiness. High resilience values were 213 

observed in breads made of fine flour, in which water content enhancement significantly 214 

increased resilience values. The water content effect on resilience in breads made of coarse flour 215 

was only observed when 70% or 90% hydration was applied. Springiness and resilience are 216 

commonly related and their reduction has been related to loss of crumb elasticity (Onyango, 217 

Mutungi, Unbehend & Lindhauer, 2011). However, considering overall texture results, it seems 218 

that in rice based gluten free breads it is advisable to loss some extent of the elasticity in favour 219 

of softness and cohesiveness.   220 

221 

3.2 Starch digestibility in gluten-free breads 222 

223 

Starchy foods, like bread, result in rapid degradation in the small intestine due to almost all 224 

starch is gelatinized (Parada & Aguilera, 2011). Results agree with this pattern, being RDS the 225 

most predominant starch fraction in all breads and varying from 82.07/100g to 96.54g/100g 226 

(Figure 3). These values falls within the ones previously reported for commercial gluten free 227 

breads (Matos & Rosell, 2011). In general, breads made with coarse flour showed lower values 228 

of RDS than those with fine flour, excepting bread with 70% of water. Fine flour mixed with the 229 
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lowest water content offered very limited water for starch gelatinization, which could be the 230 

reason of the scarce hydrolysis in the earliest time of analysis. Slowly digestible starch values 231 

ranged from 0.60/100g to 11.40g/100g. SDS is slowly digested in small intestine inducing 232 

gradual increase of postprandial plasma glucose and insulin levels (Englyst & Hudson, 1996). 233 

The term resistant starch (RS) refers to the sum of intact starch and retrograded starch that pass 234 

into the large intestine, which makes the distinction between starch that is hydrolysed and 235 

absorbed in the human small intestine (the sum of RDS and SDS), and starch that reaches the 236 

human large intestine (RS) (Englyst & Cummings, 1990). In this study, resistant starch varied 237 

from 0.89/100g up to 1.96g/100g. Discarding bread made with fine flour and 70% of water, 238 

which could hardly be considered bread (Figure 1), SDS and RS were greater in breads from 239 

coarse rice flour. In the case of bread made with fine flour seems that the degree of starch 240 

gelatinization determined the amount of the different starch fractions. Because of that the higher 241 

amount of water the greater RDS fraction is, until the amount of water is no longer limiting. 242 

After being gelatinized and thus in disentangled structure, starch granules are readily accessible 243 

to enzymes attack, whereas native starch, ungelatinized starch and retrograded amylose are not 244 

susceptible to undergo enzymatic hydrolysis. The pancreatic α-amylase affinity for digesting 245 

starches is dependent on the degree of order of starch that has important influence on the initial 246 

rate at which native starch is digested by amylase (Tahir, Ellis & Butterworth, 2010). 247 

Nevertheless, in the case of breads made with coarse flour, it seems that the surface area of the 248 

granules plays an important role. De la Hera, Gomez and Rosell (2013) reported differences 249 

among enzymatic hydrolysis plots of flour fractions when particle size was higher than 150 μm, 250 

displaying slower hydrolysis when increasing the particle size. Tester and Karkalas (2006) 251 

described that the larger granules the smaller is the surface area to volume ratio and hence the 252 
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potential surface to be attacked and hydrolyzed by enzymes. It has been reported that alfa-253 

amylase affinity for native starches is dependent on the particle size of starch, due to the enzyme 254 

feasibility for binding/absorption (Tahir, Ellis & Butterworth, 2010). The first step of the 255 

enzymatic hydrolysis is the enzyme binding and absorption which will be limited due to the 256 

lower surface area compared to the fine flour. As particle size increases, the surface area 257 

exposed to digestive enzymes decreases, leading to decreased rate of digestion (Pi-Sunyer, 258 

2002). When assessing the starch granules susceptibility to enzyme hydrolysis is reported that 259 

the surface area of granules and the degree of order of starch have important influences on the 260 

initial rate at which native starch is digested by amylase (Tahir, Ellis & Butterworth, 2010). In 261 

this study, it seems that the enzymatic hydrolysis of the starch in breads made with fine flour is 262 

governed by the degree of order of starch, whereas in the case of breads made with coarse flour, 263 

the surface area of the particles determines the enzymatic attack.  264 

265 

266 

3.3 Kinetic of the in vitro starch hydrolysis and expected glycaemic index 267 

268 

Parameters derived from the in vitro digestion of the gluten-free breads are listed in Table 3. 269 

There is a lack of information about starch digestibility and glycaemic response of gluten-free 270 

foods; although some authors have reported that the GI of gluten-free bread is significantly 271 

higher than that of traditional bread (Berti, Riso, Monti & Porrini, 2004; Matos & Rosell, 2011). 272 

The maximum hydrolysis (C∞), or the hydrolysis degree when the enzymatic reaction showed 273 

minimal variation due to the particle size of the flour and the water content used in the recipe. 274 

Those high values agree with Jenkins, Thorne, Wolever, Jenkins, Venketschwer and Thomson 275 
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(1987) theory about gluten hindering the access of the amylase to starch granules. Those authors 276 

suggested that the glycaemic response of carbohydrates might increase following the removal of 277 

gluten, because gluten protein network surrounds the starch granules limits the amylase 278 

accessibility to the starch granule and in consequence the presence of gluten might slow down 279 

the rate of starch hydrolysis. The kinetic constant (k) values, indicative of the hydrolysis rate, 280 

were comprised between 0.07 min-1 and 0.16 min-1. k was higher for the bread made with fine 281 

flour.  AUC of gluten free breads was not influenced by particle size of rice-flour but it was 282 

significantly affected by the water content. AUC of the breads made with 90% and 110% water 283 

content showed higher AUC than the one made with 70% water content. That trend agrees with 284 

results of RDS and the same was observed with commercial gluten free breads (Matos & Rosell, 285 

2011). Values of estimated glycaemic index (eGI) ranged from 87 to 93, and although particle 286 

size did not affect that index, the water content added for dough making did. AUC, HI, H90 and 287 

eGI show the same trend as the kinetic constant regarding water content, which might indicate 288 

the greatest influence of k during starch hydrolysis. Breads made with 70% of water content 289 

showed the lowest eGI values than the other hydrations tested, what could be explained by the 290 

amorphous starch regions that remain part of the starch granular structure and the limited 291 

gelatinization of starch granules, which are less prone to be attacked by alfa amylase, as 292 

occurred in wheat bread (Roder et al., 2009). Other plausible explanation is that these breads 293 

show lower glycaemic response due to their more compact physical structure, which is more 294 

preponderant than other parameters governing GI, as Fardet et al. (2006) pointed out.   295 

296 

4. Conclusions297 
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Particle size of raw material, besides dough hydration, plays a significant role in determining 298 

gluten free bread quality and in vitro starch digestibility. Results of this study indicated that 299 

coarse fraction complemented with great dough hydration (90-110%) is the most suitable 300 

combination for developing rice bread when considering bread volume and crumb texture. 301 

However, regarding nutritional aspects, best combination would be the lowest dough hydration 302 

meaning lower volume and greater hardness of bread. Reduction of dough hydration limited 303 

starch gelatinization and hindered the in vitro starch digestibility and the higher the particle size 304 

the greater amount of SDS and RS. Overall this study indicated that particle size and especially 305 

dough hydration should be taken into account for modulating the enzymatic hydrolysis of gluten 306 

free starchy foods. 307 
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404 

Figure. 1 Bread central slice cross section. Bread made with fine rice flour (particle size 405 

<132μm) (A) and coarse flour (particle size 132-200μm) (B). Water content of 70% (a), 90% (b) 406 

and 110% (c) was added.   407 

408 

Figure 2. Two-way ANOVA interaction graphic between flour particle size and water content 409 

on specific volume. Coarse refers to particle size range of 132-200μm and fine refers to particle 410 

size under 132μm. Different letters in each point indicate significant differences (P≤0.05) 411 

412 

Figure 3. In vitro starch digestibility in gluten-free breads determined by enzymatic hydrolysis. 413 

RDS: rapidly digestible starch; SDS: slowly digestible starch; RS: resistant starch. Coarse refers 414 

to particle size range of 132-200μm and fine refers to particle size under 132μm. Numbers 415 

described the water content added in recipe. Letters within each starch fraction are referred to 416 

differences from statistical analysis (P<0.05).417 
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Table 1. Effect of flour particle size and water content of recipe on some characteristics of rice 418 

based gluten free breads.  419 

420 

Moisture 
(%) 

Specific Volume 
(mL/g) 

Weight 
Loss (g) 

Overall 
Mean 37.81 4.17 4.63 

Particle Size Fine 38.41 b 2.64 a 2.86 a 
Coarse 37.21 a 5.71 b 6.40 b 

Water Content (%) 
70 32.37 a 3.06 a 1.68 a 
90 39.22 b 4.22 b 4.94 b 
110 41.83 c 5.24 c 7.28 c 

Values followed by different letters in each column and each parameter indicate significant 421 
differences (P≤0.05) 422 

423 
424 
425 
426 

Table 2. Textural parameters of bread crumb analyzed trough a one-way ANOVA. 427 
428 

Flour 
type 

Water 
content 

(%) 
Hardness (N) Cohesiveness Springiness Resilience 

Fine 70 --- --- --- --- 
 90 9.51 ±0.06 c 0.45 ±0.01 cd 0.84 ±0.02 b 0.22 ±0.01 c 
 110 1.12 ±0.06 b 0.53 ±0.02 d 0.86 ±0.01 b 0.32 ±0.02 d 

Coarse 70 1.76 ±0.58 c 0.23 ±0.01 a 0.54 ±0.04 a 0.09 ±0.01 a 
 90 0.61 ±0.08 a 0.34 ±0.04 b 0.54 ±0.04 a 0.15 ±0.04 b 
 110 0.80 ±0.07 ab 0.41 ±0.10 bc 0.81 ±0.01 b 0.16 ±0.00 b 
Values followed by different letters in each column indicate significant differences (P≤0.05)429 
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Table 3. Kinetic parameters of the in vitro starch hydrolysis and estimated glycaemic index 430 
431 

C∞
(g/100g) k (min-1) AUC H90 HI eGI 

Overall 
Mean 96.55 0.108 48.82 95 96 91 

Particle Size Fine 97.4 a 0.131 b 48.61 a 95 a 95 a 90 a 
Coarse 95.7 a 0.086 a 49.01 a 96 a 96 a 91 a 

Water Content 
(%) 

70 96.5 a 0.085 a 46.99 a 93 a 92 a 87 a 
90 96.4 a 0.120 b 49.41 b 96 b 97 b 92 b 
110 96.7 a 0.120 b 50.05 b 97 b 98 b 93 b 

Values followed by different letters in each column and each parameter indicate significant 432 
differences (P≤0.05) 433 
C∞, equilibrium concentration; k, kinetic constant; HI, hydrolysis index; AUC 180, area under 434 
curve; eGI, estimated glycaemic index 435 

436 
437 
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Figure 1. 438 
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Figure 3.451 
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