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ABSTRACT

Verma modules of superconfomal algebras can have singular vector spaces with dimensions
greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce
the concept of adapted orderings on superconformal algebras. We prove several general results
on the ordering kernels associated to the adapted orderings and show that the size of an ordering
kernel implies an upper limit for the dimension of a singular vector space. We apply this method
to the topological N = 2 algebra and obtain the maximal dimensions of the singular vector spaces
in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the
type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado
on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29
in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular
vectors at level 1. Finally, by using the topological twists and the spectral flows, we also obtain
the maximal dimensions of the singular vector spaces for the Neveu-Schwarz N = 2 algebra (0,
1 or 2) and for the Ramond N = 2 algebra (0, 1, 2 or 3).
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1 Introduction

More than two decades ago, superconformal algebras were first constructed independently and
almost at the same time by Kac20 and by Ademollo et al.1. Whilst Kac20 derived them for math-
ematical purposes along with his classification of Lie super algebras, Ademollo et al.1 constructed
the superconformal algebras for physical purposes in order to define supersymmetric strings. Since
then the study of superconformal algebras has made much progress on both mathematics and
physics. On the mathematical side Kac and van de Leuer23 and Cheng and Kac6 have classified
all possible superconformal algebras and Kac recently has proved that their classification is com-
plete (see footnote in Ref. 22). As far as the physics side is concerned, superconformal models
are gaining increasing importance. Many areas of physics make use of superconformal symmetries
but the importance is above all due to the fact that superconformal algebras supply the underlying
symmetries of Superstring Theory.

The classification of the irreducible highest weight representations of the superconformal alge-
bras is of interest to both, mathematicians and physicists. After more than two decades, only the
simpler superconformal highest weight representations have been fully understood. Namely, only
the representations of N = 1 are completely classified and proven2, 3. For N = 2 remarkable efforts
have been taken by several research groups5, 13, 28, 8, 10, 19. Already the N = 2 superconformal alge-
bras contain several surprising features regarding their representation theory, most of them related
to the rank 3 of the algebras, making them more difficult to study than the N=1 superconformal
algebras. The rank of the superconformal algebras keeps growing with N and therefore even more
difficulties can be expected for higher N .

The standard procedure of finding all possible irreducible highest weight representations starts
off with defining freely generated modules over a highest weight vector, denoted as Verma modules.
A Verma module is in general not irreducible, but the corresponding irreducible representation is
obtained as the quotient space of the Verma module divided by all its proper submodules. Therefore,
the task of finding irreducible highest weight representations can be reduced to the classification
of all submodules of a Verma module. Obviously, every proper submodule needs to have at least
one highest weight vector different from the highest weight vector of the Verma module. These
vectors are usually called singular vectors of the Verma module. Conversely, a module generated
on such a singular vector defines a submodule of the Verma module. Thus, singular vectors play a
crucial rôle in finding submodules of Verma modules. However, the set of singular vectors may not
generate all the submodules. The quotient space of a Verma module divided by the submodules
generated by all singular vectors may still be reducible and may hence contain further submodules
that again contain singular vectors. But this time they are singular vectors of the quotient space,
known as subsingular vectors of the Verma module. Repeating this division procedure successively
would ultimately lead to an irreducible quotient space.

On the Verma modules one introduces a hermitian contravariant form. The vanishing of
the corresponding determinant indicates the existence of a singular vector. Therefore, a crucial
step towards analysing irreducible highest weight representations is to compute the inner product
determinant. This has been done for N = 121, 32, 33, N = 25, 33, 24, 18, 12, N = 326, and N = 427, 31.
Once the determinant vanishes we can conclude the existence of a singular vector Ψl at a certain
level l, although there may still be other singular vectors at higher levels even outside the submodule
generated by Ψl, the so called isolated singular vectors. Thus the determinant may not give all
singular vectors neither does it give the dimension of the space of singular vectors at a given
level l, since at levels where the determinant predicts one singular vector, of a given type, there
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could in fact be more than one linearly independent singular vectors, as it happens for the N = 2
superconformal algebras9, 19. Therefore, the construction of specific singular vectors at levels given
by the determinant formula may not be enough. One needs in addition information about the
dimension of the space of singular vectors, apart from the (possible) existence of isolated singular
vectors .

The purpose of this paper is to give a simple procedure that derives necessary conditions on
the space of dimensions of singular vectors of the N=2 superconformal algebras. This will result
in an upper limit for the dimension of the spaces of singular vectors at a given level. For most
weight spaces of a Verma module these upper limits on the dimensions will be trivial and we obtain
a rigorous proof that there cannot exist any singular vectors for these weights. For some weights,
however, we will find necessary conditions that allow one-dimensional singular vector spaces, as is
the case for the Virasoro algebra, or even higher dimensional spaces. The method shown in this
paper for the superconformal algebras originates from the method used by Kent25 for the Virasoro
algebraa. Kent analytically continued the Virasoro Verma modules to generalised Verma modules.
In these generalised Verma modules he constructed generalised singular vector expressions in terms
of analytically continued Virasoro operators. Then he proved that if a generalised singular vector
exists at level 0 in a generalised Verma module, then it is proportional to the highest weight vector.
And consequently, if a generalised singular vector exists at a given level in a generalised Verma
module, then it is unique up to proportionality. This uniqueness can therefore be used in order
to show that the generalised singular vector expressions for the analytically continued modules are
actually singular vectors of the Virasoro Verma module, whenever the Virasoro Verma module has
a singular vector. As every Virasoro singular vector is at the same time a generalised singular
vector, this implies that Virasoro singular vectors also have to be unique up to proportionality.

In this paper we focus on the uniqueness proof of Kent and show that similar ideas can be
applied directly to the superconformal algebras. Our procedure does not require any analytical
continuation of the algebra, however, and therefore gives us a powerful method that can easily be
applied to a vast number of algebras without the need of constructing singular vectors. We shall
define the underlying idea as the concept of adapted orderings. For pedagogical reasons we will
first apply Kent’s ordering directly to the Virasoro Verma modules. Then we will present adapted
orderings for the topological N = 2 superconformal algebra, which is the most interesting N = 2
algebra for current research in this field. The results obtained will be translated finally to the
Neveu-Schwarz and to the Ramond N = 2 algebras. In a future publication we will further apply
these ideas to the twisted N = 2 superconformal algebra.

The paper is structured as follows. In section 2 we explain the concept of adapted orderings for
the case of the Virasoro algebra, which will also serve to illustrate Kent’s proof in our setting. In
section 3, we prove some general results on adapted orderings for superconformal algebras, which
justify the use of this method. In section 4 we review some basic results concerning the topological
N = 2 superconformal algebra. Section 5 introduces adapted orderings on generic Verma modules
of the topological N = 2 superconformal algebra (those built on G0-closed or Q0-closed highest
weight vectors). This procedure is extended to chiral Verma modules in section 6 and to no-label
Verma modules in section 7. Section 8 summarises the implications of the adapted orderings on the
dimensions of the singular vector spaces for the corresponding topological Verma modules. Section
9 translates these results to the singular vector spaces of the Neveu-Schwarz and the Ramond N = 2
superconformal algebras. Section 10 is devoted to conclusions and prospects. The proof of theorem

aBesides the later application to the Neveu-Schwarz N = 2 algebra in Ref. 9, only one further application
is known to us which has been achieved by Bajnok4 for the WA2 algebra.
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5.C fills several pages and readers that are not interested in the details of this proof can simply
continue with theorem 5.E. In this case, the preliminary remarks to theorems 6.A and 7.B should
also be skipped. Nevertheless, the main idea of the concept can easily be understood from the
introductory example of the Virasoro Verma modules in section 2.

2 Virasoro algebra

It is a well-known fact that at a given level of a Verma module of the Virasoro algebra there can only
be one singular vector which is unique up to proportionality. This is an immediate consequence
of the proof of the Virasoro embedding diagrams by Feigin and Fuchs14. Using an analytically
continued algebra of the Virasoro algebra, Kent constructed in Ref. 25 all Virasoro singular vectors
in terms of products of analytically continued operators. Although similar methods had already
been used earlier on Verma modules over Kac-Moody algebras30, the construction by Kent not
only shows the existence of analytically continued singular vectors for any complex level but also
their uniquenessb. This issue is our main interest in this paper. We shall therefore concentrate
on the part of Kent’s proof that shows the uniqueness of Virasoro singular vectors rather than the
existence of analytically continued singular vectors. It turns out that the extension of the Virasoro
algebra to an analytically continued algebra, although needed for the part of Kent’s proof showing
the existence claim, is however not necessary for the uniqueness claim on which we will focus in this
paper. We will first motivate and define our concept of adapted orderings for the Virasoro algebra
and will then prove some first results for the implications of adapted orderings on singular vectors.
Following Kent25 we will then introduce an ordering on the basis of a Virasoro Verma module and
describe it in our framework. If we assume that a singular vector exists at a fixed level, then this
total ordering will show that this singular vector has to be unique up to proportionality.

The Virasoro algebra V is generated by the operators Lm with m ∈ Z and the central extension
C satisfying the commutation relations

[Lm, Ln] = (m − n)Lm+n +
C

12
(m3 − m)δm+n,0 , [C,Lm] = 0 , m, n ∈ Z . (1)

V can be written in its triangular decomposition V = V−⊕V0⊕V+, with V+ = span{Lm : m ∈ N},
the positive Virasoro operators, and V− = span{L−m : m ∈ N}, the negative Virasoro operators.
The Cartan subalgebra is given by V0 = span{L0, C}. For elements Y of V that are eigenvectors of
L0 with respect to the adjoint representation we call the L0-eigenvalue the level of Y and denote
it byc |Y |: [L0, Y ] = |Y |Y . The same shall be used for the universal enveloping algebra U(V). In
particular, elements of U(V) of the form Y = L−pI

. . . L−p1
, pq ∈ Z for q = 1, . . . , I, I ∈ N, are

at level |Y | =
∑I

q=1 pq and we furthermore define them to be of length ‖Y ‖ = I. Finally, for the
identity operator we set ‖1‖ = |1| = 0. For convenience we define the graded class of subsets of
operators in U(V) at positive level:

Sm = {S = L−mI
. . . L−m1

: |S| = m ; mI ≥ . . . m1 ≥ 2 ; m1, . . . ,mI , I ∈ N} , (2)

for m ∈ N, S0 = {1}, and also

Cn = {X = SmLn−m
−1 : Sm ∈ Sm, m ∈ N0, m ≤ n} , (3)

bThe exact proof of Kent showed that generalised Virasoro singular vectors at level 0 are scalar multiples
of the identity.

cNote that positive generators Lm have negative level |Lm| = −m. Therefore, any positive operators
Γ ∈ V+ have a negative level |Γ|.
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for n ∈ N0, which will serve to construct a basis for Virasoro Verma modules later on.

We consider representations of V for which the Cartan subalgebra V0 is diagonal. Furthermore,
C commutes with all operators of V and can hence be taken to be constant c ∈ C (in an irreducible
representation). A representation with L0-eigenvalues bounded from below contains a vector with
L0-eigenvalue ∆ which is annihilated by V+, a highest weight vector |∆, c〉:

V+ |∆, c〉 = 0 , L0 |∆, c〉 = ∆ |∆, c〉 , C |∆, c〉 = c |∆, c〉 . (4)

The Verma module V∆,c is the left-module V∆,c = U(V) ⊗V0⊕V+ |∆, c〉. For V∆,c we choose the
standard basis B∆,c as:

B∆,c = {SmLn
−1 |∆, c〉 : Sm ∈ Sm ,m, n ∈ N0} . (5)

V∆,c and B∆,c are L0-graded in a natural way. The corresponding L0-eigenvalue is called the
conformal weight and the L0-eigenvalue relative to ∆ is the level. Let us introduce

B∆,c
k = {Xk |∆, c〉 : Xk ∈ Ck} , k ∈ N0 . (6)

Thus, B∆,c
k has conformal weight k and span{B∆,c

k } is the grade space of V∆,c at level k. For

x ∈ span{B∆,c
k } we again denote the level by |x| = k.

Verma modules may not be irreducible. In order to obtain physically relevant irreducible
highest weight representations one thus needs to trace back the proper submodules of V∆,c and
divide them out. This finally leads to the notion of singular vectors as any proper submodule of
V∆,c needs to contain a vector Ψl that is not proportional to the highest weight vector |∆, c〉 but
still satisfies the highest weight vector conditionsd with conformal weighte ∆ + l for some l ∈ N0:

V+Ψl = 0 , L0Ψl = (∆ + l)Ψl , CΨl = cΨl (7)

l is the level of Ψl, denoted by |Ψl|. An eigenvector Ψl of L0 at level l in V∆,c, in particular a
singular vector, can thus be written using the basis (6):

Ψl =
l

∑

m=0

∑

Sm∈Sm

cSm SmLl−m
−1 |∆, c〉 , (8)

with coefficients cSm ∈ C. The basis decomposition (8) of an L0-eigenvector in V∆,c will be denoted
the normal form of Ψl, where SmLl−m

−1 ∈ Cl and cSm will be referred to as the terms and coefficients
of Ψl, respectively. A non-trivial term Y ∈ Cl of Ψl refers to a term Y in Eq. (8) with non-trivial
coefficient cY .

Let O denote a total ordering on Cl with global minimum. Thus Ψl in Eq. (8) needs to contain
an O-smallest X0 ∈ Cl with cX0

6= 0 and cY = 0 for all Y ∈ Cl with Y <OX0 and Y 6= X0. Let us
assume that the ordering O exists with global minimum Ll

−1 ∈ Cl and is such that for any term
X ∈ Cl, X 6= Ll

−1 of a vector Ψl at level l ∈ N0, the action of at least one positive operator Γ of

V+ on X |∆, c〉 contains a non-trivial basis term of B∆,c
l′ , with l′ = l + |Γ|, that cannot be obtained

from any other term of Ψl O-larger than X. However, for a singular vector Ψl the action of any
positive operator of V+ needs to vanish and thus we find immediately that any given non-trivial

dNote that the trivial vector 0 satisfies the highest weight conditions Eq. (4) at any level l. However, 0
is proportional to |∆, c〉 and is therefore not a singular vector.

eAn eigenvector of L0 with eigenvalue ∆ + l in the Verma module V∆,c is usually labeled by the level l.
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singular vector Ψl contains in its normal form the non-trivial term Ll
−1 ∈ Cl. Otherwise there must

exist a smallest non-trivial term X0 of Ψl different from Ll
−1. However, by assumption we can find

a positive operator Γ annihilating Ψl but also creating a term that can only be generated from the
term X0 and from no other terms of Ψl. Thus the coefficient cX0

of X0 is trivial and therefore Ψl

is trivial. This motivates our definition of adapted orderings for Virasoro Verma modules:

Definition 2.A A total ordering O on Cl (l ∈ N0) with global minimum is called adapted to the
subset CA

l ⊂ Cl in the Verma module V|∆,c〉 if for any element X0 ∈ CA
l at least one positive operator

Γ ∈ V+ exists for which

Γ X0 |∆, c〉 =

l+|Γ|
∑

m=0

∑

Sm∈Sm

cΓX0

Sm
SmL

l+|Γ|−m
−1 |∆, c〉 (9)

contains a non-trivial term X̃ ∈ Cl+|Γ| (i.e. cΓX0

X̃
6= 0) such that for all Y ∈ Cl with X0<OY and

X0 6= Y the coefficient cΓY
X̃

in

Γ Y |∆, c〉 =

l+|Γ|
∑

m=0

∑

Sm∈Sm

cΓY
Sm

SmL
l+|Γ|−m
−1 |∆, c〉 (10)

is trivial: cΓY
X̃

= 0. The complement of CA
l , CK

l = Cl \C
A
l , is the kernel with respect to the ordering

O in the Verma module V∆,c.

Obviously, any total ordering on Cl is always adapted to the subset ∅ ⊂ Cl with ordering kernel
CK

l = Cl, what does not give much information. For our purposes we need to find suitable ordering
restrictions in order to obtain the smallest possible ordering kernels (which is not a straightforward
task). In the Virasoro case we will give an ordering such that the ordering kernel for each l ∈ N

has just one element: Ll
−1. As indicated in our motivation, it is then fairly simple to show that

a singular vector at level l needs to have a non-trivial coefficient for the term Ll
−1 in its normal

form. If two singular vectors have the same coefficient for this term, then their difference is either
trivial or a singular vector with trivial Ll

−1 term. Again the latter is not allowed and hence all
singular vectors at level l are unique up to proportionality. This will be summarised in the following
theorem:

Theorem 2.B Let O denote an adapted ordering in CA
l at level l ∈ N with a kernel CK

l consisting
of just one term K for a given Verma module V∆,c. If two vectors Ψ1

l and Ψ2
l at level l in V∆,c,

both satisfying the highest weight conditions Eq. (7), have c1
K = c2

K , then

Ψ1
l ≡ Ψ2

l . (11)

Proof: Let us consider Ψ̃l = Ψ1
l − Ψ2

l . The normal form of Ψ̃l does not contain the term K as
c1
K = c2

K . As Cl is a totally ordered set with respect to O, the non-trivial terms of Ψ̃l, provided
Ψ̃l is non-trivial, need to have an O-minimum X0 ∈ Cl. By construction, the coefficient c̃X0

of X0

in Ψ̃l is non-trivial, hence, X0 is contained in CA
l . As O is adapted to CA

l we can find a positive
generator Γ ∈ V+ such that ΓX0 |∆, c〉 contains a non-trivial term that cannot be created from
any other term of Ψ̃l which is O-larger than X0. But X0 was chosen to be the O-minimum of the
non-trivial terms of Ψ̃l. Therefore, ΓX0 |∆, c〉 contains a non-trivial term that cannot be created
from any other term of Ψ̃l. The coefficient of this term is obviously given by ac̃X0

with a non-trivial
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complex number a. Like Ψ1
l and Ψ2

l , Ψ̃l is also annihilated by any positive generator, in particular
by Γ. It follows that c̃X0

= 0 which leads to contradiction. Thus, the set of non-trivial terms of Ψ̃l

is empty and therefore Ψ̃l = 0. This results in Ψ1
l = Ψ2

l . 2

Equipped with definition 2.A and theorem 2.B we can now easily prove the well-known25, 14

uniqueness of Virasoro singular vectors. Let us first review the total ordering on Cl defined by
Kent25. Whilst Kent used the following ordering to show that in his generalised Virasoro Verma
modules vectors at level 0 satisfying the highest weight conditions are actually proportional to the
highest weight vector, we will use theorem 2.B to show that, furthermore, already the ordering
implies that all Virasoro singular vectors are unique at their levels up to proportionality.

Definition 2.C On the set Cl of Virasoro operators we introduce the total ordering OV for l ∈ N.
For two elements X1,X2 ∈ Cl, X1 6= X2, with Xi = L−mi

Ii

. . . L−mi
1
Lni

−1, ni = l − mi
Ii

. . . − mi
1, or

Xi = Ll
−1, i = 1, 2 we define

X1<O
V
X2 if n1 > n2 . (12)

If, however, n1 = n2 we compute the index j0 = min{j : m1
j − m2

j 6= 0, j = 1, . . . ,min(I1, I2)}. We
then define

X1<OV
X2 if m1

j0 < m2
j0 . (13)

For X1 = X2 we set X1<OV
X2 and X2<OV

X1.

In order to show that definition 2.C is well-defined, we need to prove that the set of indices J = {j :
m1

j −m2
j 6= 0, j = 1, . . . ,min(I1, I2)} is non-trivial for the cases that n1 = n2 but X1 6= X2 and thus

the minimum j0 is well-defined. Indeed, trivial J either implies that at least one of X1 or X2 is equal
to Ll

−1, or that the positive numbers mi
j agree for i = 1 and i = 2 for all j from 1 to min(I1, I2).

In the first case, however, as Ll
−1 is the only element of Cl with l operators L−1 and as we assumed

n1 = n2 we find that both X1 and X2 must be Ll
−1. In the second case, let us assume that

I1 < I2, then obviously n1 = n2 and |X1| = |X2| = l imply
∑I1

j=1 m1
j =

∑I1
j=1 m2

j +
∑I2

j=I1+1 m2
j =

∑I1
j=1 m1

j +
∑I2

j=I1+1 m2
j and thus

∑I2
j=I1+1 m2

j = 0. As all the numbers m2
j are strictly positive we

obtain I1 = I2 and thus again X1 = X2.

The index j0 is therefore defined for all pairs X1,X2 with n1 = n2 (X1 6= X2). j0 describes the
first index, read from the right to the left, for which the generators in X1 and X2 (L−1 excluded) are
different. For example L−3L−2L−2L

3
−1 is OV-smaller than L−5L−2L

3
−1 with index j0 = 2. Before

proceeding we ought to remark that Ll
−1 ∈ Cl is obviously the global OV-minimum in Cl. The

following theorem combines our results so far and shows the significance of OV.

Theorem 2.D The ordering OV is adapted to CA
l = Cl \ {Ll

−1} for each level l ∈ N and for all
Verma modules V∆,c. The ordering kernel is given by the single element set CK

l = {Ll
−1}.

Proof: The idea of the proof is a generalisation of Kent’s proof in Ref. 25. Let us consider
X0 = L−mI

. . . L−m1
Ln0

−1 ∈ CA
l , n0 = l − mI . . . − m1, mI ≥ . . . ≥ m1 ≥ 2 for I ∈ N. We then

construct a vector Ψl = X0 |∆, c〉 at level l in the Verma module V∆,c. We apply the positive
operator Lm1−1 to Ψl and write the result in its normal form

Lm1−1Ψl =
l−m1+1

∑

m=0

∑

Sm∈Sm

cSmSmLl−m1+1−m
−1 |∆, c〉 , (14)
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following Eq. (9). Eq. (14) contains a non-trivial contribution of S̃ = L−mI
. . . L−m2

, simply by
commuting Lm1−1 with L−m1

in X0 which creates another operator L−1 but lets L−mI
. . . L−m2

unchanged and thus creates the term X̃ = L−mI
. . . L−m2

Ln0+1
−1 . In the case m1 = m2 = . . . = mj

we simply obtain multiple copies of this term. However, for any other term Y = L−mY
J

. . . L−mY
1
LnY

−1

with Y ∈ Cl (nY = l − mY
J . . . − mY

1 , J ∈ N0) producing the term X̃ under the action of Lm1−1,
either the term Y needs to have already at least one L−1 more than X0, and would consequently
be O-smaller than X0 due to Eq. (12), or Lm1−1 needs to create L−1 by commuting through
L−mY

J
. . . L−mY

1
. The latter, however, is only possible if mY

1 < m1. Otherwise the commutation

relations would not allow L−1 being created from LmY
1
−1 and for mY

1 = m1 we would ultimately

find X0 = Y , as both terms need to create X̃. Hence mY
1 < m1 and therefore one finds Y <OV

X0.

Consequently, there is no term OV-bigger than X0 producing the term X̃ under the action of the
positive generator Lm1−1. 2

Theorem 2.D implies as an immediate consequence the following theorem about the uniqueness
of Virasoro singular vectors.

Theorem 2.E If the Virasoro Verma module V∆,c contains a singular vector Ψl at level l, l ∈ N,
then Ψl is unique up to proportionality. The coefficient of the term Ll

−1 ∈ Cl in the normal form
of Ψl, i.e. the coefficient of Ll

−1 |∆, c〉, is non-trivial.

Proof: We first show that the Ll
−1 |∆, c〉 component in the normal form of Ψl is non-trivial. Let us

assume this component is trivial. The trivial vector 0 also satisfies the highest weight conditions
Eq. (7) for any level l and has trivial Ll

−1 |∆, c〉 component. According to theorem 2.D, {Ll
−1} is an

ordering kernel for the ordering OV on Cl. Therefore, from theorem 2.B we know that Ψl = 0 and
therefore Ψl is not a singular vector, which is a contradiction. Hence, we obtain that the component
of Ll

−1 |∆, c〉 in Ψl has to be non-trivial. Let us now assume Ψ′
l is another singular vector in V∆,c

at the same level l as Ψl. We know that the coefficients c′
Ll
−1

and cLl
−1

of Ψ′
l and Ψl respectively

are both non-trivial. Therefore c′
Ll
−1

Ψl and cLl
−1

Ψ′
l are two singular vectors at the same level which

agree in their Ll
−1 coefficient and according to theorem 2.B are identical. Thus, Ψl and Ψ′

l are
proportional. 2

Feigin and Fuchs14 have proven for which Verma modules these unique Virasoro singular vectors
do exist.

3 Superconformal algebras and adapted orderings

A superconformal algebra is a Lie super algebra that contains the Virasoro algebra as a subalgebra.
Therefore superconformal algebras are also known as super extensions of the Virasoro algebra.
Thanks to Kac20, 22, Cheng and Kac6, and Kac and van de Leur23 all superconformal algebras are
known by now. Let A denote a superconformal algebra and let U(A) be the universal enveloping
algebra of A. We want that the energy operator L0 of the Virasoro subalgebra is contained in our
choice of the Cartan subalgebra HA of A. A thus decomposes in L0-grade spaces which we want
to group according to the sign of the grade: A = A−⊕A0 ⊕A− where the L0-grades of A−, A0, or
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A+ are positive, zero, or negative respectivelyf. Consequently, U(A) also decomposes in L0-grade
spaces: U(A) = U(A)− ⊕ U(A)0 ⊕ U(A)+. Obviously, the Cartan subalgebra HA is contained
in A0 but does not need to be identical to A0. The L0-grade is just one component of the roots
µ ∈ H∗

A (the dual space of HA) of A. For simplicity, let us fix a basis for HA that contains L0:
{L0,H

2, . . . ,Hr}, and hence let us denote the roots as (∆, µ) where ∆ indicates the L0 component
and µ = (µ2, . . . , µr) the vector of all other components.

Physicists are mainly interested in positive energy representations. One thus defines a highest
weight vector |∆, µ〉 as a simultaneous eigenvector of HA with eigenvalues, the weights, (∆, µ) and
vanishing A+ action: A+ |∆, µ〉 = 0. The L0-weight ∆ = µ(L0) is the conformal weight, which is
for convenience always denoted explicitlty in addition to the other weights µ. Depending on the
algebra A, physical as well as mathematical applications may require highest weight vectors that
satisfy additional vanishing conditions with respect to operators of A0 (the zero modes) with HA

normally excluded. Later on, this shall be further explained in section 4 for the topological N = 2
algebra.

Definition 3.A For a subalgebra N of A0 that includes the Cartan subalgebra HA we define a
highest weight vector |∆, µ〉N with weight (∆, µ):

L0 |∆, µ〉N = ∆ |∆, µ〉N , (15)

H i |∆, µ〉N = µi |∆, µ〉N , i = 2, . . . , r , (16)

A+ |∆, µ〉N = 0 , (17)

Γ0 |∆, µ〉N = 0 , ∀ Γ0 ∈ N/HA . (18)

A Verma module is then defined analogously to the Virasoro case as the left module VN
∆,µ =

U(A) ⊗N⊕A+ |∆, µ〉N where we use the representation Eqs. (15)-(17) to act with N ⊕ A+ on

|∆, µ〉N . If N = HA we shall simply write V∆,µ and |∆, µ〉.

The Verma module VN
∆,µ is again graded with respect to HA into weight spaces V

N ,(l,q)
∆,µ with

weights (∆ + l, µ + q). For convenience we shall only use the relative weights (l, q) with q =
(q2, . . . , qr) whenever we want to refer to a weight. The L0 relative weight l is again called the
level. Also for the universal enveloping algebra an element Y with well-defined L0-grade l is said
to be at level |Y | = l, i.e. [L0, Y ] = |Y |Y . As for the Virasoro case we shall define a singular vector
of a Verma module VN

∆,µ to be a vector which is not proportional to the highest weight vector but
satisfies the highest weight conditions Eqs. (15)-(17) with possibly different weights.

Definition 3.B A vector ΨN ′

l,q ∈ V
N ,(l,q)
∆,µ is said to satisfy the highest weight conditions if

L0 ΨN ′

l,q = (∆ + l)ΨN ′

l,q , (19)

H i ΨN ′

l,q = (µi + qi)Ψ
N ′

l,q , i = 2, . . . , r , (20)

U(A)+ ΨN ′

l,q = 0 , (21)

Γ0 ΨN ′

l,q = 0 , ∀ Γ0 ∈ N ′/U(HA) , (22)

fNote that for historical reasons the elements of A− have positive L0-grade.
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for a subalgebrag N ′ of U(A)0 that contains U(HA) and may or may not be equal to N . ΨN ′

l,q is

called a singular vector if in addition ΨN ′

l,q is not proportional to the highest weight vector |∆, µ〉N .

Each weight space V
N ,(l,q)
∆,µ can be generated by choosing the subset of the root space of the

universal enveloping algebra U(A) with root (l, q) that only consists of generators not taken from
N ⊕A+. From this set we choose elements such that the vectors generated by acting on the highest

weight vector |∆, µ〉N are all linearly independent and thus form a basis for V
N ,(l,q)
∆,µ . Let CN

l,q denote
such a basis set, analogous to the basis set for the Virasoro algebra, to be specified later. Further,
let BN

∆,µ denote any basis for the Verma module VN
∆,µ. The standard basis for the weight space

V
N ,(l,q)
∆,µ shall be the basis B̃

N ,(l,q)
∆,µ generated by the sets CN

l,q on the highest weight vector and the

basis decomposition of Ψl,q with respect to B̃
N ,(l,q)
∆,µ is called its normal form. As in the Virasoro

case, an element X of CN
l,q that generates a particular basis vector in B̃N ,l

∆,µ is called a term of a vector

Ψl,q ∈ V
N ,(l,q)
∆,µ and the corresponding coefficient cX in its basis decomposition is simply called a

coefficient of Ψl,q. Finally, we call the term X of Ψl,q a non-trivial term if cX 6= 0. This completes
the necessary notation to define adapted orderings on CN

l,q just like in the Virasoro case.

Definition 3.C A total ordering O on CN
l,q with global minimum is called adapted to the subset

CN ,A
l,q ⊂ CN

l,q in the Verma module VN
∆,µ with annihilation operators K ⊂ U(A)+ ⊕ U(A)0/U(HA) if

for any element X0 ∈ CN ,A
l,q at least one annihilation operator Γ ∈ K exists for which

Γ X0 |∆, µ〉 =
∑

X∈BN
∆,µ

cΓX0

X X (23)

contains a non-trivial term X̃ ∈ BN
∆,µ (i.e. cΓX0

X̃
6= 0) such that for all Y ∈ CN

l,q with X0<OY and

X0 6= Y the coefficient cΓY
X̃

in

Γ Y |∆, µ〉 =
∑

X∈BN
∆,µ

cΓY
X X (24)

is trivial: cΓY
X̃

= 0. The complement of CN ,A
l,q , CN ,K

l,q = CN
l,q \ C

N ,A
l,q is the kernel with respect to the

ordering O in the Verma module VN
∆,µ. Here BN

∆,µ represents a basis that can be chosen suitably for

each X0 and may or may not be the standard basish.

In the motivation to theorem 2.B we assumed the existence of an ordering with the smallest
kernel consisting of one element only. For the N = 2 algebras we will find ordering kernels which
contain more than one element and also ordering kernels that are trivial. We saw in theorem
2.E that if the ordering kernel has only one element (the global minimum Ll

−1 in the case of the
Virasoro algebra) then any singular vector needs to have a non-trivial coefficient for this element.
The following theorems reveal what can be implied if the ordering kernel consists of more than one
element or of none at all.

gNote that this time, for convenience, we have chosen the universal enveloping algebra to define the
highest weight conditions which is equivalent to the earlier definition Eqs. (15)-(17).

hIn the N = 2 case we will choose for most X0 the standard basis with only very few but important
exceptions.
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Theorem 3.D Let O denote an adapted ordering on CN ,A
l,q at weight (l, q) with kernel CN ,K

l,q for

a given Verma module VN
∆,µ and annihilation operators K. If two vectors ΨN ′,1

l,q and ΨN ′,2
l,q at the

same level l and weight q, satisfying the highest weight conditions Eqs. (19)-(22) with N ′ = K, have
c1
X = c2

X for all X ∈ CN ,K
l,q , then

ΨN ′,1
l,q ≡ ΨN ′,2

l,q . (25)

Proof: Let us consider Ψ̃l,q = ΨN ′,1
l,q − ΨN ′,2

l,q . The normal form of Ψ̃l,q does not contain any terms

of the ordering kernel CK
l,q, simply because c1

X = c2
X for all X ∈ CN ,K

l,q . As CN
l,q is a totally ordered

set with respect to O which has a global minimum, the non-trivial terms of Ψ̃l,q, provided Ψ̃l,q is
non-trivial, need to have an O-minimum X0 ∈ CN

l,q. By construction, the coefficient c̃X0
of X0 in

Ψ̃l,q in its normal form is non-trivial, hence, X0 is also contained in CN ,A
l,q . As O is adapted to CN ,A

l,q

one can find an annihilation operator Γ ∈ K such that ΓX0 |∆, µ〉N contains a non-trivial term (for
a suitably chosen basis depending on X0) that cannot be created by any other term of Ψ̃l,q which

is O-larger than X0. But X0 was chosen to be the O-minimum of Ψ̃l,q. Therefore, ΓX0 |∆, µ〉N

contains a non-trivial term that cannot be created from any other term of Ψ̃l,q. The coefficient of

this term is obviously given by ac̃X0
with a non-trivial complex number a. Together with ΨN ′,1

l,q

and ΨN ′,2
l,q , Ψ̃l,q is also annihilated by any annihilation operator, in particular by Γ. It follows that

c̃X0
= 0, contrary to our original assumption. Thus, the set of non-trivial terms of Ψ̃l,q is empty

and therefore Ψ̃l,q = 0. This results in ΨN ′,1
l,q = ΨN ′,2

l,q . 2

Theorem 3.D states that if two singular vectors at the same level and weight agree on the
ordering kernel, then they are identical. The coefficients of a singular vector with respect to the
ordering kernel are therefore sufficient to distinguish singular vectors. If the ordering kernel is
trivial we consequently find 0 as the only vector that can satisfy the highest weight conditions.

Theorem 3.E Let O denote an adapted ordering on CN ,A
l,q at weight (l, q) with trivial kernel CN ,K

l,q =

∅ for a given Verma module VN
∆,µ and annihilation operators K. A vector ΨN ′

l,q at level l and weight
q satisfying the highest weight conditions Eqs. (19)-(22) with N ′ = K, is therefore trivial. In
particular, this shows that there are no singular vectors.

Proof: We again make use of the fact that the trivial vector 0 satisfies any vanishing conditions for
any level l and weight q. As the ordering kernel is trivial the components of the vectors 0 and ΨN ′

l,q

agree on the ordering kernel and using theorem 3.D we obtain ΨN ′

l,q = 0. 2

We now know that singular vectors can be classified by their components on the ordering
kernel. As we shall see if the ordering kernel has n elements, then the space of singular vectors
for this weight is at most n-dimensional. Conversely, one could ask if there are singular vectors
corresponding to all possible combinations of elements of the ordering kernel. In general this will
not be the case, however, for the Virasoro algebra25 and for the Neveu-Schwarz N = 2 algebra9

it has been shown that for each element of the ordering kernel there exists a singular vector for
suitably defined analytically continued Verma modules. Some of these generalised singular vectors
lie in the embedded original non-continued Verma module and are therefore singular in the above
sense. We finally conclude with the following theorem summarising all our findings so far.
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Theorem 3.F Let O denote an adapted ordering on CN ,A
l,q at weight (l, q) with kernel CN ,K

l,q for a

given Verma module VN
∆,µ and annihilation operators K. If the ordering kernel CN ,K

l,q has n elements,

then there are at most n linearly independent singular vectors ΨN ′

l,q in VN
∆,µ with weight (l, q) and

N ′ = K.

Proof: Suppose there were more than n linearly independent singular vectors ΨN ′

l,q in VN
∆,µ with

weight (l, q). We choose n + 1 linearly independent singular vectors among them Ψ1,. . .,Ψn+1. The
ordering kernel CN ,K

l,q has the n elements K1,. . .,Kn. Let cjk denote the coefficient of the term Kj

in the vector Ψk in its standard basis decomposition. The coefficients cjk thus form a n by n + 1
matrix C. The homogeneous system of linear equations Cλ = 0 thus has a non-trivial solution
λ0 = (λ0

1, . . . , λ
0
n+1)

T for the vector λ. We then form the linear combination Ψ =
∑n+1

i=1 λ0
i Ψi. Ob-

viously, the coefficient of Kj in the vector Ψ in its normal form is just given by the j-th component
of the vector Cλ which is trivial for j = 1, . . . , n. Hence, the coefficients of Ψ are trivial on the
ordering kernel. On the other hand, Ψ is a linear combination of singular vectors and therefore also
satisfies the highest weight conditions with N ′ = K just like the trivial vector 0. Due to theorem
3.D one immediately finds that Ψ ≡ 0 and therefore

∑n+1
i=1 λiΨi = 0. This, however, is a non-trivial

decomposition of 0 contradicting the assumption that Ψ1,. . ., Ψn+1 are linearly independent. 2

4 Topological N = 2 superconformal Verma modules

We will now apply the construction developed in the previous section to the topological N = 2
superconformal algebra. We first introduce an adapted ordering on the basis of the N = 2 Verma
modules. Consequently the size of the ordering kernel will reveal a maximum for the degrees of
freedom of the singular vectors in the same N = 2 grade space. As the representation theory
of the N = 2 superconformal algebras has different types of Verma modules we will see that the
corresponding ordering kernels also allow different degrees of freedom.

The topological N = 2 superconformal algebra T2 is a super Lie algebra which contains the
Virasoro generators Lm with trivial central extensioni, a Heisenberg algebra Hm corresponding to
the U(1) current, and the fermionic generators Gm and Qm, m ∈ Z corresponding to two anti-
commuting fields with conformal weights 2 and 1 respectively. T2 satisifies the (anti-)commutation
relations7

[Lm,Ln] = (m − n)Lm+n , [Hm,Hn] = C
3 mδm+n ,

[Lm,Gn] = (m − n)Gm+n , [Hm,Gn] = Gm+n ,
[Lm,Qn] = −nQm+n , [Hm,Qn] = −Qm+n ,

[Lm,Hn] = −nHm+n + C
6 (m2 + m)δm+n ,

{Gm,Qn} = 2Lm+n − 2nHm+n + C
3 (m2 + m)δm+n ,

{Gm,Gn} = {Qm,Qn} = 0 , m, n ∈ Z .

(26)

The central term C commutes with all other operators and can therefore be fixed again as
c ∈ C. HT2

= span{L0,H0, C} defines a commuting subalgebra of T2, which can therefore be
diagonalised simultaneously. Generators with positive index span the set of positive operators T+

2

iNote our slightly different notation for the Virasoro generators Ln in the topological N = 2 case.
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of T2 and likewise generators with negative index span the set of negative operators T−
2 of T2:

T+
2 = span{Lm,Hm,Gn,Qn : m,n ∈ N} , (27)

T−
2 = span{L−m,H−m,G−n,Q−n : m,n ∈ N} . (28)

The zero modes are spanned by T0
2 = span{L0,H0, C,G0,Q0} such that the generators {G0,Q0}

classify the different choices of Verma modules. Q0 has the properties of a BRST-charge7 so that
the energy-momentum tensor is BRST-exact: Lm = 1/2 {Gm,Q0}.

Using definition 3.A a simultaneous eigenvector |∆, q, c〉N of HT2
with L0 eigenvalue ∆, H0

eigenvalue q, C eigenvaluej c, and vanishing T+
2 action is called a highest weight vector. Each

representation with lower bound for the eigenvalues of L0 needs to contain a highest weight vector.
Additional vanishing conditions N are possible only with respect to the operators G0 and Q0 which
may or may not annihilate a highest weight vector. The different types of annihilation conditions
have been analysed in Ref. 19 resulting as follows. One can distinguish 4 different types of highest
weight vectors |∆, q〉N labeled by a superscript N ∈ {G,Q,GQ}, or no superscript at all: highest
weight vectors |∆, q〉GQ annihilated by both G0 and Q0 (chiral)k, highest weight vectors |∆, q〉G

annihilated by G0 but not by Q0 (G0-closed), highest weight vectors |∆, q〉Q annihilated by Q0 but
not by G0 (Q0-closed), and finally highest weight vectors |∆, q〉 that are neither annihilated by G0

nor by Q0 (no-label).

Since 2L0 = G0Q0 + Q0G0, a chiral vector, annihilated by both G0 and Q0, necessarily has
vanishing L0-eigenvalue. On the other hand, any highest weight vector |∆, q〉 that is neither anni-
hilated by G0 nor by Q0 can be decomposed into 1

2∆G0Q0 |∆, q〉 + 1
2∆Q0G0 |∆, q〉, provided ∆ 6= 0.

In this case the whole representation decomposes into a direct sum of two submodules one of them
containing the G0-closed highest weight vector G0Q0 |∆, q〉 and the other one containing the Q0-
closed highest weight vector Q0G0 |∆, q〉. Therefore, for no-label highest weight vectors, annihilated
neither by G0 nor by Q0, we only need to consider the cases with ∆ = 0; i.e. the highest weight
vectors that cannot be expressed as linear combinations of G0-closed and Q0-closed highest weight
vectors. From now on no-label will refer exclusively to such highest weight vectors with ∆ = 0.

|0, q〉 G0 |0, q〉 6= 0 and Q0 |0, q〉 6= 0 no-label

|∆, q〉G G0 |∆, q〉 = 0 and Q0 |∆, q〉 6= 0 G0-closed

|∆, q〉Q G0 |∆, q〉 6= 0 and Q0 |∆, q〉 = 0 Q0-closed

|0, q〉GQ G0 |0, q〉 = 0 and Q0 |0, q〉 = 0 chiral

Tab. a Topological highest weight vectors.

Hence, according to definition 3.A, we have the following 4 different types of topological Verma
modules, as shown in Tab. a:

V0,q = U(T2) ⊗HT2
⊕T

+
2
|0, q〉 , (29)

VG
∆,q = U(T2) ⊗HT2

⊕T
+
2
⊕span{G0}

|∆, q〉G , (30)

VQ
∆,q = U(T2) ⊗HT2

⊕T
+
2
⊕span{Q0}

|∆, q〉Q , (31)

jFor simplicity from now on we will supress the eigenvalue of C in |∆, q, c〉N and simply write |∆, q〉N .
kChirality conditions are important for physics29, 7, 18.
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VGQ
0,q = U(T2) ⊗HT2

⊕T
+
2
⊕span{G0,Q0}

|0, q〉GQ . (32)

The Verma modules of types VG
∆,q and VQ

∆,q, based on G0-closed or Q0-closed highest weight

vectors, are called19 generic Verma modules, whereas the Verma modules of types V0,q and VGQ
0,q

are called no-label and chiral Verma modules, respectively, for obvious reasonsl.

For elements Y of T2 which are eigenvectors of HT2
with respect to the adjoint representation

we define similarly to the Virasoro case the level |Y |L as [L0, Y ] = |Y |LY and in addition the charge
|Y |H as [H0, Y ] = |Y |HY . In particular, elements of the form

Y = L−lL . . .L−l1H−hH
. . .H−h1

Q−qQ
. . .Q−q1

G−gG
. . .G−g1

(33)

and any reorderings of Y have level |Y |L =
∑L

j=1 lj +
∑H

j=1 hj +
∑Q

j=1 qj +
∑G

j=1 gj and charge
|Y |H = G − Q. For these elements we shall also define their length ‖Y ‖ = L + H + G + Q. Again,
we shall set |1|L = |1|H = ‖1‖ = 0. For convenience we define the following sets of negative
operators for m ∈ N

Lm = {Y = L−lL . . .L−l1 : lL ≥ . . . ≥ l1 ≥ 2, |Y |L = m} , (34)

Hm = {Y = H−hH
. . .H−h1

: hH ≥ . . . ≥ h1 ≥ 1, |Y |L = m} , (35)

Gm = {Y = G−gG
. . .G−g1

: gG > . . . > g1 ≥ 2, |Y |L = m} , (36)

Qm = {Y = Q−qQ
. . .Q−q1

: qQ > . . . > q1 ≥ 2, |Y |L = m} , (37)

L0 = H0 = G0 = Q0 = {1} . (38)

We are now able to define a graded basis for the Verma modules as described in the previous
section. We choose l ∈ N0, n ∈ Z and define:

SG
m,n = {Y = LHGQ : L ∈ Ll, H ∈ Hh, G ∈ Gg, Q ∈ Qq,

|Y |L = m = l + h + g + q, |Y |H = n = |G|H + |Q|H , l, h, g, q ∈ N0} , (39)

SQ
m,n = {Y = LHQG : L ∈ Ll, H ∈ Hh, Q ∈ Qq, G ∈ Gg,

|Y |L = m = l + h + g + q, |Y |H = n = |Q|H + |G|H , l, h, g, q ∈ N0} . (40)

And finally for m ∈ N0, n ∈ Z:

CG
m,n =

{

Sp,q L
m−p−r1−r2

−1 Gr1

−1Q
r2

−1Q
r3

0 : Sp,q ∈ SG
p,q, p ∈ N0, r1, r2, r3 ∈ {0, 1},

m − p − r1 − r2 ≥ 0, n = q + r1 − r2 − r3} , (41)

CQ
m,n =

{

Sp,q L
m−p−r1−r2

−1 Qr1

−1G
r2

−1G
r3

0 : Sp,q ∈ SQ
p,q, p ∈ N0, r1, r2, r3 ∈ {0, 1},

m − p − r1 − r2 ≥ 0, n = q − r1 + r2 + r3} . (42)

Thus, a typical element of CG
m,n is of the form

Y = L−lL . . .L−l1H−hH
. . .H−h1

G−gG
. . .G−g1

Q−qQ
. . .Q−q1

Lm′

−1G
r1

−1Q
r2

−1Q
r3

0 , (43)

lAs explained in Ref. 19, the chiral Verma modules VGQ
0,q , built on chiral highest weight vectors, are not

complete Verma modules because the chirality constraint is not required (just allowed) by the algebra.
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r1, r2, r3 ∈ {0, 1}, such that |Y |L = m and |Y |H = n. Sp,q of Y ∈ CG
m,n or of Y ∈ CQ

m,n is called the
leading part of Y and is denoted by Y ∗. Hence, one can define the following standard bases:

B|∆,q〉G =
{

Y |∆, q〉G : Y ∈ CG
m,n m ∈ N0, n ∈ Z

}

,

B|∆,q〉Q =
{

Y |∆, q〉Q : Y ∈ CQ
m,n m ∈ N0, n ∈ Z

}

, (44)

obtaining finally VG
∆,q = span{B|∆,q〉G} and VQ

∆,q = span{B|∆,q〉Q}. For Verma modules built on

no-label and chiral highest weight vectors, V0,q and VG,Q
0,q both with ∆ = 0, one defines in exactly

the same way:

Sm,n = {Y = LHGQ : L ∈ Ll, H ∈ Hh, G ∈ Gg, Q ∈ Qq,

|Y |L = m = l + h + g + q, |Y |H = n = |G|H + |Q|H , l, h, g, q ∈ N0} (45)

Cm,n =
{

Sp,q L
m−p−r1−r2

−1 Gr1

−1Q
r2

−1G
r4

0 Qr3

0 : Sp,q ∈ Sp,q, p ∈ N0, r1, r2, r3, r4 ∈ {0, 1},

m − p − r1 − r2 ≥ 0, n = q + r1 − r2 + r4 − r3} , (46)

CGQ
m,n =

{

Sp,q L
m−p−r1−r2

−1 Gr1

−1Q
r2

−1 : Sp,q ∈ Sp,q, p ∈ N0, r1, r2 ∈ {0, 1},

m − p − r1 − r2 ≥ 0, n = q + r1 − r2} . (47)

Sp,q of Y ∈ Cm,n or of Y ∈ CGQ
m,n will be also called the leading part Y ∗ of Y . One obtains the

following standard bases for the modules V0,q and VG,Q
0,q :

B|0,q〉 = {Y |0, q〉 : Y ∈ Cm,n, m ∈ N0, n ∈ Z} ,

B|0,q〉GQ =
{

Y |0, q〉GQ : Y ∈ CGQ
m,n, m ∈ N0, n ∈ Z

}

. (48)

The bases Eq. (44) and Eq. (48) are naturally N0 × Z graded with respect to their HT2

eigenvalues relative to the eigenvalues (∆, q) of the highest weight vector. For an eigenvector Ψl,p

of HT2
in VN

∆,q the L0-eigenvalue is ∆ + l and the H0-eigenvalue is q + p with l ∈ N0 and p ∈ Z.
We define the level |Ψl,p|L = l and charge |Ψl,p|H = p.

Like for the Virasoro case, we shall use CG
m,n, CQ

m,n, Cm,n and CGQ
m,n in order to define the normal

form of an eigenvector Ψl,p of HT2
. It is defined to be the basis decomposition with respect to

the corresponding standard bases Eq. (44) and Eq. (48). Again, we call the operators X ∈ CG
l,p, or

X ∈ CQ
l,p, or X ∈ Cl,p, or X ∈ CGQ

l,p simply the terms of Ψl,p and the coefficients cX its coefficients.

We introduce topological singular vectors according to definition 3.B as HT2
eigenvectors that

are not proportional to the highest weight vector but are annihilated by T+
2 and may also satisfy

additional vanishing conditions with respect to the operators G0 and Q0. Therefore one also distin-
guishes singular vectors Ψl,p, ΨG

l,p, ΨQ
l,p and ΨGQ

l,p carrying the superscript G and/or Q depending
on whether the singular vector is annihilated by G0 and/or Q0. Obviously one obtains similar
restrictions on the eigenvalues of ΨN ′

l,p ∈ VN
∆,q as for the highest weight vectors, as shown in Tab. b.

Ψl,p G0Ψl,p 6= 0 and Q0Ψl,p 6= 0; l + ∆ = 0 no-label

ΨG
l,p G0Ψl,p = 0 and Q0Ψl,p 6= 0 G0-closed

ΨQ
l,p G0Ψl,p 6= 0 and Q0Ψl,p = 0 Q0-closed

ΨGQ
l,p G0Ψl,p = 0 and Q0Ψl,p = 0; l + ∆ = 0 chiral
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Tab. b Topological singular vectors.

As there are 4 types of topological Verma modules and 4 types of topological singular vectors
one might think of 16 different combinations of singular vectors in Verma modules. However, as
will be explained later, no-label and chiral singular vectors do not exist neither in no-label Verma
modules nor in chiral Verma modules (with one exception: chiral singular vectors at level 0 in
no-label Verma modules). Most of these types of singular vectors are connected via the N = 2
topological spectral flow mappings17, 16, 19 which have been analysed in detail in Refs. 16, 19.

5 Adapted orderings on generic Verma modules VG
∆,q and VQ

∆,q

We will now introduce total orderings OG and OQ on CG
m,n and CQ

m,n respectively. For convenience,
however, we shall first give an ordering on the sets Lm, Hm, Gm and Qm.

Definition 5.A Let Y denote either L, H, G, or Q, (but the same throughout this definition) and
take two elements Xi ∈ Ymi for mi ∈ N0, i = 1, 2, such that Xi = Zi

−mi
‖Xi‖

. . . Zi
−mi

1

, |Xi|L = mi

or Xi = 1, i = 1, 2, with Zi
−mi

j

being an operator of the type L−mi
j
, H−mi

j
, G−mi

j
, or Q−mi

j

depending on whether Y denotes L, H, G or Q respectively. For X1 6= X2 we compute the indexm

j0 = min{j : m1
j − m2

j 6= 0, j = 1, . . . ,min(‖X1‖, ‖X2‖)}. j0 is, if non-trivial, the index for which
the level of the operators in X1 and X2 first disagree when read from the right to the left. For j0 > 0
we then define

X1<Y
X2 if m1

j0 < m2
j0 . (49)

If, however, j0 = 0, we set

X1<Y
X2 if ‖X1‖ > ‖X2‖ . (50)

For X1 = X2 we set X1<Y
X2 and X2<Y

X1.

Some examples of definition 5.A are:

L−4L−3L−2 <
L

L−4L−2 ,

H−4H−3H−2 <
H

H−3H−2 ,

Q−2 <
Q

1 . (51)

We can now define an ordering on CG
m,n which will turn out to be adapted with a very small kernel.

Definition 5.B On the set CG
m,n we introduce the total ordering OG. For two elements X1,X2 ∈

CG
m,n, X1 6= X2 with Xi = LiH iGiQiLki

−1G
ri
1

−1Q
ri
2

−1Q
ri
3

0 , Li ∈ Lli , H i ∈ Hhi
,Gi ∈ Ggi

,Qi ∈ Qqi
for

some li, hi, gi, qi, k
i, ri

1, r
i
2, r

i
3 ∈ N0, i = 1, 2 such that m ∈ N0, n ∈ Z we define

X1<OG
X2 if k1 > k2 . (52)

mFor subsets of N we define min ∅ = 0.
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For k1 = k2 we set

X1<OG
X2 if r1

1 + r1
2 > r2

1 + r2
2 . (53)

If r1
1 + r1

2 = r2
1 + r2

2, then we set

X1<OG
X2 if Q1<

Q
Q2 . (54)

In the case where also Q1 = Q2 we define

X1<OG
X2 if G1<

G
G2 . (55)

If even G1 = G2 we then define

X1<OG
X2 if L1<

L
L2 . (56)

If further L1 = L2 we set

X1<OG
X2 if H1<

H
H2 , (57)

which finally has to give an answer. For X1 = X2 we define X1<OG
X2 and X2<OG

X1.

Definition 5.B is well-defined since one obtains an answer for any pair X1,X2 ∈ CG
m,n, X1 6= X2

after going through Eqs. (52)-(57), and hence the ordering OG proves to be a total ordering on
CG

m,n. Namely, if Eqs. (52)-(57) do not give an answer on the ordering of X1 and X2, then obviously

X1 and X2 are of the form Xi = LHGQLk
−1G

ri
1

−1Q
ri
2

−1Q
ri
3

0 , with common L, H, G, Q, k and also
r1
1 + r1

2 = r2
1 + r2

2. The fact that both X1 and X2 has charge n implies r1
1 − r1

2 − r1
3 = r2

1 − r2
2 − r2

3,
and using r1

1 + r1
2 = r2

1 + r2
2 one obtains 2r1

2 + r1
3 = 2r2

2 + r2
3. But this equation has solutions from

{0, 1} only for r1
2 = r2

2 and consequently also r1
3 = r2

3 and hence X1 = X2.

Obviously the OG-smallest element of CG
m,0 is Lm

−1 followed by Lm−1
−1 G−1Q0 whilst the OG-

smallest element of CG
m,−1 is Lm

−1Q0 followed by Lm−1
−1 Q−1. Similarly, for CG

m,1 we find Lm−1
−1 G−1

as OG-smallest element followed by Lm−2
−1 G−1. We will now show that the ordering OG is adapted

and we will compute the ordering kernels. We do not give a theoretical proof that these kernels are
the smallest possible ordering kernels. However, we shall refer later to explicit examples of singular
vectors that show that for general values of ∆ and q most of the ordering kernels presented here
cannot be smaller.

Theorem 5.C If the central extension satisfies c 6= 3, then the ordering OG is adapted to CG
m,n

for all Verma modules VG
∆,q and for all grades (m,n) with m ∈ N0, n ∈ Z. Ordering kernels are

given by the following tables for all levelsn m, depending on the set of annihilation operators and
depending on the charge n.

n ordering kernel

+1 {Lm−1
−1 G−1}

0 {Lm
−1,H−1L

m−1
−1 ,Lm−1

−1 G−1Q0}

−1 {Lm
−1Q0,H−1L

m−1
−1 Q0,L

m−1
−1 Q−1}

−2 {Lm−1
−1 Q−1Q0}

Tab. c Ordering kernels for OG, annihilation operators T+
2 .

nNote that for levels m = 0 and m = 1 some of the kernel elements obviously do not exist.
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n ordering kernel

+1 {Lm−1
−1 G−1}

0 {Lm
−1,L

m−1
−1 G−1Q0}

−1 {Lm
−1Q0}

Tab. d Ordering kernels for OG, annihilation operators T+
2 and G0.

n ordering kernel

0 {Lm
−1}

−1 {Lm
−1Q0,L

m−1
−1 Q−1}

−2 {Lm−1
−1 Q−1Q0}

Tab. e Ordering kernels for OG, annihilation operators T+
2 and Q0.

n ordering kernel

0 {Lm
−1}

−1 {Lm
−1Q0}

Tab. f Ordering kernels for OG, annihilation operators T+
2 , Q0, and G0.

Charges that do not appear in the tables have trivial ordering kernels.

Like in the Virasoro case our strategy will be to find annihilation operators that are able to produce
an additional L−1. Hence, we raise the term in question to the class of terms with one additional
L−1 and try to prove that terms that can also be raised to this class of terms have to be OG-
smaller. That we need to focus only on operators that create L−1 from the leading part of a term
is a consequence of the following theorem which we therefore shall prove before starting the proof
of theorem 5.C.

Theorem 5.D Let us assume that there exists an annihilation operator Γ that creates a term XΓ

with n + 1 operators L−1 by acting on

X0 = X∗
0 L

n
−1 G

r1

−1 Q
r2

−1 Q
r3

0 ∈ CG
m0,n0

(58)

with X∗
0 = L0 H0 G0 Q0,

L0 = L−mL

‖L0‖
. . .L−mL

1
∈ Ll ,

H0 = H−mH

‖H0‖
. . .H−mH

1
∈ Hh ,

G0 = G−mG

‖G0‖
. . .G−mG

1
∈ Gg ,

Q0 = Q
−mQ

‖Q0‖

. . .Q
−mQ

1

∈ Qq ,

l, h, g, q ∈ N0 and r1, r2, r3 ∈ {0, 1}. Let us further assume that this additional L−1 is created by
commuting Γ through X∗

0 . Then any other term Y ∈ CG
m0,n0

with X0<OG
Y for which the action of

Γ also produces the term XΓ will also create one additional L−1 and this by commuting Γ through
the leading part Y ∗ of Y .
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Theorem 5.D thus tells us that any Y ∈ CG
m0,n0

that does not generate an additional L−1 from
Y ∗ in the described sense is automatically OG-smaller than X0 and is therefore irrelevant for the
adapted ordering.

Proof: Let us show that if Γ does not create one additional L−1 by commuting through Y ∗ but still
satisfies that it also creates the term XΓ acting on Y , then Y <OG

X0. If Y has already n+1 or even
more operators L−1, then Y is obviously OG-smaller than X0. Thus the action of Γ on Y needs to
create at least one L−1. However, the action of one operator Γ can create at most one L−1. This is
an imediate consequence of the commutation relations Eq. (26): the action of one operator Γ can
take several operators in X0 away but it can at most create only one new operator. We can therefore
concentrate on terms Y that have exactly n operators L−1. The additional L−1 is either created

from Y ∗ or from G
rY
1

−1Q
rY
2

−1Q
rY
3

0 . For the latter case there are a few possibilities to create L−1: only
under the action of G0, Q0, L1, or H1, and depending on the values of rY

1 , rY
2 , and rY

3 . The operator
Γ could be one of these operators or the commutation of Γ with Y ∗ could produce one of them.
(Note that it is not possible to create one of these operators and to create in addition a L−1 from

Y ∗.) If now G0, Q0, L1, or H1 creates a L−1 from G
rY
1

−1Q
rY
2

−1Q
rY
3

0 , then we find in each case that at
least one of rY

1 or rY
2 changes from 1 to 0 whilst rY

3 remains unchanged. But XΓ has the same ri as
X0 for i = 1, 2, 3. One therefore deduces that rY

1 +rY
2 > r1 +r2 and thus Y <OG

X0. Hence the addi-
tional L−1 must be created by commuting Γ through the leading part Y ∗ in order that X0<OG

Y . 2

Equipped with theorem 5.D we can now proceed with the proof of theorem 5.C:

Let us consider the term

X0 = L0 H0 G0 Q0 Ln
−1 G

r1

−1 Q
r2

−1 Q
r3

0 ∈ CG
m0,n0

, (59)

with L0,H0, G0 and Q0 given above. We construct the vector Ψ0 = X0 |∆, q〉G ∈ VG
∆,q at level

|X0|L = m0 and charge |X0|H = n0.

Let us first consider the annihilation operators to be those in U(T2)
+ only. If Q0 6= 1 we act

with G
mQ

1
−1

∈ T+
2 on Ψ0 and write the result again in its normal form. We will thus obtain a

non-trivial term in G
mQ

1
−1

Ψ0 with one additional L−1:

XQ = L0 H0 G0 Q̃0 Ln+1
−1 Gr1

−1 Q
r2

−1 Q
r3

0 ,

Q̃0 = Q
−mQ

q
. . .Q

−mQ
2

(60)

or, if ‖Q0‖ = 1, Q̃0 = 1 simply by commuting G
mQ

1
−1

with Q
−mQ

1

which produces the additional

operator L−1. Any other term Y ∈ CG
m0,n0

also producing XQ under the action of G
mQ

1
−1

∈ T+
2

and being OG-bigger than X0 also needs to create one L−1 by commuting G
mQ

1
−1

with Y ∗ due to

theorem 5.D. We can therefore focus on terms Y = LY HY GY QY Ln
−1G

r1

−1Q
r2

−1Q
r3

0 . One finds that
by commuting G

mQ
1
−1

with operators in LY or HY one can only produce terms of the form Gm′ with

m′ < mQ
1 − 1. Therefore, in order to create subsequently the operator L−1 from Gm′ or directly

from G
mQ

1
−1

, Y needs to contain an operator of the form Q−m⋆−1 that satisfieso 0 < m⋆ + 1 ≤ mQ
1 .

If m⋆ +1 < mQ
1 one finds that Y is OG-smaller than X0 as the equation deciding on the ordering of

X0 and Y would in this case be Eq. (54). If m⋆+1 = mQ
1 , on the other hand, Y must be necessarily

oNote that for m⋆ = 0,−1 Q−m⋆−1 would not be in the leading part Y ∗.
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equal to X0. Note that G
mQ

1
−1

and Gm′ simply anticommute with operators of GY and therefore

cannot create any L−1. Hence there are no terms Y OG-bigger than the terms X0 producing the
same terms XQ under the action of G

mQ
1
−1

∈ T+
2 . We have therefore shown that the ordering OG

is adapted on the set of terms X0 of the form given by Eq. (59) with Q0 6= 1 for all grades (m0, n0)
and all central terms c ∈ C.

As the terms X0 with Q0 6= 1 are now proven to be adapted, next we will consider the terms
X0 with Q0 = 1 and G0 6= 1:

X0 = L0 H0 G0 Ln
−1 G

r1

−1 Q
r2

−1 Q
r3

0 . (61)

If G0 6= 1 we act with the annihilation operator QmG
1
−1 on Ψ0 = X0 |∆, q〉G. This produces the

term

XG = L0 H0 G̃0 Ln+1
−1 Gr1

−1 Q
r2

−1 Q
r3

0 (62)

with G̃0 = G−mG
g

. . .G−mG
2

or, if ‖G0‖ = 1, G̃0 = 1. Again, any other term Y with X0<OG
Y

also producing XG under the action of QmG
1
−1 ∈ T+

2 needs to create one L−1 by commuting
QmG

1
−1 through the leading part Y ∗ due to theorem 5.D. Thus we focus on operators Y of the

form Y = LY HY GY QY Ln
−1G

r1

−1Q
r2

−1Q
r3

0 with QY = 1 as otherwise Y <OG
X0. Commuting QmG

1
−1

with operators in LY or HY can only create operators of the form Qm′ with m′ < mG
1 − 1. The

operators QmG
1
−1 and Qm′ can create L−1 from GY only if GY contains G−m′−1 with m′ + 1 ≤ mG

1

and therefore Y is again OG-smaller or equal than X0. Commuting Qm through GY can also give
rise to operators of the form Lp, Hp and consequently even to Gp with p < mG

1 − 1. In order to
create L−1 from QY it would require that QY 6= 1 so that one again finds Y <OG

X0. This shows

that the ordering OG is adapted on the set of terms X0 of the form given by Eq. (59) with Q0 6= 1
or G0 6= 1 for all grades (m0, n0) and all central terms c ∈ C.

Next we will consider the terms X0 with Q0 = 1, G0 = 1 and L0 6= 1:

X0 = L0 H0 Ln
−1 G

r1

−1 Q
r2

−1 Q
r3

0 . (63)

If L0 6= 1 we act with the annihilation operator LmL
1
−1 ∈ T+

2 on Ψ0 = X0 |∆, q〉G. This produces a
term of the form

XL = L̃0 H0 Ln+1
−1 Gr1

−1 Q
r2

−1 Q
r3

0 (64)

with L̃0 = L−mL
l

. . .L−mL
2

or, if ‖L0‖ = 1, L̃0 = 1. If mL
2 = mL

1 we may simply obtain multiple

copies of the same term XL. Again theorem 5.D allows us to focus on OG-bigger terms Y of the form
Y = LY HY Ln

−1G
r1

−1Q
r2

−1Q
r3

0 ∈ CG
m0,n0

(in addition, GY 6= 1 or QY 6= 1 would lead to Y <OG
X0). The

operator LmL
1
−1 commuted with operators in HY cannot create any L−1 and obviously, following

the arguments of the Virasoro case (proof of theorem 2.D), terms Y that produce XL creating L−1

out of LY would again be OG-smaller than X0. Therefore we can state that the ordering OG is
adapted on the set of terms X0 of the form given by Eq. (59) with Q0 6= 1, or G0 6= 1, or L0 6= 1
for all grades (m0, n0) and all central terms c ∈ C.

We are thus left with terms X0 of the form

X0 = H0 Ln
−1 G

r1

−1 Q
r2

−1 Q
r3

0 . (65)
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At this stage it is not possible to create operators L−1 by acting directly with positive operators of
T+

2 on H0. Therefore we cannot use further theorem 5.D, which has proven to be very fruitful so
far, and a different strategy must be applied. Let us first assume that H0 contains operators other
than H−1 and let j0 ∈ N be the smallest index of H0 such that mH

j0 6= 1. There are four different
cases to study depending on the values of r1, r2 and r3. Let us start with the cases where r2 = 0.
Acting withp GmH

j0

Q−1 ∈ U(T2)
+ on Ψ0 = X0 |∆, q〉G and writing the result in its normal form,

one obtains a non-trivial term

XH = H̃0 Ln+1
−1 Gr1

−1 Q
r3

0 ,

H̃0 = H−mH
h

. . .H−mH
j+1

Hj0−1
−1 (66)

or, if ‖H0‖ = j0, H̃0 = Hj0−1
−1 (commuting Q−1 with H−mH

j0

produces Q−mH
j0
−1 and subsequently

the commutation with GmH
j0

produces L−1). If mH
j0+1 = mH

j0
one simply obtains multiple copies

of XH . Now we must show that any other term Y ∈ CG
m0,n0

also producing XH under the action
of GmH

j0

Q−1 is OG-smaller than X0. Just like in theorem 5.D, if Y already has n + 1 or more

operators L−1, then Y <OG
X0. But unlike in theorem 5.D, we act now with two operators and

could therefore also produce two new operators. However GmH
j0

Q−1 cannot produce two L−1 as

there are no operators G0 in Y . We therefore take first Y = HY Ln
−1G

r1

−1Q
r2

−1Q
r3

0 ∈ CG
m0,n0

. If

GmH
j0

Q−1 produces one L−1 by commuting through HY and leaves r1, r2 and r3 unchanged one

finds Y <OG
X0, because then HY needs to have more operators H−1 than X0, so that mY

j0 < mH
j0.

On the other hand, Q−1 acting on G
rY
1

−1Q
rY
2

−1Q
rY
3

0 cannot create any L−1 but it could change rY
2 from

0 to 1 or rY
1 from 1 to 0. The first case would not produce XH as we assumed r2 = 0 and in

addition GmH
j0

cannot create L−1 from HY . The latter case can produce XH but only for r1 = 0

and rY
1 = rY

2 = 1 (G2Q−1 creating L−1 from G
rY
1

−1Q
rY
2

−1Q
rY
3

0 ). Thus rY
1 + rY

2 = 2 > 0 = r1 + r2

resulting in Y <OG
X0.

Now let us take r2 = 1 and let us assume r1 = 0. In this case we proceed analogously as in the
previous case by acting with QmH

j0

G−1 ∈ U(T2)
+. Again one cannot produce the term XH from a

term Y OG-bigger than X0. In particular, the only way G−1 could change the triple (rY
1 , rY

2 , rY
3 )

is by changing rY
1 from 0 to 1, which is not allowed as r1 = 0, and in addition L−1 could not be

created by QmH
j0

acting on HY . For the case that both r1 = r2 = 1 let us first assume that r3 = 0.

By acting with GmH
j0
−1Q0 ∈ U(T2)

+ one produces L−1 from H−mH
j0

in a similar way as before. Q0

can change the triple (rY
1 , rY

2 , rY
3 ) in two ways: it can change rY

3 from 0 to 1 or it could change rY
1

from 1 to 0. The first case, however, would not lead to the term XH as r3 = 0. The latter case can
only lead to XH if GmH

j0
−1 can be converted into G−1 which requires HY <

H
H0. Therefore we find

Y <OG
X0. Finally, if r1 = r2 = r3 = 1 we act with QmH

j0
−1G0. In this case rY

3 can only be changed

from 1 to 0, which does not lead to XH , and rY
2 can only be changed from 1 to 0, which requires

QmH
j0
−1 to be converted into Q−1 in order to obtain XH , resulting again in Y <OG

X0. We can thus

summarise that the ordering OG is adapted on the set of terms X0 of the form given by Eq. (59)
with Q0 6= 1, or G0 6= 1, or L0 6= 1, or H0 6= Hk

−1 for some k ∈ N0 for all grades (m0, n0) and all
central terms c ∈ C.

pAt this stage of the proof we need the annihilation operators to be from the universal enveloping algebra.
Therefore, definition 3.C is slighlty modified compared to definition 2.A.
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Next let us consider X0 = HmH

−1 Ln
−1G

r1

−1Q
r2

−1Q
r3

0 . For the ordering we have chosen, H1 is
not capable to rule out elements of the ordering kernel containing H−1. The action of H1 rather
concerns G−1Q−1 as this combination of operators is necessarily needed in order to create L−1

under the action of H1. If we take r1 = r2 = 1, i.e. X0 = HmH

−1 Ln
−1G−1Q−1Q

r3

0 , then the action of
H1 creates an additional L−1 in the only possible way that H1 can create L−1, producing a term
HmH

−1 Ln+1
−1 Qr3

0 that cannot be obtained from any other term Y OG-bigger than X0. Thus elements

of the ordering kernel are of the form HmH

−1 Ln
−1G

r1

−1Q
r2

−1Q
r3

0 with r1 + r2 < 2 for all grades and all
central terms c ∈ C.

At this stage all restrictions on the ordering kernel arising from operators in T+
2 which create

an additional L−1 have been used. One might think that the smallest ordering kernel has been
found. However we will now show that, considering the action of two annihilation operators at the
same time, we can still reduce the ordering kernel at least for central terms c 6= 3. Let us consider
the case X0 = HmH

−1 Ln
−1G

r1

−1Q
r2

−1Q
r3

0 . with mH 6= 0 and r1 +r2 < 2. The action of H1 ∈ T+
2 on Ψ0 =

X0 |∆, q〉G creates, provided c 6= 0, a non-trivial term of the form XH = HmH−1
−1 Ln

−1G
r1

−1Q
r2

−1Q
r3

0

with one H−1 removed but no new L−1 created. Furthermore, as r1 + r2 < 2 H1 cannot create
any L−1. Now, depending on r1, r2 and r3 it may be possible to find terms Y OG-bigger than
X0 that do not create L−1 but still generate XH under H1. In the case r1 = 1, r2 = 0 one finds

that Y = HmH−1
−1 G−2L

n
−1Q

r3

0 is the only such term. Thus, X0 and Y both create the same term

XH = HmH−1
−1 Ln

−1G−1Q
r3

0 under the action of H1 with coefficients mH c
3 and 1 respectivelyq, with

X0<OG
Y . On the other hand, acting with Q1 again shows that Y is the only term OG-bigger

than X0, both of them generatingr X̃H = HmH−1
−1 Ln+1

−1 Qr3

0 . Let us therefore take the combination
H1 + Q1 acting on X0 and on Y . This results in

(H1 + Q1)X0 = mH c

3
XH + 2mHX̃H + ... , (67)

(H1 + Q1)Y = XH + 2X̃H + ... ,

where “. . .” denotes terms that are irrelevant for uss. We now alter the standard basis of the
normal form by defining new basis terms X1 = mH c

3XH + 2mHX̃H and X2 = XH + 2X̃H . If
this change of basis is possible the action of H1 + Q1 on X0 thus yields a term X1 that cannot
be produced from any other term Y unless Y <OG

X0. In order for this basis transformation to be

allowed, the determinant of the transformation coefficients must be non-trivial: 2mH c
3 − 2mH 6= 0

with mH > 0 and c 6= 3. In the case r1 = 0, r2 = 1 we can repeat exactly the same procedure with

Y = HmH−1
−1 Q−2L

n
−1Q

r3

0 , X̃H = HmH−1
−1 Ln+1

−1 Qr3

0 and Q1 replaced by G1. Eqs. (67) turn in this
case into

(H1 + G1)X0 = mH c

3
XH − 2mHX̃H + ... , (68)

(H1 + G1)Y = −XH + 2X̃H + ... ,

and thus result in exactly the same conditions from the determinant: mH > 0 and c 6= 3.

Finally in the case r1 = r2 = 0 we are left with X0 of the form

X0 = HmH

−1 Ln
−1 Q

r3

0 . (69)

qThere are certainly other terms that are OG-smaller than X0 and create XH such as HmH
−1

−1 Ln
−1G−1Q−1

for r2 = 0 and r3 = 1. But as before, OG-smaller terms are not relevant due to definition 3.C.
rNote that we have used the action of Q1 before to rule out Y in the ordering kernel.
sNote that this is consistent for c = 0.
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For mH ≥ 1 one finds that the action of H1 on X0 and on Y = HmH−1
−1 Ln−1

−1 G−1Q−1Q
r3

0 produces a

term XH = HmH−1
−1 Ln

−1Q
r3

0 with coefficients c
3mH and 2 respectively. As X0<OG

Y one again needs

to find a suitable second operator creating from both X0 and Y a common term X̃H that cannot
be created from any other terms that are OG-bigger than X0 and Y . For mH ≥ 2 we act with

H1G0Q0 on X0 and Y . In both cases one obtains a term X̃ = HmH−2
−1 Ln+1

−1 Qr3

0 with coefficients
2mH(mH − 1)( c

3 − 1) and 4(mH − 1)( c
3 − 1) respectively. As above, the change of basis is possible

if the determinant of these coefficients is non-trivial:
∣

∣

∣

∣

∣

mH c
3 2

2mH(mH − 1)( c
3 − 1) 4(mH − 1)( c

3 − 1)

∣

∣

∣

∣

∣

= 4mH(mH − 1)(
c

3
− 1)2 , (70)

and thus result in the conditions: mH ≥ 2 and c 6= 3.

Therefore the kernel of the ordering OG, is given by

CK
m0,n0

=
{

Ln
−1G

r1

−1Q
r2

−1Q
r3

0 , H−1L
n
−1Q

r3

0 : r1 + r2 < 2, m0 = n + r1 + r2, n0 = r1 − r2 − r3
}

,

for all grades (m0, n0) and all central terms c ∈ C with c 6= 3. This proves the results shown in
Tab. c.

For G0-closed vectors G0 is also in the set of annihilation operators. In this case the action
of G0 on X0 of the form HmH

−1 Ln
−1G

r1

−1Q−1Q
r3

0 produces the term HmH

−1 Ln+1
−1 Gr1

−1Q
r3

0 that cannot
be obtained from any other term Y OG-bigger than X0 (commuting with Q−1 is the only way to
produce L−1 acting with G0). Thus, the ordering kernel contains no terms with Q−1 for all complex
values of c.

If we now take X0 = H−1L
n
−1Q

r3

0 we find the (unique) OG-bigger term Y = Ln−1
−1 G−1Q−1Q

r3

0 ,
both producing the terms Ln

−1G−1Q
r3

0 and Ln
−1Q

r3

0 under the action of G0 and H1 respectivelyt. As
a result H−1 can also be removed by changing the basis suitably provided c 6= 3. The determinant
of the coefficients results in:

∣

∣

∣

∣

∣

−1 −2
c
3 2

∣

∣

∣

∣

∣

= 2(
c

3
− 1) , (71)

which is again non-trivial for c 6= 3. This proves the results shown in Tab. d.

In a completely analogous way one can remove the terms containing G−1 or H−1 in the case of
Q0-closed singular vectors. The former can be done by acting with Q0 on X0 =HmH

−1 Ln
−1G−1Q

r2

−1Q
r3

0 ,

creating the term HmH

−1 Ln+1
−1 Qr2

−1Q
r3

0 , whilst the latter is achieved from the action of Q0 and H1 on
the same X0 and Y as above. The determinant of the coefficients is again non-trivial for c 6= 3:

∣

∣

∣

∣

∣

1 2
c
3 2

∣

∣

∣

∣

∣

= −2(
c

3
− 1) , (72)

The results are shown in Tab. e.

Finally, combining our considerations for G0-closed singular vectors and Q0-closed singular
vectors we obtain that the ordering kernel for the case of chiral singular vectors does not contain
any operators of the form Q−1, G−1 or H−1. This proves the results shown in Tab. f and finally
completes the proof of theorem 5.C. 2

tThe basis we have to choose in this case is not L0 graded.
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By replacing the rôles of the operators Gn and Qn for all n ∈ Z we can define analogously an
ordering OQ on CQ

m,n which is adapted for c 6= 3 for all levels. The corresponding ordering kernels
are as follows.

Theorem 5.E If the central extension satisfies c 6= 3 then the ordering OQ is adapted to CQ
m,n for

all Verma modules VQ
∆,q and for all grades (m,n) with m ∈ N0, n ∈ Z. Ordering kernels are given

by the following tables for all levels m, depending on the set of annihilation operators and depending
on the charge n.

n ordering kernel

+2 {Lm−1
−1 G−1G0}

+1 {Lm
−1G0,H−1L

m−1
−1 G0,L

m−1
−1 G−1}

0 {Lm
−1,H−1L

m−1
−1 ,Lm−1

−1 Q−1G0}

−1 {Lm−1
−1 Q−1}

Tab. g Ordering kernels for OQ, annihilation operators T+
2 .

n ordering kernel

+1 {Lm
−1G0}

0 {Lm
−1,L

m−1
−1 Q−1G0}

−1 {Lm−1
−1 Q−1}

Tab. h Ordering kernels for OQ, annihilation operators T+
2 and Q0.

n ordering kernel

+2 {Lm−1
−1 G−1G0}

+1 {Lm
−1G0,L

m−1
−1 G−1}

0 {Lm
−1}

Tab. i Ordering kernels for OQ, annihilation operators T+
2 and G0.

n ordering kernel

+1 {Lm
−1G0}

0 {Lm
−1}

Tab. j Ordering kernels for OQ, annihilation operators T+
2 , Q0, and G0.

Charges that do not appear in the tables have trivial ordering kernels.

Proof: The proof of theorem 5.E is completely analogous to the proof of theorem 5.C. We just need
to swap the rôles of the operators Gn and Qn for all n ∈ Z. 2

6 Adapted orderings on chiral Verma modules VGQ
0,q

We saw in section 4 that for both chiral and no-label highest weight vectors the conformal weight
is zero. This applies to Verma modules as well as to singular vectors. Thus a chiral singular vector
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in the chiral Verma module VGQ
0,q needs to have level 0 and the same is true for no-label singular

vectors in VGQ
0,q . But at level 0 there are no singular vectors in VGQ

0,q , as the only state at level 0

is the highest weight state |0, q〉GQ itself. For chiral Verma modules VGQ
0,q we shall therefore only

consider adapted orderings with additional annihilation conditions corresponding to G0 or Q0, but
not to both.

In section 4 we also introduced the set CGQ
m,n, Eq. (48), defining the standard basis B|0,q〉GQ of the

chiral Verma modules VGQ
0,q . CGQ

m,n can be obtained by setting r3 ≡ 0 in CG
m,n, Eq. (41). Therefore,

OG is also defined on CGQ
m,n, a subset of CG

m,n. This suggests that the ordering kernels for OG on CGQ
m,n

may simply be appropriate subsets of the ordering kernels of OG on CG
m,n, given in theorem 5.C.

This can easily be shown by considering the fact that r3 is never a deciding element of the ordering
OG in Eqs. (52)-(57). Furthermore, during the proof of theorem 5.C it happens in each case that
the considered term XΓ, constructed from X0 under the action of a suitable annihilation operator
Γ, has always the same exponent r3 of Q0 as X0 itself. Therefore, the whole proof of theorem 5.C
can also be applied to OG defined on CGQ

m,n simply by imposing r3 ≡ 0 in every step. As a result the

new ordering kernels are simply the intersections of CGQ
m,n with the ordering kernels for CG

m,n. Hence,
we have already proven the following theorem.

Theorem 6.A For the set of annihilation operators that contains G0 or Q0 but not both and for
c 6= 3 the ordering OG is adapted to CGQ

m,n for all chiral Verma modules VGQ
0,q and for all grades

(m,n) with m ∈ N0, n ∈ Z. Depending on the set of annihilation operators and depending on the
charge n, ordering kernels are given by the following tables for all levels m:

n ordering kernel

+1 {Lm−1
−1 G−1}

0 {Lm
−1}

Tab. k Ordering kernels for OG on CGQ
m,n, annihilation operators T+

2 and G0.

n ordering kernel

0 {Lm
−1}

−1 {Lm−1
−1 Q−1}

Tab. l Ordering kernels for OG on CGQ
m,n, annihilation operators T+

2 and Q0.

Charges that do not appear in the tables have trivial ordering kernels.

7 Adapted orderings on no-label Verma modules V0,q

We will now consider adapted orderings for no-label Verma modules V0,q. In section 4, the stan-
dard basis for V0,q is defined using Cm,n of Eq. (48). No-label Verma modules have zero conformal
weight, like chiral Verma modules. Consequently chiral singular vectors as well as no-label singu-
lar vectors in V0,q can only exist at level 0. The space of states in V0,q at level 0 is spanned by
{|0, q〉 ,G0 |0, q〉 ,Q0 |0, q〉 ,G0Q0 |0, q〉}. Therefore, there are no no-label singular vectors in V0,q and
there is exactly one chiral singular vector in V0,q for all q and for all central extensions c, namely
G0Q0 |0, q〉. Hence, our main interest focuses on the G0-closed singular vectors and the Q0-closed
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singular vectors in V0,q and we shall therefore investigate adapted orderings with the corresponding
vanishing conditions. The states G0 |0, q〉 and Q0 |0, q〉 satisfy Q0G0 |0, q〉 = −G0Q0 |0, q〉. Conse-
quently the norms of these states have opposite signs and can be set to zero.

Clearly, VG
0,q is isomorphic to the quotient module of V0,q divided by the submodule generated

by the singular vector G0 |0, q〉, i.e. VG
0,q =

V0,q

G0|0,q〉 and likewise VQ
0,q =

V0,q

Q0|0,q〉 . If we consider a

singular vector Ψ of V0,q then the canonical projection of Ψ into VG
0,q is either trivial or a singular

vector in VG
0,q and similarly for VQ

0,q. The converse, however, is not true, a singular vector in VG
0,q

or VQ
0,q do not necessarily correspond to a singular vector in V0,q, it may only be subsingular in

V0,q. One may also ask whether all singular vectors in V0,q correspond to singular vectors in either

VG
0,q or VQ

0,q, in which case the investigation of no-label Verma modules would not give us more
information than what we already know, or rather there can also be singular vectors in V0,q that

vanish for both canonical projections into the generic Verma modules VG
0,q and VQ

0,q. This is indeed
the case, as was shown by the explicit examples at level 1 given in Ref. 19 (we will come back to
this point at the end of next section).

Unlike for chiral Verma modules, the no-label Verma modules are not simply a subcase of the
G0-closed Verma modules with respect to the adapted ordering OG. In fact, rather than Cm,n being
a subset of CG

m,n, we find that CG
m,n is a subset of Cm,n and we hence need to extend the ordering

OG suitably.

Definition 7.A On the set Cm,n we introduce the total ordering OGQ. For two elements X1,X2 ∈

Cm,n, X1 6= X2 with Xi = LiH iGiQiLki

−1G
ri
1

−1Q
ri
2

−1G
ri
4

0 Q
ri
3

0 , Li ∈ Lli , H i ∈ Hhi
,Gi ∈ Ggi

,Qi ∈ Qqi
for

some li, hi, gi, qi, k
i, ri

1, r
i
2, r

i
3, r

i
4 ∈ N0, i = 1, 2 such that m ∈ N0, n ∈ Z we define

X1<OGQ
X2 if k1 > k2 . (73)

For k1 = k2 we set

X1<OGQ
X2 if r1

1 + r1
2 > r2

1 + r2
2 . (74)

If r1
1 + r1

2 = r2
1 + r2

2 we set

X1<OGQ
X2 if Q1<

Q
Q2 . (75)

In the case Q1 = Q2 we define

X1<OGQ
X2 if G1<

G
G2 . (76)

If also G1 = G2 we then define

X1<OGQ
X2 if L1<

L
L2 . (77)

If further L1 = L2 we set

X1<OGQ
X2 if H1<

H
H2 , (78)

unless H1 = H2 in which case we set

X1<OGQ
X2 if r1

1 > r2
1 . (79)
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If also r1
1 = r2

1 we finally define

X1<OGQ
X2 if r1

3 + r1
4 > r2

3 + r2
4 , (80)

which necessarily has to give an answer. For X1 = X2 we define X1<OGQ
X2 and X2<OGQ

X1.

If Eqs. (73)-(80) do not give an answer on the ordering of X1 and X2, then X1 and X2 are

of the form Xi = LHGQLk
−1G

r1

−1Q
r2

−1G
ri
4

0 Q
ri
3

0 , with r1
3 + r1

4 = r2
3 + r2

4. Since X1 and X2 both have
charge n one has r1

3 − r1
4 = r2

3 − r2
4 and thus X1 = X2. Hence, definition 7.A is a total ordering

well-defined on Cm,n.

We will now argue that the proof of theorem 5.C can easily be modified in such a way that
exactly the same restrictions on the ordering kernels of OG extend to the ordering kernels of OGQ.
As a first step we see that theorem 5.D extends straightforwardly to Cm,n simply by replacing
X0 = X∗

0L
n
−1G

r1

−1Q
r2

−1Q
r3

0 ∈ CG
m,n by X0 = X∗

0L
n
−1G

r1

−1Q
r2

−1G
r4

0 Qr3

0 ∈ Cm,n. Note that in the proof rY
4

would behave exactly like rY
3 which does not interfere with any arguments. As theorem 5.D turned

out to be the key tool to remove operators of the form L−n, G−n, or Q−n from the ordering kernel
of CG

m,n, we can in exactly the same way already state that the ordering OGQ is for all grades (m,n)
and all central extensions c ∈ C adapted to the set of terms

X0 = L0 H0 G0 Q0 Ln
−1 G

r1

−1 Q
r2

−1 G
r4

0 Qr3

0 ∈ Cm,n , (81)

with L0 6= 1, or G0 6= 1, or Q0 6= 1. We can thus focus on terms X0 of the form

X0 = H−mH
I

. . .H−mH
j0

Hj0−1
−1 Ln

−1 G
r1

−1 Q
r2

−1 G
r4

0 Qr3

0 , (82)

with mH
j0 > 1. In the proof of theorem 5.C we dealt with these terms by acting with GmH

j0
−1Q−1

for r2 = 0. At first, the existence of G0 in the no-label case seems to interfere with this argument.
However, the ordering OGQ has been defined in such a way that Q−1 does never interact with G0

as it would simply be stuck on the left of G0. Therefore, one easily sees that the same arguments as
in the proof of theorem 5.C hold for r2 = 0. In the case of r2 = 1 and r1 = 0 the proof even holds
without any modification. For the cases r1 = r2 = 1, we act with GmH

j0

Q0 or QmH
j0

G0 for r3 = 0 or

r3 = 1 respectively. In these cases we have to consider the additional possibility that rY
4 changes

from 1 to 0 or from 0 to 1 respectively. However, as GmH
j0

or QmH
j0

still needs to create a L−1 we

easily see that any term Y also satisfying the conditions of proof 5.C for this case must contain
operators LY , GY , QY , or HY with HY <

H
H0 and therefore Y <

GQ
X0 as the r4 term decides very

last in the ordering Eqs. (73)-(80). For the final part of proof 5.C where we found restrictions
on Hj0

−1 in X0, we can simply note that G0 cannot interfere with the arguments of the proof for
H1 (terms that could interfere to produce G0 would be OGQ-smaller than X0) and Q1 and G1 are
used in the proof to create L−1 which is neither possible with G0. Similar arguments show that
the proof also holds for r1 = r2 = 0. It is easy to see that in the G0-closed or Q0-closed cases all
considerations of proof 5.C extend to Cm,n. We have thus shown that the proof of theorem 5.C
extends to prove the following theorem regarding no-label Verma modules V0,q.

Theorem 7.B For the set of annihilation operators that contains G0 or Q0 but not both and for
c 6= 3 we find that the ordering OGQ is adapted to Cm,n for all Verma modules V0,q and for all
grades (m,n) with m ∈ N0, n ∈ Z. Depending on the set of annihilation operators and depending
on the charge n, ordering kernels are given by the following tables for all levels m:
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n ordering kernel

+2 {Lm−1
−1 G−1G0}

+1 {Lm
−1G0,L

m−1
−1 G−1,L

m−1
−1 G−1G0Q0}

0 {Lm
−1,L

m
−1G0Q0,L

m−1
−1 G−1Q0}

−1 {Lm
−1,Q0}

Tab. m Ordering kernels for OGQ on Cm,n, annihilation operators T+
2 and G0.

n ordering kernel

+1 {Lm
−1G0}

0 {Lm
−1,L

m
−1G0Q0,L

m−1
−1 Q−1G0}

−1 {Lm
−1Q0,L

m−1
−1 Q−1,L

m−1
−1 Q−1G0Q0}

−2 {Lm−1
−1 Q−1Q0}

Tab. n Ordering kernels for OGQ on Cm,n, annihilation operators T+
2 and Q0.

Charges that do not appear in the tables have trivial ordering kernels.

8 Dimensional analysis

In previous sections we argued, following Ref. 19, that a naive estimate would give 16 types of
singular vectors in N = 2 topological Verma modules, depending on whether the highest weight
vector or the singular vector itself satisfy additional vanishing conditions with respect to the zero
modes G0 or Q0, each of these types coming with different charges. Three of these types can be
ruled out, however, simply by taking into account that chiral highest weight conditions and no-
label highest weight conditions apply only to states with zero conformal weight. In chiral Verma
modules this rules out chiral singular vectors as well as no-label singular vectors, whilst in no-label
Verma modules the no-label singular vectors are ruled out. A fourth type of singular vectors, chiral
singular vectors in no-label Verma modules, turns out to consist of only the level zero singular
vector G0Q0 |0, q〉. In this section we will use theorem 3.F, together with the results for the ordering
kernels of the previous sections, as the main tools to give upper limits for the dimensions of the
remaining 12 types of topological singular vectors. For most charges this procedure will even show
that there are no singular vectors corresponding to them.

The dimension of the singular vector spaces in N = 2 superconformal Verma modules can
be larger than one. This fact was discovered for the Neveu-Schwarz N = 2 algebra in Ref. 9.
In particular, sufficient conditions were found (and proved) to guarantee the existence of two-
dimensional spaces of uncharged singular vectors. Before this had been shown, it was a false
common belief that singular vectors at the same level and with the same charge would always be
linearly dependent. Later some of the results in Ref. 9 were extended19 to the topological N = 2
algebra. As a consequence two-dimensional spaces for four different types of topological singular
vectors were shown to exist (those given in Tab. o below). However, as we will discuss, the Neveu-
Schwarz counterpart of most topological singular vectors are not singular vectors themselves, but
either descendants of singular vectors or subsingular vectors11, 19, 15, for which very little is known.
As a consequence, in order to compute the maximal dimensions for the singular vector spaces of
the topological N = 2 algebra, an independent method, like the one presented in this paper, was
needed.

Let us first proceed with a clear definition of what we mean by singular vector spaces.



Singular dimensions of the N = 2 superconformal algebras. I 28

Definition 8.A A G0-closed singular vector space of the topological Verma module VM
∆,q is a sub-

space of VM
∆,q of vectors at the same level and with the same charge for which each non-trivial

element is a G0-closed singular vector. M stands for G0-closed, Q0-closed, chiral, or no-label.
Analogously we define Q0-closed singular vector spaces, chiral singular vector spaces, and no-label
singular vector spaces.

Let us denote by ΨK,n

m,|∆,q〉M
a singular vector in the topological Verma module VM

∆,q at level

m and with charge n. K denotes the additional vanishing conditions of the singular vector, whith
respect to G0 and Q0, whilst M denotes the additional vanishing conditions of the highest weight
vector, as introduced in section 4. The ordering kernels of theorems 5.C and 5.E together with
theorem 3.F allow us to write down an upper limit for the dimensions of the singular vector spaces
simply by counting the number of elements of the ordering kernels.

Theorem 8.B For singular vectors with additional vanishing conditions in VG
∆,q or in VQ

∆,q, c 6= 3,
we find the following upper limits for the number of linearly independent singular vectors at the
same level m ∈ N0 and with the same charge n ∈ Z (∆ = −m for chiral singular vectors).

n = −2 n = −1 n = 0 n = 1 n = 2

ΨG,n

m,|∆,q〉G
0 1 2 1 0

ΨQ,n

m,|∆,q〉G
1 2 1 0 0

ΨGQ,n

m,|−m,q〉G
0 1 1 0 0

ΨQ,n

m,|∆,q〉Q
0 1 2 1 0

ΨG,n

m,|∆,q〉Q
0 0 1 2 1

ΨGQ,n

m,|−m,q〉Q
0 0 1 1 0

Tab. o Maximal dimensions for singular vectors spaces annihilated by G0 and/or Q0 in VG
∆,q or in VQ

∆,q.

Singular vectors can only exist if they contain in their normal form at least one non-trivial term
of the corresponding ordering kernel of theorem 5.C or 5.E. Charges n that are not given have
dimension 0 and hence do not allow any singular vectors.

The ordering kernels for the vanishing conditions T+
2 , given in tables Tab. c and Tab. g, do

not include any conditions requiring the action of G0 and Q0 not to be trivial. As a result, the
ordering kernels of tables Tab. c and Tab. g include not only the no-label cases but also the cases
of G0-closed singular vectors, Q0-closed singular vectors, and chiral singular vectors. However, for
no-label singular vectors in VG

∆,q or in VQ
∆,q we can find in addition the following restrictions. If

Ψn
m,|∆,q〉M

is a no-label singular vector, then G0Ψ
n
m,|∆,q〉M

must be a singular vector of type ΨG,n+1

m,|∆,q〉M
.

Consequently, the dimension for the space of the no-label singular vector Ψn
m,|∆,q〉M

cannot be larger

than the dimension for the space of the G0-closed singular vectoru ΨG,n+1

m,|∆,q〉M
. This can easily be

uIf Ψ is a no-label singular vector and Ξ is a G0-closed, or Q0-closed, or chiral singular vector, both at
the same level and with the same charge, then Ψ + Ξ is again a no-label singular vector (in the sense of
not being annihilated by G0 or Q0) which is linearly idenpendent of Ψ. However, the space spanned by Ψ
and Ψ + Ξ is not considered to be a two-dimensional no-label singular vector space as it decomposes into
a one-dimensional no-label singular vector space and a one-dimensional G0-closed, or Q0-closed, or chiral
singular vector space.
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seen as follows. Assume that Ψ1 and Ψ2 are two no-label linearly independent singular vectors at
the same level and with the same charge, and suppose G0Ψ1 and G0Ψ2 are linearly dependent. Then
obviously there exist numbers α, β (αβ 6= 0) such that G0(αΨ1 + βΨ2) = 0 and thus the G0-closed
singular vector αΨ1 + βΨ2 is contained in the space spanned by Ψ1 and Ψ2, which is therefore not
a no-label singular vector space. Therefore, linearly independent singular vectors of type Ψn

m,|∆,q〉M

imply linearly independent singular vectors of type ΨG,n+1

m,|∆,q〉M
. The converse is not true, however,

since most G0-closed singular vectors are not generated by the action of G0 on a no-label singular
vector (in fact there are many more G0-closed singular vectors than no-label singular vectors, as
was shown in Ref. 19). Hence, the dimension for the space of singular vectors Ψn

m,|∆,q〉M
is limited

by the dimension for the space of singular vectors ΨG,n+1

m,|∆,q〉M
. Similarly, Q0Ψ

n
m,|∆,q〉M

is a singular

vector of type ΨQ,n−1

m,|∆,q〉M
. This again restricts the dimension for Ψn

m,|∆,q〉M
to be less or equal to

the dimension of ΨQ,n−1

m,|∆,q〉M
.

Theorem 8.C For no-label singular vectors in VG
∆,q or in VQ

∆,q, c 6= 3, we find the following upper
limits for the dimensions of singular vector spaces at level m ∈ N and with charge n ∈ Z (∆ = −m
for no-label singular vectors).

n = −2 n = −1 n = 0 n = 1 n = 2

Ψn
m,|−m,q〉G

0 1 1 0 0

Ψn
m,|−m,q〉Q

0 0 1 1 0

Tab. p Maximal dimensions for spaces of no-label singular vectors in VG
∆,q or in VQ

∆,q.

Singular vectors can only exist if they contain in their normal form at least one non-trivial term
of the corresponding ordering kernel of theorem 5.C or 5.E. Charges n that are not given have
dimension 0 and hence do not allow any singular vectors.

We now use the ordering kernels of section 6 and section 7 for chiral and no-label Verma
modules. Again, simply by counting the number of elements in the ordering kernels one obtains
the corresponding dimensions, given in the tables that follow.

Theorem 8.D For singular vectors in chiral Verma modules VGQ
0,q or in no-label Verma modules

V0,q, c 6= 3, we find the following upper limits for the number of linearly independent singular vectors
at the same level m ∈ N0 and with the same charge n ∈ Z.

n = −2 n = −1 n = 0 n = 1 n = 2

ΨG,n

m,|0,q〉GQ 0 0 1 1 0

ΨQ,n

m,|0,q〉GQ 0 1 1 0 0

ΨGQ,n

0,|0,q〉GQ 0 0 0 0 0

Ψn
0,|0,q〉GQ 0 0 0 0 0

Tab. q Maximal dimensions for singular vectors spaces in VGQ
0,q .
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n = −2 n = −1 n = 0 n = 1 n = 2

ΨG,n
m,|0,q〉 0 1 3 3 1

ΨQ,n
m,|0,q〉 1 3 3 1 0

ΨGQ,n
0,|0,q〉 0 0 1 0 0

Ψn
0,|0,q〉 0 0 0 0 0

Tab. r Maximal dimensions for singular vectors spaces in V0,q.

Singular vectors can only exist if they contain in their normal form at least one non-trivial term
of the corresponding ordering kernel of theorem 6.A or 7.B. Charges n that are not given have
dimension 0 and hence do not allow any singular vectors.

Tables Tab. o, Tab. p, Tab. q and Tab. r prove the conjecture made in Ref. 19 about the
possible existing types of topological singular vectors. Namely, using the algebraic mechanism
denoted the cascade effect it was deduced (although not rigorously) the existence of 4 types of
singular vectors in chiral Verma modules (the ones given in Tab. q), and 29 types in complete Verma
modules (the ones given in tables Tab. o, Tab. p and Tab. r). In addition, low level examples were
constructed for all these types of singular vectors what proves that all these types do exist (already
at level 1, in fact, except the type ΨGQ,n

0,|0,q〉 in no-label Verma modules that only exists at level 0).

We ought to mention that the dimensions given in the previous three theorems are consistent
with the spectral flow box diagrams analysed in Refs. 15, 18, 19. Namely, types of singular vectors
that are connected by the topological spectral flow automorphism A always show the same singular
vector space dimensionsv.

Finally let us consider the results of Tab. o in more detail for the case when the conformal
weight ∆ is a negative integer: ∆ = −m ∈ −N0. In this case, we easily find for each singular
vector ΨG,n

m,|−m,q〉G
(which has zero conformal weight) a companion Q0Ψ

G,n

m,|−m,q〉G
which is of chiral

type ΨGQ,n−1

m,|−m,q〉G
. Note that Q0Ψ

G,n

m,|−m,q〉G
cannot be trivial. It is rather a secondary singular

vector at level 0 with respect to the singular vector ΨG,n

m,|−m,q〉G
. Using the same arguments as for

the no-label singular vectors of Tab. p we obtain that the dimension for ΨG,n

m,|−m,q〉G
is restricted

by the dimension for ΨGQ,n−1

m,|−m,q〉G
. Similarly, we can act with G0 on ΨQ,n

m,|−m,q〉G
in order to obtain

a secondary singular vector of chiral type ΨGQ,n+1

m,|−m,q〉G
. The same statements are true for Verma

modules of type VQ
∆,q. We hence obtain the following theorem.

Theorem 8.E For singular vectors at level m ∈ N and with charge n ∈ Z in VG
∆,q or in VQ

∆,q, with
∆ = −m and c 6= 3, we find the following maximum dimensions for singular vector spaces.

vA is the universal odd spectral flow17, 16, 19, discovered in Ref. 17, which transform any topological
singular vector into another topological singular vector; in particular A transforms chiral singular vectors
into chiral singular vectors and no-label singular vectors into no-label singular vectors.
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n = −2 n = −1 n = 0 n = 1 n = 2

ΨG,n

m,|−m,q〉G
0 0 1 1 0

ΨQ,n

m,|−m,q〉G
1 1 0 0 0

ΨQ,n

m,|−m,q〉Q
0 1 1 0 0

ΨG,n

m,|−m,q〉Q
0 0 0 1 1

Tab. s Maximal dimensions for spaces of singular vectors at level m in VG
∆,q or in VQ

∆,q with ∆ = −m.

Charges n that are not given have dimension 0 and hence do not allow any singular vectors.

The results of Tab. s imply that if, for example, there are two linearly independent singular
vectors at level m with charge 0 in VG

∆,q, with ∆ = −m, both annihilated by G0, then there exists a
non-trivial linear combination of the two singular vectors that turns out to be a chiral singular vector
(annihilated by G0 and Q0). The space spanned by these two singular vectors hence decomposes
into a one-dimensional G0-closed singular vector space and a one-dimensional chiral singular vector
space (see Ref. 19 for examples at level 3).

Some remarks are now in order concerning the existence of the considered spaces of N = 2
singular vectors. First of all observe that the dimensions given by tables Tab. o - Tab. s are the
maximal possible dimensions for the spaces generated by singular vectors of the corresponding
types. That is, dimension 2 for a given type of singular vector in Tab. o does not mean that all the
spaces generated by singular vectors of such type are two-dimensional. Rather, most of them are
in fact one-dimensional and only under certain conditions one finds two-dimensional spaces. The
same applies to the three-dimensional spaces in Tab. r. To be more precise, in Ref. 9 it was proved
that for the Neveu-Schwarz N = 2 algebra two-dimensional spaces exist only for uncharged singular
vectors and under certain conditions, starting at level 2. For the topological N = 2 algebra this
implies, as was shown in Ref. 19, that the four types of two-dimensional singular vector spaces of
Tab. o must also exist starting at level 2, provided the corresponding conditions are satisfied. (To
see this19, 15 one only needs to apply the topological twists to the singular vectors of the Neveu-
Schwarz N = 2 algebra and then construct the box-diagrams using G0, Q0 and the odd spectral flow
automorphism A). As a matter of fact, also in Ref. 19 several examples of these two-dimensional
spaces were constructed at level 3.

For the case of the three-dimensional singular vector spaces in no-label Verma modules in
Tab. r, we do not know as yet of any conditions for them to exist. In fact these are the only
spaces, among all the spaces given in tables Tab. o - Tab. s, which have not been observed so far,
although the corresponding types of singular vectors have been constructed at level 1 generating
one-dimensional19 as well as two-dimensional spacesw (but not three-dimensional). The latter case
is interesting, in addition, because the corresponding two-dimensional spaces exist already at level
1 (in contrast with the two-dimensional spaces given by the conditions of Ref. 9, which exist at
levels 2 and higher). Namely, for c = 9 one can easily find two-dimensional spaces of singular
vectors of types ΨG,0

1,|0,−3〉 and ΨQ,−1
1,|0,−3〉, in the no-label Verma module V0,−3, and two-dimensional

spaces of singular vectors of types ΨG,1
1,|0,0〉 and ΨQ,0

1,|0,0〉, in the no-label Verma module V0,0, all four

types of singular vectors belonging to the same box-diagram15, 18, 19. That is, the spectral flow
automorphism A, transforming the Verma modules V0,−3 and V0,0 into each other, map ΨG,0

1,|0,−3〉

wIn Ref. 19 the existence of these two-dimensional spaces of singular vectors at level 1 was overlooked.
We give examples of them here for the first time.



Singular dimensions of the N = 2 superconformal algebras. I 32

to ΨQ,0
1,|0,0〉 and ΨG,1

1,|0,0〉 to ΨQ,−1
1,|0,−3〉, and the other way around, whereas G0 and Q0 transform the

singular vectors into each other inside a given Verma module. One of these two-dimensional spaces
is, for example, the space spanned by the singular vectors of type ΨQ,0

1,|0,0〉:

ΨQ,0
1,|0,0,c〉 = L−1Q0G0 |0, 0, c〉 (83)

and

Ψ̂Q,0
1,|0,0,9〉 = [H−1Q0G0 + Q−1G0 − 2Q0G−1] |0, 0, 9〉 , (84)

the latter existing only for c = 9. As one can see, the canonical projections of the first singular vector
into the generic Verma modules VG

0,0 and VQ
0,0 vanish. On the contrary, the canonical projections

of the second singular vector into the generic Verma modules VG
0,0 and VQ

0,0 are different from zero,
giving rise to the singular vectors

ΨQ,0

1,|0,0,9〉G
= Q0G−1] |0, 0, 9〉

G , ΨQ,0

1,|0,0,9〉Q
= [Q−1G0 − 4L−1] |0, 0, 9〉

Q , (85)

respectively. These are, in turn, the particular cases for (∆ = 0, q = 0, c = 9) of the general
expressions for ΨQ,0

1,|∆,q〉G
and ΨQ,0

1,|∆,q〉Q
, given in Ref. 19.

9 Dimensions for the Neveu-Schwarz and the Ramond N = 2

algebras

Transferring the dimensions we have found for the topological N = 2 algebra to the Neveu-Schwarz
and to the Ramond N = 2 algebras is straightforward. The Neveu-Schwarz N = 2 algebra is related
to the topological N = 2 algebra through the topological twists T±

W : Lm = Lm ± 1/2Hm, Hm =
±Hm, Gm = G±

m+1/2 and Qm = G∓
m−1/2 . As a consequence, the (non-chiral) Neveu-Schwarz

highest weight vectors correspond to G0-closed topological highest weight vectors (annihilated by
G0), whereas the chiral and antichiral Neveu-Schwarz highest weight vectors (annihilated by G+

−1/2

and by G−
−1/2, respectively), correspond to chiral topological highest weight vectors (annihilated

by G0 and Q0). This implies (see the details in Refs. 18, 19) that the standard Neveu-Schwarz
singular vectors (‘normal’, chiral and antichiral) correspond to topological singular vectors of the
types ΨG,n

m,|∆,q〉G
and ΨGQ,n

m,|∆,q〉G
, whereas the Neveu-Schwarz singular vectors in chiral or antichiral

Verma modules correspond to topological singular vectors of only the type ΨG,n

m,|∆,q〉GQ (as there are

no chiral singular vectors in chiral Verma modules). To be precise, for the singular vectors of the
Neveu-Schwarz N = 2 algebra one finds the following results.

Theorem 9.A The spaces of Neveu-Schwarz singular vectors Ψn
m,|∆,q〉, Ψch,n

m,|∆,q〉 and Ψa,n
m,|∆,q〉, where

the supercripts ch and a stand for chiral and antichiral, respectively, have the same maximal di-
mensions as the spaces of topological singular vectors ΨG,±n

m±n/2,|∆±q/2,±q〉G
and ΨGQ,±n

m±n/2,|−m∓n/2,±q〉G
,

given in Tab. o. Therefore for singular vectors in Neveu-Schwarz Verma modules VNS
∆,q we find the

following upper limits for the number of linearly independent singular vectors at the same level m
and with the same charge n ∈ Z (m ∈ N for n = 0 while m ∈ N − 1/2 for n = ±1).
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n = −1 n = 0 n = 1

Ψn
m,|∆,q〉 1 2 1

Ψch,n
m,|∆,q〉 0 1 1

Ψa,n
m,|−m,q〉 1 1 0

Tab. t Maximal dimensions for singular vectors spaces in VNS
∆,q.

(Chiral and antichiral singular vectors satisfy ∆ + m = ±1/2(q + n), respectively). Charges n that
are not given have dimension 0 and hence do not allow any singular vectors.

Theorem 9.B The spaces of Neveu-Schwarz singular vectors Ψn
m,|∆,q〉ch , Ψn

m,|∆,q〉a Ψa,n

m,|∆,q〉ch and

Ψch,n
m,|∆,q〉a in chiral or antichiral Verma modules, VNS,ch

∆,q or VNS,a
∆,q with ∆ = ±q/2 respectively,

have the same maximal dimensions as the spaces of topological singular vectors ΨG,±n

m±n/2,|0,±q〉GQ in

chiral topological Verma modules, given in Tab. q. Therefore for Neveu-Schwarz singular vectors
in chiral or antichiral Verma modules we find the following upper limits for the number of linearly
independent singular vectors at the same level m and with the same charge n ∈ Z (m ∈ N for
n = 0 while m ∈ N − 1/2 for n = ±1). The supercripts ch and a stand for chiral and antichiral,
respectively.

n = −1 n = 0 n = 1

Ψn
m,|q/2,q〉ch 1 1 0

Ψa,n

m,|q/2,q〉ch 1 1 0

Ψn
m,|−q/2,q〉a 0 1 1

Ψch,n
m,|−q/2,q〉a 0 1 1

Tab. u Maximal dimensions for singular vectors spaces in VNS,ch
q/2,q and VNS,a

−q/2,q .

(Ψa,n

m,|q/2,q〉ch and Ψch,n
m,|−q/2,q〉a satisfy in addition q = ∓m − n/2, respectively). Charges n that are

not given have dimension 0 and hence do not allow any singular vectors.

Observe that there are no chiral singular vectors in chiral Verma modules, neither antichiral
singular vectors in antichiral Verma modules; that is, there are no Neveu-Schwarz singular vectors
of types Ψch,n

m,|q/2,q〉ch and Ψa,n
m,|−q/2,q〉a , which would correspond to the non-existing chiral topological

singular vectors ΨGQ,±n

m±n/2,|0,±q〉GQ in chiral topological Verma modules.

The first row of Tab. t recovers the results already provenx in Refs. 8, 9, using adapted order-
ings in generalised (analytically continued) Verma modules. That is, in complete Verma modules of
the Neveu-Schwarz N = 2 algebra singular vectors can only exist with charges n = 0,±1 and, under
certain conditions, there exist two-dimensional spaces of (only) uncharged singular vectors. Tab. u

proves the conjecture, made in Refs. 18, 19, that in chiral Neveu-Schwarz Verma modules VNS,ch
q/2,q

the charged singular vectors are always negatively charged, with n = −1, whereas in antichiral
Neveu-Schwarz Verma modules VNS,a

−q/2,q the charged singular vectors are always positively charged,

xIn Ref. 9 it had not been explicitly stated that the results do not hold for c = 3. Also, the necessity
of the change of basis in the final consideration of the proof of theorem 5.C had been overlooked in Ref. 9.
Nevertheless, theorem 9.A shows that all the results of Ref. 9 do hold.



Singular dimensions of the N = 2 superconformal algebras. I 34

with n = 1. In contrast to this, the chiral charged singular vectors in the Verma modules VNS
∆,q and

VNS,a
−q/2,q are always positively charged, with n = 1, whereas the antichiral charged singular vectors

in the Verma modules VNS
∆,q and VNS,ch

q/2,q are always negatively charged, with n = −1. This fact
was observed also in Ref. 19 and can be deduced from the results of Ref. 9.

As to the Ramond N = 2 algebra, combining the topological twists T±
W and the spectral

flows it is possible to construct a one-to-one mapping between every Ramond singular vector and
every topological singular vector, at the same levels and with the same chargesy (see the details
in Ref. 12). As a consequence, the results of tables Tab. o - Tab. s can be transferred to the
Ramond singular vectors simply by exchanging the labels G → (+), Q → (−), where the helicity
(+) denote the Ramond states annihilated by G+

0 and the helicity (−) denote the Ramond states
annihilated by G−

0 . The no-helicity Ramond states, analogous to the no-label topological states,
have been overlooked until recently in the literature (see Refs. 11, 12). They require conformal
weight ∆+m = c/24 in the same way that no-label states require zero conformal weight ∆+m = 0.

10 Conclusions and prospects

For the study of the highest weight representations of a Lie algebra or a Lie super algebra, the
determinant formula plays a crucial rôle. However, the determinant formula does not give the
complete information about the submodules existing in a given Verma module. Exactly which
Verma modules contain proper submodules and at which level can be found the lowest non-trivial
grade space of the biggest proper submodule is the information that may easily be obtained from
the determinant formula. But it does not give a proof that the singular vectors obtained in that
way are all the existing singular vectors, i.e. generate the biggest proper submodules, neither does
it give the dimensions of the singular vector spaces. However, it has been shown9, 19 that singular
vector spaces with more than one dimension exist already for the N = 2 superconformal algebra.

In this paper we have presented a method that can easily be applied to many Lie algebras and
Lie super algebras. This method is based on the concept of adapted ordering, which implies that
any singular vector needs to contain at least one non-trivial term included in the ordering kernel.
The size of the ordering kernel therefore limits the dimension of the corresponding singular vector
space. Weights for which the ordering kernel is trivial do not allow any singular vectors in the
corresponding weight space. On the other hand, non-trivial ordering kernels give us the maximal
dimension of a possible singular vector space. The framework can easily be understood using
the example of the Virasoro algebra where the ordering kernel always has size one and therefore
Virasoro singular vectors at the same level in the same Verma module are always proportional.
In its original version, Kent25 used the idea of an ordering for generalised (analytically extended)
Virasoro Verma modules in order to show that all vectors satisfying the highest weight conditions
at level 0 are proportional to the highest weight vector.

As an important application of this method, we have computed the maximal dimensions of
the singular vector spaces for Verma modules of the topological N = 2 algebra, obtaining maximal
dimensions 0, 1, 2 or 3, depending on the type of Verma module and the type of singular vector.
The results are consistent with the topological spectral flow automorphisms and with all known
examples of topological singular vectors. On the one hand, singular vector spaces with maximal

yWe define the charges for the Ramond states in the same way as for the Neveu-Schwarz states, see the
details in Refs. 18, 11.
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dimension bigger than 1 agree with explicilty computed examples found before (and during) this
work, although in the case of the three-dimensional spaces in no-label Verma modules, the singular
vectors of the corresponding types known so far generate only one and two-dimensional spaces.
These exist already at level 1, in contrast with the previously known two-dimensional spaces, which
exist at levels 2 and higher. On the other hand, singular vector spaces with zero dimension imply
that the ‘would-be’ singular vectors of the corresponding types do not exist. As a consequence, our
results provide a rigorous proof to the conjecture made in Ref. 19 about the possible existing types
of topological singular vectors: 4 types in chiral Verma modules and 29 types in complete Verma
modules.

Finally we have transferred the results found for the topological N = 2 algebra to the Neveu-
Schwarz and to the Ramond N = 2 algebras. In the first case we have recovered the results
obtained in Ref. 9 for complete Verma modules: maximal dimensions 0, 1 or 2, the latter only for
uncharged singular vector spaces, and allowed charges only 0 and ±1. In addition, we have proved
the conjecture made in Refs. 18, 19 on the possible existing types of Neveu-Schwarz singular vectors
in chiral and antichiral Verma modules. In the case of the Ramond N = 2 algebra we have found
a one-to-one mapping between the Ramond singular vectors and the topological singular vectors,
so that the corresponding results are essentially the same.

The only exception for which the adapted orderings presented in this paper are not suitable is
for central term c = 3. This case needs a separate consideration. The application of the adapted
ordering method to the twisted N = 2 algebra will be the subject of a forthcoming paper.

The example of the N = 2 topological Verma modules is only one out of many cases where
the concept of adapted orderings can be applied. For example, Bajnok4 showed that the analytic
continuation method of Kent25 can be extended to generalised Verma modules of the WA2 algebra.
Not only will the concept of adapted orderings allow us to obtain information about superconformal
Verma modules with N > 2, it should also be easily applicable to any other Lie algebra whenever
an adapted ordering can be constructed with small ordering kernels.
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