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ABSTRACT 

The strong linear correlation observed between SBET and the micropore volume of 190 

carbons with pore widths between 0.5 and 1.8 nm confirms the unreliable character of 

SBET, in spite of its frequent use. (It corresponds approximately to 2200-2300 m2 per cm3 

of micropores, whatever their width).  Alternative determinations of the surface area are 

therefore required. It is shown that two model-independent techniques (Kaneko’s 

comparison plot for nitrogen and the enthalpies of immersion into aqueous solutions of 

phenol) and two model-dependent approaches (Dubinin’s theory and DFT) lead to total 

surface areas which are in good agreement. Their average Sav is probably a reliable 

assessment of the total surface area. It is often in disagreement with SBET, but a closer 

study of 42 well characterized microporous carbons, for which all four techniques are 

available, shows that the ratio SBET/Sav increases linearly with the average pore width. 

This should be taken into consideration when surface-related properties (e.g. densities 

of chemical groups or adsorbed species, specific capacitances) are examined on the 

basis of a single determination and in particular on the BET technique. 
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1. Introduction and general background 

 

  The reliable assessment of surface areas in porous carbons is of great relevance in the 

study of specific properties, for example the surface density of chemical species or 

electrochemical double layer capacitances (EDLC). Sophisticated approaches such as 

the density functional theory (DFT) and its successive developments (NLDFT, QSDFT) 

[1-6], as well as the simple BET theory [7-10] are commonly used, but frequently on their 

own and without reference to other techniques. Comparisons would provide an estimate 

of the reliability of the corresponding surface-related properties. It appears that there 

may be important differences, in particular between the BET model and practically all 

other determinations, except for nanopores around 0.9 nm. This can lead to diverging 

interpretations of surface related properties.  Moreover, a number of recent studies 

dealing with EDLC properties [11-13] combine the density functional approach and BET, 

although they are based on completely different models. The average pore size is 

derived from the former and the latter provides the specific area SBET, although the 

areas SDFT and SBET are often different.  

  The possibilities of both models are known and in particular the limitations of the BET 

approach have been pointed out, for example, by  K. Sing [8], F. Rouquérol et al. [9]  

and  more recently by J. Rouquérol et al. [10]. The IUPAC recommendations of 1985 

[14] and 1994 [15] also state that in the case of microporous solids the values of surface 

areas derived from either the Langmuir or the BET analysis are incorrect. Therefore, it is 

recommended to refer to the equivalent BET-nitrogen surface area of the solid. 

Obviously, this does not imply that it actually corresponds to the surface area of an 

activated carbon, which consists of the micropore walls Smi and the external area Se. 
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This means that further interpretations based on SBET may be misleading. 

   It appears that for typical micropores (or nanopores, as they are frequently called 

since the mid-1990s), the BET analysis often overestimates the total surface area with 

respect to other determinations, as illustrated for example by Shi [16]. This has also 

been reported quantitatively by Thomson and Gubbins [17] who used reverse Monte 

Carlo modeling. They showed that the analysis of a nitrogen isotherm generated for a 

nanoporous carbon with a nominal area of 1070 m2 g-1 leads to a BET surface area SBET 

of 1510 m2 g-1. Ustinov et al. [5] report a similar pattern for four samples of strongly 

activated carbons analyzed by an improved NDLFT approach.  They also show the 

effect of different versions of NLDFT on the pore size distribution of a given carbon. On 

the basis of their work with the Hybrid Reverse Monte Carlo technique, Palmer et al. [18] 

also expressed their reservations about the reliability of the BET surface area.  Similar 

conclusions can be drawn from the analysis of the surface areas for pore size 

distributions generated by Monte Carlo modeling based on slit-shaped nanopores.  

  The validity of the BET equation for the characterization of microporous adsorbents 

has also been addressed recently and in detail by J. Rouquérol et al. [10]. This follows 

an earlier paper [9] dealing with the texture of porous materials and the authors point out 

the precautions which must be taken in the BET analysis. It is therefore surprising that 

other approaches have not been used more systematically in order to cross-check 

results based on the BET analysis and eliminate possible contradictions.   

   Furthermore, as discussed in detail below (section 3), a comparison of SBET with the 

micropore volume of carbons Vmi reported by different authors [19-28] and including our 

own data, shows that the two are strongly correlated. For 190 carbons, which cover 

practically the entire range of microporosity (0.5 to 1.8 nm), the linear correlation leads 

to an average of 2300 m2 cm-3 for the ratio SBET/Vmi. This suggests, to a first and good 
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approximation, that the average width of the locally slit-shaped pores should be around 

0.9 nm for all the carbons, which is in contradiction with the actual dimensions 

determined by different techniques. The micropore volumes, derived mainly from 

Dubinin’s theory and from the NLDFT model, may be regarded as reliable, although they 

are slightly different. Therefore, one may assume that the above geometrical paradox is 

probably related to SBET and its validity may be questioned. 

   We wish to illustrate the relevance of using several independent assessments of the 

total surface area of porous carbons and in particular of their average Sav. The latter 

probably corresponds to a reliable assessment of the total surface area available to 

small adsorbates in microporous carbons. It will be shown, for example, that the ratio 

SBET/Sav is a linear function of the average pore width between 0.66 and 1.65 nm, which 

offers a quantitative explanation for conflicting results found in the literature.  

   The present study is based on the nitrogen comparison plot [7-9, 29-31] and on 

immersion calorimetry in aqueous solutions of phenol [32-35]. The latter approach is 

also supported by studies of phenol adsorption at the liquid-solid interface, showing that 

it is limited to a single layer on the micropore walls and on the outside. These are model-

free approaches which provide direct and coherent information on the surface area 

accessible to small molecules. Furthermore, the surface areas obtained from these 

techniques are also in good agreement with the predictions of the Dubinin-

Radushkevich equation [7, 36-37], supported by Monte Carlo simulations. It would 

therefore be reasonable to combine these approaches in order to obtain a reliable 

assessment of surface areas, rather than to rely on a single determination. 

   The surface areas SDFT based on the density functional theory (mainly the NLDFT 

version found in current software packages) are also examined here, but it appears that 

they show some scatter with respect to the other determinations. 
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1.1. The comparison plot (SPE technique) 

   The development of Sing’s αS comparison plot [7] by Kaneko et al. [29-31], the so-

called SPE technique (subtracting pore effect), allows the determination of the total 

surface area Scomp and the external surface area Se of porous carbons, by using the 

nitrogen adsorption isotherm at 77 K. The two surface areas correspond, respectively, to 

the slopes of the initial and the final sections of the plot. It follows that the surface area 

of the micropore walls, Smi, corresponds to the difference (Scomp - Se).  For the model of 

locally slit-shaped pores, the average width w (nm) is 

 

              w = 2000 Vo/ ( Scomp - Se),                                                                            (1) 

 

where Vo represents the volume of the micropores filled by liquid-like nitrogen. It is either 

Vo,s obtained from the extrapolation of the second linear section of the plot, or the 

micropore volume Wo obtained from the DR analysis (section 1.3). The two are usually 

in good agreement (see for example Table 1 in ref. [31]).  

   The SPE technique is limited to pore sizes above 0.6 to 0.7 nm, in particular due to the 

absence of a clear linear range. The comparison with Monte Carlo modeling of nitrogen 

adsorption [30] also indicates that in narrow pores (w < 1.1 nm), Scomp overrates the 

effective surface area by a factor of up to 15 percent which must be taken into account. 

This increase in adsorption reflects the enhancement of the gas-solid energy in narrow 

pores, compared to open surfaces, but the effect rapidly decreases.  

   Our approach is basically the same as the classical αS plot method, but we use a 

direct comparison of the N2 (77 K) isotherm with the standard isotherm for Vulcan 3 

given by Rouquerol et al. [9]. Comparison plots can also be obtained for other 
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adsorbates and reference isotherms have been provided, for example, by Carrott et al. 

for C6H6 [38] and CH2Cl2 [39]. As shown in Table 1, the results including isolated data 

for CO2 and CCl4, are in good agreement with those of N2.  

 

1.2.  Immersion calorimetry 

  This model-free technique is based on the selective adsorption of phenol from dilute 

aqueous solutions (e.g. 0.4M) onto carbons [32-35]. Under these conditions, as 

indicated by the analysis of the type I solid-liquid isotherm [34, 35], phenol forms only a 

monolayer on both the walls of the micropores and on the external surface area Se. 

Moreover, the corresponding areas are in good agreement with other determinations. 

(Note that the micropore volume is filled by phenol only if it is adsorbed from the vapour 

phase or by immersion into phenol fluidized by 15-20 per cent w/w of water, as 

described in detail elsewhere [33]). Adsorption of phenol from the dilute solution can 

also be monitored by immersion calorimetry, which is less tedious than the 

determination of solid-liquid isotherms. For typical graphitized carbon blacks of known 

surface areas (e.g. N234-G, Hoechst, Vulcan 3) the process corresponds to an average 

value of –(0.105 ± 0.004) J m-2 [34].  It will be shown that in the case of porous carbons 

the enthalpies of immersion lead to total surface area Sphenol which are in good 

agreement with the other determinations.   

 

1.3. The Dubinin-Radushkevich equation 

For nanoporous carbons, the adsorption isotherm of nitrogen (or other small molecules) 

can also be analyzed by Dubinin’s theory for the volume filling of micropores [7,36,37]. 

The linearization of the Dubinin-Radushkevich equation leads to the micropore volume 
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Wo and the so-called characteristic energy Eo of the carbon. The latter is related to the 

average width Lo of locally slit-shaped micropores by  

 

                          Lo (nm) = 10.8/(Eo – 11.4 kJ mol-1)                                                      (2) 

 

This expression relies on different techniques [40], but it can be obtained directly by 

Monte Carlo simulations of pore size distributions for CO2 (273 K) and C6H6 (293 K) 

adsorbed in slit-shaped pores. It was further verified by Ohba’s Monte Carlo modeling of 

N2(77 K) for pores of 1 and 1.2 nm [41].   

   By symmetry with Eq.(1), one obtains the surface area of the micropore walls 

 

                 Smi(DR) (nm) = 2000Wo(cm3 g-1)/Lo(nm)                                                      (3) 

 

and the total surface area  Stot(DR) is 

 

                  Stot(DR) = Smi(DR) + Se .                                                                               (4) 

 

Eq.(4) was used for the nitrogen isotherms determined at 77 K and, as shown in Table 

1,  similar results were obtained  for other small adsorbates. 

  Unlike Scomp and Sphenol, Stot(DR) is model-dependent (slit-shaped pores), but it appears 

that these areas are usually in good agreement (see below).  

 

1.4. Density functional theory 

    Nowadays the density functional theory (DFT) plays a major role in the 

characterization of porous carbons. Consequently, this approach must also be 
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addressed here, as far as the determination of surface areas is concerned. An excellent 

presentation of the state of the art can be found in the work of Neimark et al. [2-3] and in 

their recent review [6]. Therefore, we limit ourselves to the essential features. The 

NLDFT model used for N2 at 77 K is provided in standard packages and it is featured in 

a recent ISO standard [42].  It considers homogeneous slit-shaped pores, but unlike the 

Monte Carlo approach, its pore size distribution suffers from a false gap in the region of 

1 nm. This feature, which may introduce some uncertainty in the cumulative surface 

area SDFT and the micropore volume, has been corrected in the recent QSLDFT 

development [6]. As far as the pore size distributions are concerned, the compatibility 

between DFT and other approaches such as GCMC (Grand Canonical Monte Carlo), 

SPE and DR has been examined by different authors, e.g. [1-6, 41, 43]. However, a 

systematic comparison of NLDFT and in particular of QSLDFT-based surface areas with 

other determinations is still lacking. 

 

2. Experimental 

The study is based on 48 carbons obtained from a variety of precursors (lignocellulosic, 

polymers and metal carbides). Forty six samples are microporous and two templated 

carbons are exclusively mesoporous with pore diameters centered at 5.1 and 9.3 nm. 

Details can be found in refs. [36,37,44-46]. As shown by TPD (Thermally Programmed 

Desorption) and the enthalpies of immersion into water, the surface density of oxygen 

atoms is below 3 μmol m-2 or less than 20 per cent of Stot.   

   The adsorption of N2 (77 K) was determined with a Micromeritics ASAP 2010 

apparatus and the data was analyzed with the help of its software package, leading to 

BET and NLDFT areas. On the other hand, the micropore volumes Wo and the average 

pore widths Lo were determined by using Dubinin’s theory [7,36,37,45]. 
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  The data for SBET was obtained by selecting in each case the best linear fit of the 

corresponding plot following the criteria listed by J. Rouquerol et al. [10] for the BET 

analysis in the case of microporous carbons.  As indicated by these authors, the linear 

range is found below the classical domain of p/po between 0.05 and 0.3.  This is 

illustrated by the example of six carbons covering the range of microporosity between 

0.68 and 2.1 nm. As shown in Table S1 of the supplementary data provided with this 

paper (Appendix A), when the average micropore size Lo decreases from 2.1 nm (PX-

21) to 0.68 nm (HK-650-8), the linear range shifts from respectively 0.049-0.216 to 

0.0009-0.081. At the same time, constant cBET increases from 72 to 35476, clearly 

reflecting the higher adsorption energy in the smaller pores. The influence of 

microporosity on adsorption is also reflected by the semi-logarithmic plot of the 

isotherms of the six carbons. Further and quantitative information is obtained from the 

DR analysis. 

   It may be assumed that the data reported in the literature and obtained by similar 

software packages satisfies these criteria. On the other hand, no details are known 

about the NLDFT calculations.  

   The comparison plots for nitrogen were based on the data for Vulcan-3 (80 m2 g-1) [9] 

and the correction of 15% [29] has been applied to pores below 1.1 nm. In some cases 

the plot was cross-checked by our own reference isotherm on graphitized carbon black 

Hoechst (52 m2 g-1), which leads to similar results. Separate experiments were also 

carried out for a number of samples, using mainly CH2Cl2 and C6H6 vapours at 293-298 

K in a classical gravimetric apparatus of the McBaine type [7]. The reference isotherms 

based on carbon Hoechst gave results which are in good agreement with the data of the 

corresponding nitrogen plots. Typical examples of comparison plots of carbons of the 

present series are shown elsewhere [46,47]. 
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   Immersion calorimetry was carried out with four identical calorimeters of the Tian-

Calvet type, specifically designed for work with carbons and measuring absolute 

energies between 2 to 20 Joules [44].  Typically, 0.025 to 0.080 g were outgassed at 10-

5 Torr for 6 to 10 hours below 400-450 K, and subsequently immersed at 293 K into 5 ml 

of aqueous solutions of phenol (0.4 M).  The calorimeters were calibrated electrically 

and cross-checked by the dissolution of dry KNO3 into de-ionized water (345 J g-1). The 

reproducibility of the enthalpies of immersion ΔiH for homogeneous samples is within 2-

3 per cent.   

   For the study of the correlation between SBET and the micropore volume Vmi, we added 

two sets of respectively 16 and 10 carbons from our laboratory, but with a less 

exhaustive characterization than the basic set of this study. We also used 10 sets of 

data reported in the literature and dealing with specific types of carbons [13,19-28] (see 

Table 2). Their total amounts to 122 carbons. 

   It should be pointed out that some authors characterize their solids with argon and use 

the corresponding software to determine BET areas and volumes. However, this 

adsorbate leads to the same results as nitrogen at 77 K, used in the present study.  

 

3. Results and discussion  

3.1. BET analysis 

   As shown in Fig. 1 and in agreement with earlier observations [46], there exists a 

strong linear correlation between the values of SBET and Vmi for the 68 samples from our 

laboratory and the 122 carbons reported by different authors [13,19-28]. The volume Vmi 

is either Wo or, in the case of [13,23,24,28], the value obtained from the NLDFT 

analysis. The data covers the range of 173 m2 g-1 < SBET < 3290 m2 g-1 and 0.08 cm3 g-

1< Vmi< 1.45 cm3 g-1, with pore sizes between 0.5 nm and 1.8 nm. The overall linear 
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correlation for the 190 carbons is  

 

            SBET = (2300 ± 20 m2 cm-3).Vmi                                                                          (5) 

 

and the uncertainty corresponds to the standard deviation, σ. 

   A closer examination of the data (see Table 2) suggests no significant trends for the 

ratios SBET/Vmi within any individual series of carbons. This is illustrated by Fig. 2, which 

shows as examples distinct series, namely CO2 activated fibers [22], TiC-based CDCs 

treated with H2, or activated with KOH and CO2 [28] and a group of 24 carbons obtained 

by chemical (KOH, NaOH) and physical (CO2, H2O) activation [25]. These series of 

carbons cover practically the entire range of microporosity.  

   Although the corresponding pore sizes are not provided in some reports, it is well 

known that that activation to high burn-offs leads to a widening of the pores. This is 

certainly the case, for example, for the extensive work of Bleda-Martinez et al. [25]  and 

Lozano-Castello et al. [27], where the ratios SBET/Vmi are remarkably constant 

(respectively, 2220 ± 120 m2 cm-3 and 2190 ± 80 m2 cm-3  for different series of 24 and 

14 activated carbons).  

   In some cases [19-21] including our carbons, the data for Se is also available and it is 

possible to calculate surface area SBET – Se associated exclusively with the micropores. 

The above analysis can be refined by examining the ratios (SBET – Se)/Vmi. The average 

values (see Table 2) are somewhat lower and provide an estimate of the corresponding 

width of slit-shaped micropores, w = 2000Vmi/(SBET – Se). It is around 0.85-0.9 nm for all 

carbons and in clear contradiction with the values obtained by different techniques, such 

as the adsorption of molecules of different sizes, immersion calorimetry, the DR 

equation and DFT-based analysis. If one assumes that these determinations and the 
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values of Wo are relatively accurate, it follows that neither SBET – Se nor SBET can be 

associated directly with the micropore area Smi or the total surface area Stot of the 

carbons. The only exceptions would be carbons with average pore widths Lo around 0.9 

nm. It is also interesting to point out that the monolayer equivalent of 1 cm3 of liquid 

nitrogen at 77 K is 2814 m2.  

   The foregoing observations alone challenge the systematic and often exclusive use of 

SBET to derive surface related properties as reported, for example, in electrochemistry 

[11-13], in studies of hydrogen storage [22, 28, 48] or the amounts of oxygen-containing 

groups [25]. Furthermore, pores of less than 0.8 to 0.9 nm can no longer accommodate 

two layers of nitrogen or argon and SBET inevitably underestimates the surface of their 

walls. One may therefore expect that the comparison plot, as well as the other 

converging approaches examined here, will provide a more reliable estimate of the 

surface area available to small molecules or ions, than SBET.    

 

3.2. Immersion calorimetry and comparison plot 

   As shown in Fig. 3, the 48 untreated micro- and mesoporous carbons reveal a good 

correlation between the enthalpy of immersion ∆iH(phenol 0.4 M) and the total surface 

area Scomp(N2; 77K). The linear correlation is  

 

       ∆iH(phenol 0.4M) (J g-1)  = - (0.105 ± 0.002) (J m-2) Scomp(N2; 77K) (m2 g-1)          (6)  

 

The factor -(0.105 ± 0.002) J m-2 is the same as the average value of -(0.105 ± 0.004) J 

m-2 obtained  for three different carbon blacks [34]. This suggests that ∆iH can be used 

to determine independently a total surface area Sphenol = -∆iH(phenol 0.4M) J g-1/0.105 J 

m-2 of microporous carbons, accessible to small probes. Moreover, it appears that for 
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carbons with low oxygen contents the surface area based on -0.105 J m-2 is in good 

agreement with the value derived from the limiting adsorption of phenol from aqueous 

solutions, assuming a molecular area of 45.10-20 m2 (or 270 m2 mmol-1) [34]. As pointed 

out earlier [34], water shows a strong affinity for oxygen-containing complexes, which 

reduces the adsorption of phenol. For the present carbons, the oxygen density [O]TPD is 

below 3 μmol m-2, or less than 20 per cent of Stot if all the sites are saturated by water. 

Moreover, due to a compensating effect in the energies, the overall enthalpy remains 

practically constant, which justifies the use of Eq.(6). However, high enthalpies of 

immersion can be observed for carbons subjected to chemical treatments and for certain 

fibers. These enthalpies probably reflect surface reactions involving phenol, which 

means that it is recommended to compare systematically Sphenol with Scomp(N2 77K).  

 

3.3. Comparison plot and DR analysis 

   Fig. 4 shows a good linear correlation (1.01 ± 0.01) between Stot(DR) based on 

nitrogen and Scomp(N2; 77K) for the 42 nanoporous carbons with 0.66 nm < Lo < 1.65 nm, 

where the DR approach is valid. The good correlation is not too surprising, since  

Smi(DR) is based on Monte Carlo modeling in slit-shaped micropores and the micropore 

area of Kaneko’s SPE method, Scomp- Se, has been verified by the same theoretical 

approach [30,41]. It is therefore not surprising to find an equally good correlation 

between -∆iH(phenol 0.4M) and Stot(DR). On the other hand, Sphenol, Stot(DR) and Scomp 

show no direct correlations with SBET, but an alternative explanation is provided below. 

 

 

3.4. Average total surface area Sav and SBET 



 14

   It appears that the two model-free areas, Scomp and Sphenol, and the area Stot(DR) 

based on the model of locally slit-shaped nanopores, are in good agreement. This 

means that their average  Sav(3) = [Scomp +Sphenol +Stot(DR)]/3 should provide a reliable 

assessment of the total surface area accessible to small molecules and ions in 

nanoporous carbons. On the other hand, SBET can show significant deviations from 

Sav(3). The difference between the two is revealed by the variation of the ratio 

SBET/Sav(3) of the 42 nanoporous carbons with the average width Lo. The linear 

correlation  

 

               SBET/Sav(3) = (1.20 ± 0.02) Lo                                                                          (7)  

 

shown in Fig. 5 is valid in the range 0.6 to 1.7 nm and provides a clear quantification of 

the deviations (or the variable agreements) reported in the literature.  

   It appears that all determinations converge for pores around 0.85 nm, where two 

layers of nitrogen can be accommodated in the locally slit-shaped micropores. Below 

this value, SBET becomes inevitably smaller than the effective area of the walls.  On the 

other hand, for pores above 0.85 nm, SBET gradually diverges and at widths around 1.8 

nm it corresponds to more than twice the average of the other determinations. Beyond 2 

to 3 nm, i.e. in mesopores, the ratios SBET/Scomp and SBET/Sphenol decrease and finally 

converge for open surfaces. This means that with respect to Sav(3) or an average area 

including other independent determinations such as Scomp(CO2), Scomp(CH2Cl2) and 

Scomp(C6H6) (see Table 1), SBET overrates surface related properties for pores below 

0.85 nm. On the other hand, it gradually underrates them in wider pores.  This should be 

kept in mind when trying to transform reliable gravimetric properties such as mmol g-1 

[22,25,28,48] or F g-1 [11-13] into surface related properties (mmol m-2 for chemical 
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species or atoms and F m-2 for EDLC). The statistical correction factor to be applied to 

SBET and leading to an estimate of the probable total surface area is provided by Eq.(7). 

 

 

3.5. Average surface area including SDFT 

   As mentioned in section 1.4, the density functional theory and its successive 

developments play a major role in the routine assessment of surface areas of porous 

carbons. Therefore, this approach must also be addressed here by examining the use of 

SDFT obtained by the NLDFT analysis. 

   As seen in Fig. 5, the average total surface area Sav(4) = [Scomp + Sphenol + Stot(DR) + 

SDFT]/4 obtained for our 42 microporous carbons leads to a linear correlation between 

SBET/Sav(4) similar to that observed with Sav(3). The slope is practically the same, with a 

slightly larger standard deviation (1.19 ± 0.03) nm-1. This is not too surprising in view of 

the uncertainty related to the dip in the PSD around 1 nm. For carbons with narrow 

pores (Lo < 1.1 nm), where uncertainties may arise, the correlation leads to (1.14 ± 0.02) 

nm-1, which confirms the general pattern.  

   The divergences observed between SDFT and SBET may have led a number of authors 

to prefer intuitively the latter, but Eq. (7) shows that it was probably not the best choice.  

    Regarding the differences between SDFT and the other determinations, Scomp, Sphenol 

and Stot(DR), it is likely that the recent QSDFT approach (Quenched Solid Density 

Functional Theory) will lead to a better agreement. It takes into account surface 

geometrical inhomogeneity and suppresses the artificial gap in the PSD around 1 nm. 

Unfortunately, no systematic comparison of the areas SQSDFT with those obtained by 

other techniques seems to be available yet.  
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   At this stage it is possible, with the help of Eq.(7), to make a clear distinction between 

the predictions of the total surface area accessible to small molecules, based on the one 

hand on the average of different determinations and, on the other hand, the BET 

analysis. For example, the recent use of Stot(DR) [41] and Sav(3) [50,51] already 

suggested that surface-related EDLC properties are relatively independent of the 

average pores size as opposed to the approach based on SBET [11-13]. 

   The present study is only a first step in the assessment of surface areas available in 

carbons, since the accessibility to larger molecules or ions depends on both the pore 

size distribution and the presence of constrictions. Under these circumstances further 

techniques must be considered, such as the determination of reliable PSDs and their 

cumulative surface areas, or the use of comparison plots of larger molecules such as 

CCl4. In this context, variable preadsorption and immersion calorimetry into liquids of 

increasing molecular dimensions [36] play an important role. Work is currently in 

progress along these lines and results will be published in due course.  

 

 

4. Conclusions 

The analysis of data for 190 carbons with micropore widths between 0.5 and 1.8 nm 

shows that the BET surface area is closely related to the micropore volume Vmi and 

suggests an area of approximately 2200-2300 m2 cm-3, whatever the actual pore width. 

(By comparison, the monolayer equivalent to 1 cm3 of liquid nitrogen at 77 K is 2814 

m2). This general correlation is confirmed within series of carbons of similar origins and 

treatments. It follows that SBET can be representative only for carbons with pore widths 

around 0.9 nm, if one assumes the model of locally slit-shaped pores. Other techniques 
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must therefore be considered to provide a reliable assessment of their total surface 

area. 

   We show that for 42 microporous carbons (pore widths 0.66 nm <Lo< 1.65 nm) the 

combination of the nitrogen comparison plot (Kaneko’s SPE method), the enthalpy of 

immersion into aqueous solutions of phenol, the Dubinin-Radushkevich equation and 

the DFT approach lead to an average surface area Sav which probably corresponds to a 

good estimate of Stot for microporous carbons. The BET area diverges from it as 

expressed quantitatively by Eq. (7) and the two values are similar only for pore widths 

around 0.9 nm. This implies that the calculation of surface-related properties based on 

SBET alone can be misleading and a better estimate requires the correction factor implied 

by Eq. (7). 

  The present results apply essentially to small molecules or ions and in the case of 

larger adsorbates the pore size distribution and constrictions can reduce significantly 

their accessibility. This means that surface areas determined with the help of nitrogen or 

argon may loose their meaning and the present techniques must be adapted in order to 

provide a reliable assessment of the surface area available to larger molecules.  
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Fig. 1. Correlation between SBET and Vmi for 190 activated carbons with pore widths 

between 0.5 and 1.8 nm (see Table 2). 
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Fig. 2. Details for the correlation between SBET and Vmi of CO2 activated carbons fibers 

[22] ( � ), TiC-based carbon treated with H2, or activated with KOH and CO2 [28] ( ∆ ) 

and a series of chemically and physically activated carbons [25] ( ◊ ). The insets 

correspond to the upper and lower pore sizes in the first two series (no data available for 

the third). 
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Fig. 3. Correlation between the enthalpy of immersion ∆iH(phenol 0.4M) and Scomp(N2  

77 K) for 48 nano- and mesoporous carbons.  
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Fig. 4. Correlation between Stot(DR; N2 77 K) and Scomp(N2 77 K) for 42 nanoporous 

carbons.  
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Fig. 5.  Variation of SBET/Sav(3) (■) and SBET/Sav(4) (�) with the average pore width Lo for 

42 nanoporous carbons. The average slopes are (1.20 ± 0.02) and (1.19 ± 0.03) nm-1.  
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Table 1. Comparison of total surface areas for typical nanoporous carbons. The meaning of Sav(3) and Sav(4) is given in the text. 

The areas given below the carbon correspond to the average of all determinations, except SBET 

 
Carbon 

(m2 g-1) 

Lo 

(nm) 

   Scomp 

 (m2 g-1) 

Sphenol 

(m2 g-1) 

 Stot(DR) 

 (m2 g-1) 

SDFT 

(m2 g-1) 

Sav(3) 

(m2 g-1) 

Sav(4) 

(m2 g-1) 

SBET 

(m2 g-1) 

CMS-H2-07 

671± 51(8) 

 

0.81 619 (N2) 

694(CH2Cl2)

685 (C6H6) 

697 678(N2) 

719(CH2Cl2) 

710 (C6H6) 

570 665 641 657 

 DCG-5 

903±66(6) 

1.15 

 

888 (N2) 

1023(C6H6) 

885 

 

869(N2) 

830(C6H6) 

923 

 

881 

 

891 1238 

 

KF-1500-08   

1000±100(8) 

 

1.38 1055 (N2) 

946 (CO2) 

982(C6H6) 

1066 

 

974(N2) 

940 (CO2) 

870 (C6H6) 

1198 

 

1032 

 

1073 1652 

N-125-08  

841±82(8)    

1.60 768 (N2) 

811 (C6H6) 

846 (CCl4) 

821 732 (N2) 

957 (C6H6) 

847 (CCl4) 

958 773 820 1317 
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Table 2. Carbon series used for the linear correlations between BET-based areas and micropore volumes Vmi (see Figs. 1-2). 

 The uncertainties correspond to the standard deviations σ. 

References 

 

Origin of the carbons      (number of samples)    SBET               Vmi              Pore width 

   m2 g-1           cm3 g-1              nm 

SBET/ Vmi 

m2 cm-3 

(SBET-Se)/ Vmi 

m2 cm-3 

This work Wood, anthracite, polymer, CDCs             (42)

Activated apple char                                 (16) 

Phenolic resins                                          (10)

 600-2800       0.3-1.0          0.66-1.65 

 739-1604      0.39-0.59        0.87-1.19 

 710-1467      0.33-0.64        0.66-1.25 

2460 ± 40 

2410 ± 40 

2230 ± 30 

2327 ± 60 

2343 ± 110 

 2134 ± 30 

[19] Steam-activated lignite and coal                 (9)    566-1110      0.24-0.52        1.02-1.84 2370 ± 110 2100 ± 160 

[20, 21] Polymer-based                                          (12)  1102-1381    0.55-0.68        0.86-1.64 2410 ± 110 2200 ± 50 

[13] TiC-CDC 400-1000 oC                                (7)  1113-1623     0.51-0.81       0.68-1.10 2110 ±  50 - 

[22] CO2 activated phenolic fibres                    (14)    499-1804    0.27-0.73        0.51-1.19 2560 ± 35 - 

[23] TiC-CDC 600-1000oC +post-treatment     (12)  1117-1381     0.59-0.68       0.86-1.64 1990 ± 140 - 

[24]  VC-CDC 500-1100oC                                 (7)    236-1305     0.1-0.63              - 2270 ± 145 - 

[25] Anthracite, tar pitch, PAN fiber                  (24)    173-2602     0.08-1.24            - 2220 ± 120 - 

[26]  PAN fibre  HNO3 treated 150-750oC                 (6)   1173-1216    0.52-0.59            - 2080 ± 10 - 

[27] KOH activated Spanish anthracite           (14)       726-3290    0.33-1.45            - 2190 ± 80 - 

      [28] TiC-CDC treated with H2, KOH, CO2         (17)  1143-3038     0.48-1.34       0.65-1.52 2420 ± 150 - 
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Appendix A.  Supplementary data  
 
 
 

Table S1.   BET analysis of the N2 (77 K) adsorption isotherms of six microprous 

carbons.  For carbons 2-5, see also Table 1 of the paper. 

 
Carbon Lo 

(nm) 
SBET 

(m2 g-1) 
VM 

(cm3 STP g-1) 
cBET Relative Pressure 

Range 
HK-650-8 0.66 759 174 35476 0.0009-0.081 

CMS-H2-07 0.80 657 151 16282 0.0004-0.102 
DCG-5 1.15 1238 284 1539 0.001-0.140 

KF-1500-08 1.21 1652 380 1144 0.002-0.210 
N-125-08 1.44 1317 311    848 0.005-0.210 

PX-21 2.1 3214 738     72 0.049-0.216 
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Fig. S1.  Semi-logarithmic plots of the N2 (77 K) isotherms of the six carbons.   
 
 
    


