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(a) Chemotactic response of eukaryotic zoospores towards sunflower root exudates 

containing naphthalene in the presence Pseudomonas putida G7. 

(b) Circular swimming pattern of eukaryotic zoospores analyzed with CellTrak motion 

analysis Program. The results are reported with trajectory (left), speed (middle) and rate of 

change of direction (RCDI) (right). 

(c) Possible mechanisms (advective and vortical flows) by which zoospore chemotaxis 

enhance bacterial mobilization. 

(d) Microbial life at nonaqueous phase liquid (NAPL)-water interface. 

(e) Zoospore settlement on hexadecane (HD)-water interface, observed in the absence of 

bacteria (upper) and in the presence of Mycobacterium gilvum VM552 (down). 

(f) Mineralization of [14C] labelled phenanthrene associated with NAPL in the presence of 

Pythium oligandrum mycelia under aeration condition (see section 4.3 for more information) 

(g) Surface topography of NAPL in contact with the aqueous phase, determined with NAPL-

water contact angle (θnw) (on the right) and the surface change caused by biofilm formation 

(on the left) (see section 4.3 for more information). 
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Abstract 
 

 

With the aim to evaluate possible roles of oomycetes in bioremediation of polycyclic 

aromatic hydrocarbons (PAHs), we explored in this thesis the functional interactions 

between these microorganisms and PAH-degrading bacteria. The interactions were studied at 

two different modes of oomycete development: mycelia and zoospores. The first part of this 

thesis focused on the ecological interaction between an oomycete Pythium aphanidermatum 

and two representative PAH-degrading bacteria (Mycobacterium gilvum VM552 and 

Pseudomonas putida G7). We chose a set of chemicals to imitate PAH-polluted scenarios, 

which included aqueous solutions with dissolved organic carbon (DOC) of diverse origins 

(plant root exudates and humic acid) and organic solvents. The oomycete mycelia and both 

bacteria were not antagonist during growth on solid media. The bacteria diminished zoospore 

formation only at the highest bacterial cell density (108-1010 cells mL-1), while M. gilvum 

VM552 exhibited the greatest antagonism. A negative influence of PAHs on zoospore 

formation and chemotaxis was observed when the chemicals were exposed from DOC 

solutions and polar solvents, but this influence was diminished by PAH-degrading bacteria. 

When PAHs were exposed from substrata made by non-polar solvents, hexadecane (HD) and 

heptamethylnonane (HMN), that formed a nonaqueous phase liquid (NAPL) separated from 

the water phase, they did not prevent zoospore settlement on these substrata. The zoospore 

settlement occurred at HD-water interface but not at HMN-water interface, and it was not 

influenced by PAH-degrading bacteria. We also observed that zoospores encysted at the HD-

water interface and created a mycelial network expanding the interfacial area between the 

NAPL and the water phase. Such network initiated biofilm formation by microbial consortia 

composed by the oomycete and PAH-degrading bacteria. On the basis of these results, we 

suggest that both mycelia and zoospores of the oomycete were able to develop in PAH-

polluted scenarios, and were influenced both by pollutant bioavailability and by interactions 

with PAH-degrading bacteria. 

 

For further investigation of oomycete/bacteria interactions in bioremediation of PAH, we 

explored in the second part of this thesis the influence of two oomycetes (Py. 

aphanidermatum and Pythium oligandrum) on biodegradation of PAHs by M. gilvum 

VM552. The experiments were designed to create bioavailability restrictions through the 

association of PAHs with a NAPL, which was composed by a mixture of heavy fuel and 
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HMN. Two experimental sets were used, one under aerated conditions (by shaking 

reciprocally at 80 rpm), and the other under static conditions. Mineralization activity of M. 

gilvum VM552 was estimated continuously through 14CO2 production from 14C-labelled 

phenanthrene dissolved in the NAPL. End-point concentrations of PAHs and alkanes present 

in the NAPL were determined by GC/MS. It was found that, under aerated conditions, both 

oomycetes enhanced bacterial mineralization of phenanthrene with the rates of 5.86-8.27 ng 

mL-1 h-1. A similar trend of results was also observed under static conditions, although the 

lag phases of mineralization extended longer than aerated conditions. The high rate of 

mineralization corresponded with the formation of dense microbial biofilms that formed at 

the interface between NAPL and water. In the absence of oomycetes, mineralization rates of 

phenanthrene were slow. An excess of DOC in the aqueous phase, provided either by adding 

diluted V8 (DV8) agar medium or oomycete growing on this medium, also enhanced 

biodegradation of PAHs, which suggests that oomycete growth provided nutrients passively 

dissolved from the solid medium to the aqueous phase for supplying the metabolic activity of 

the bacterium. We also propose that differences in biomass content and zoospores formation 

by different oomycetes might also be a key factor influencing either biofilm formation or 

biodegradation of PAHs at the NAPL-water interface. Interestingly, static conditions 

enhanced the mineralization activity of M. gilvum VM552 in the absence of any supplements, 

suggesting that the physical interference caused by aeration did not only stabilize the 

biodegrading capacity of the bacterium, but also affected the bacterial growth and biofilm 

formation at the NAPL-water interface.  

 

To discriminate the effects caused by oomycete zoospores from those directly caused by the 

mycelia, the third part of this thesis examined the possible role of the swimming behaviour 

of zoospores in the mobilization of PAH-degrading bacteria. During the coexistence of 

zoospores and bacteria in the presence of a zoospore attractant (5% (v/v) ethanol), we 

observed the bacterial mobilization by the chemotactic behaviour of zoospores. It was found 

that M. gilvum VM552 cells (non-flagellated) and slightly motile cells of P. putida G7 

(collected at stationary phase of growth) were mobilized by zoospores at the rates of 22-24 

cells μL-1 s-1. These rates resulted in enhanced biomass flow velocities of 25.85-68.38 μm s-1 

that were higher than the spontaneous flow velocity (19.51 μm s-1). The mobilization was 

caused by the change of hydraulic activity (advection and vortical flows) driven by the 

chemotactic behaviour of zoospores. In addition, we observed an influence of the interactive 

motility among zoospores and bacteria, together with specific effects of bacterial physiology 
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and motility, on mobilization of bacterial cells. In the absence of zoospore attractant, 

zoospores showed four typical patterns of swimming (linear, circular, sine wave and 

freestyle). Zoospore encystment was often preceded by the circular mode of movement. In 

the presence of M. gilvum VM552 cells, the rate of change of direction (RCDI) in zoospore 

trajectories decreased significantly and the circular movement was increased. The swimming 

speed and RCDI of zoospores were diminished significantly by highly motile cells of P. 

putida G7 (collected at exponential phase of growth). Zoospores did increase the swimming 

speed of slightly motile cells of P. putida G7 and increase the RCDI of its highly motile cells. 

In addition, we observed no adhesion between zoospores and bacteria and no bacterial 

chemotaxis towards encysted zoospores. We conclude that chemotaxis of zoospores did 

enhance the bacterial mobilization through the modified hydraulic activity of aqueous 

microenvironments and their interactive motility with bacterial cells. This finding may 

further expand the accessibility towards pollutants of bacterial degraders in bioremediation.  

 

We conclude that oomycetes provide new insights in biotechnological strategies for 

improvement of bioremediation. The oomycetes showed a strong subsistence in PAH-

polluted scenarios, and their zoospores and mycelia could enhance bioavailability of PAHs 

through different mechanisms. The mechanisms of this enhancement were driven by the 

ecological lifestyle of oomycetes. Zoospores played as bio-vectors to facilitate microbial 

mobilization, which consequently provided the effective expansion of mycelial network to 

promote biofilm formation and on-site biodegradation at the interface between the pollutant 

and the aqueous environment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

6 
 

Resumen (Abstract in Spanish) 
 

 

Con el objetivo de evaluar el papel de los oomicetos en la biorremediación de hidrocarburos 

aromáticos policíclicos (HAPs), exploramos en esta tesis las interacciones funcionales entre 

estos microorganismos y las bacterias degradadoras de HAPs. Estas interacciones se 

estudiaron en dos diferentes modos del desarrollo de los oomicetos: micelios y zoosporas. La 

primera parte de esta tesis se centró en la interacción ecológica entre el oomiceto Pythium 

aphanidermatum y dos bacterias representativas degradadoras de HAPs (Mycobacterium 

gilvum VM552 y Pseudomonas putida G7). Elegimos una serie de compuestos químicos para 

imitar escenarios de contaminación por HAPs, que incluían disoluciones acuosas con 

carbono orgánico de origen diverso (exudados radicales de plantas y ácidos húmicos) y 

disolventes orgánicos. El micelio del oomiceto y ambas bacterias no actuaron de forma 

antagonista durante el crecimiento en medio sólido. Sólo a la densidad más alta de células 

bacterianas (108-1010 células mL-1) ambas bacterias disminuyeron la formación de zoosporas. 

M. gilvum VM552 mostró el mayor antagonismo. Se observó una influencia negativa de los 

HAPs sobre la formación y la quimiotaxis de zoosporas cuando se expuso los productos 

químicos desde soluciones de carbono orgánico disuelto (COD) y disolventes polares, pero 

esta influencia fué disminuida por las bacterias. Cuando los PAHs fueron expuestos a partir 

de disolventes no polares, que formaban una fase diferenciada con el agua (o líquido en fase 

no acuosa – NAPL), no impidieron el asentamiento de las zoosporas sobre estos sustratos. El 

asentamiento se produjo en la interfase con hexadecano (HD) como NAPL, pero no con 

heptametilnonano, y no fue influido por las bacterias degradadoras de HAPs. También se 

observó que las zoosporas se enquistaron sobre la interfase agua-HD, creando una red de 

micelio que colonizaba la interfase, expandiendo el área interfásica entre el NAPL y la fase 

acuosa. Dicha red inició la formación de un biofilm por los consorcios microbianos 

compuestos por el oomiceto y las bacterias degradadoras de HAPs. En base a estos 

resultados, sugerimos que los micelios y las zoosporas del oomiceto fueron capaces de 

desarrollarse en en escenarios de contaminación por HAPs, y que fueron influidos por la 

biodisponibilidad de los contaminantes y por las interacciones con las bacterias degradadoras 

de HAPs.  

 

Para continuar nuestra investigación sobre las interacciones oomiceto/bacterias en el 

contexto de la biorremediación de HAPs, exploramos, en la segunda parte de esta tesis, la 
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influencia de micelios de dos oomicetos (Py. aphanidermatum y Pythium oligandrum) sobre 

la biodegradación de HAPs por M. gilvum VM552. Los experimentos se diseñaron para crear 

restricciones de biodisponibilidad a través de la asociación de los HAPs con un NAPL, que 

estaba constituido por una mezcla de fuel pesado y HMN. Se utilizaron dos sistemas 

experimentales, uno bajo condiciones de aireación (mediante agitación orbital continua a 80 

rpm), y el otro bajo condiciones estáticas. La biodegradación se estimó de forma continua a 

través de la producción de 14CO2 a partir de fenantreno marcado con 14C, y mediante la 

determinación de las concentraciones finales de HAPs y alcanos presentes en el NAPL con 

CG/EM. Observamos que, en condiciones de agitación, ambos oomicetos aumentaron la tasa 

de mineralización de fenantreno (5.86-8.27 ng mL-1 h-1) por la bacteria. Se observó una 

tendencia similar en la mineralización bajo condiciones estáticas, aunque las fases de 

aclimatación fueron más largas que bajo agitación continua. Las tasa alta de mineralización 

se correspondió con la formación de densos biofilms microbianos sobre la interfase 

agua/NAPL. En ausencia de oomicetos, la mineralización de fenantreno fue lenta y lineal. El 

exceso de COD en la fase acuosa, producido mediante la adición de agar DV8 o de biomasa 

de oomiceto cultivado con agar DV8, también estimuló la biodegradación de HAPs, lo que 

sugiere que el crecimiento del oomiceto proporcionó nutrientes que se disolvieron 

pasivamente desde el medio sólido hacia la fase acuosa, lo cual estimuló la actividad 

metabólica de la bacteria. También proponemos que las diferencias en el contenido en 

biomasa y en la formación de zoosporas producidas por los diferentes oomicetos pueden 

también ser un mecanismo clave en la formación de biofilm o en la biodegradación de HAPs 

en la interfase NAPL/agua. Interesantemente, las condiciones estáticas aumentaron la tasa de 

mineralización de fenantreno en ausencia de suplementos, lo que indicó que la interferencia 

física causada por la aireación no sólo estabilizó la capacidad de biodegradación por la 

bacxteria, sino que también afectó el crecimiento bacteriano y la formación de biofilm en la 

interfase NAPL/agua.  

 

Para discriminar los efectos causados por las zoosporas de los causados directamente por los 

micelios, la tercera parte de esta tesis examinó el posible papel del comportamiento de 

natación de las zoosporas en la movilización de bacterias degradadoras de HAPs. Durante la 

coexistencia de zoosporas y bacterias en presencia de un atrayente de zoosporas (5 % (v/v) 

de etanol) se observó la movilización bacteriana por el comportamiento quimiotáctico de las 

zoosporas. Observamos que las células (no flageladas) de M. gilvum VM552 y células en 

fase estacionaria de P. putida G7, que exhibían un bajo nivel de movilidad, fueron 
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movilizadas por las zoosporas a tasas de 22 a 24 células μL-1 s-1. Estas tasas resultaron en 

unas velocidades de flujo de biomasa de 25,85 a 68,38 μm s- 1, que fueron superiores a la 

velocidad de flujo espontáneo (19,51 μm s-1). En ausencia del atrayente, las zoosporas 

mostraron cuatro patrones típicos de natación (lineal, circular, de onda sinusoidal y estilo 

libre). El enquistamiento de las zoosporas fue a menudo precedido por el modo de 

movimiento circular. En presencia de células de M. gilvum VM552, la tasa de cambio de 

dirección (RCDI) en las trayectorias de las zoosporas descendió de forma significativa, y se 

aumentó el movimiento circular. Las células de P. putida G7 en fase exponencial (altamente 

móviles) y en fase estacionaria no causaron ningún cambio en el comportamiento de natación 

de las zoosporas, aunque éstas sí causaron un aumento de RCDI en el patrón de natación de 

la bacteria. Además, no se observó la adhesión entre zoosporas y bacterias ni la quimiotaxis 

bacteriana hacia zoosporas enquistadas. Proponemos dos posibles mecanismos clave para la 

biomovilización, incluyendo la advección directa causada por la quimiotaxis de las 

zoosporas y los flujos de torbellino a través del movimiento circular de zoosporas. El tamaño 

y la motilidad bacteriana afectaron estos mecanismos, ya que las células en fase estacionaria 

(más pequeñas y menos móviles que las células en fase exponencial) se movilizaron de 

manera más eficaz. Con estos resultados, se concluye que el comportamiento quimiotáctico 

de las zoosporas puede mejorar la movilización de bacterias mediante la modificación de la 

actividad hidráulica del microambiente acuoso. 

 

Concluímos que los oomicetos proporcionan nuevas perspectivas en las estrategias 

biotecnológicas para la mejora de la biorremediación. Los oomicetos mostraron una fuerte 

subsistencia en situaciones de contaminación por HAPs, y sus zoosporas y micelios pueden 

aumentar, a través de mecanismos diferentes, la biodisponibilidad de los HAP. Los 

mecanismos de esta mejora fueron posibles por el estilo de vida ecológico de los oomicetos. 

Las zoosporas actuaron como bio-vectores para facilitar la movilización microbiana, lo cual 

puede proporcionar una expansión de red micelial y así promover la formación de 

biopelículas y la biodegradación en interfases de microambientes contaminados por HAPs. 
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CHAPTER I: INTRODUCTION 
 

 

1.1 Polycyclic aromatic hydrocarbons (PAHs) 
 

Polycyclic aromatic hydrocarbons (PAHs), known also as polynuclear aromatic 

hydrocarbons are organic chemicals constituted of at least 2 benzene rings (Table 1). These 

rings may be fused in linear, angular or clustered arrangements. Carbon and hydrogen 

elements present in PAHs, whichever may be substituted by alkyl groups or other elements 

such as sulphur, oxygen or nitrogen to form heterocyclic aromatic compounds (Fig. 1).  

 

 
Table 1 Some environmental properties of the 16 US-EPA PAHs ordered according to the water 

solubility 

PAHs Structure 
Molecular 

weighta 
Sw (mg L-1)a log Kow

a log Koc
b 

Naphthalene 
 

128.17 31 3.37 2.98 

Acenaphthylene 
 

150.19 16 4.00 3.60 

Acenaphthene 
 

154.21 3.8 3.92 3.52 

Fluorene 
 

166.22 1.9 4.18 3.78 

Phenanthrene 

 

178.23 1.1 4.57 4.16 

Fluoranthene  

 

202.25 0.26 5.22 4.80 

Pyrene 

 

202.25 0.13 5.18 4.76 

Anthracene 
 

178.23 0.045 4.54 4.13 
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Table 1 (Continued) 

PAHs Structures 
Molecular 

weighta 
Sw (mg L-1)a log Kow

a log Koc
b 

Benz[a]anthracene 

 

228.29 0.011 5.91 5.47 

Benzo[a]pyrene 

 
252.31 0.0038 6.04 5.60 

Chrysene 

 

228.29 0.0020 5.60 5.17 

Benzo[b]fluoranthene 

 

252.31 0.0015 5.80 5.36 

Benzo[k]fluoranthene 

 

252.31 0.00080 6.00 5.56 

Dibenz[a,h]anthracene 

 

278.35 0.00060 6.75 6.30 

Benzo[g,h,i]perylene 

 

276.33 0.00026 6.50 6.05 

Indeno[1,2,3-c,d]pyrene 

 

276.33 0.00019 6.72 6.27 

aData were taken from Mackay et al. (2006). bData were calculated with equation (i) described by 
Schwarzenbach et al. (2003). The chemical structures were drawn with MarvinSketch (http://www. 
chemaxon.com/marvin/sketch/index.php, Available on 5 Feb., 2014). 
 

 

PAHs are known as ubiquitous pollutants, and their ecotoxicological effects are recognized 

worldwide. Polluted routes of PAHs in nature together with their toxicity, properties and 

environmental fate were briefly summarized in this section. 
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Figure 1 Some alkyl-PAHs (a) and heterocyclic aromatic compounds derived from PAHs (b). The 
chemical structures were drawn with MarvinSketch (http://www.chemaxon.com/marvin/sketch/index. 
php, Available on 5 Feb., 2014). 
 

 

1.1.1 Routes of pollution by PAHs 
PAHs exist in nature as a result of natural events and anthropogenic activities. Volcanic 

eruptions and forest fires are the main natural sources of PAHs. These PAHs generally occur 

in vast scale, which may disperse to diverse ecosystems by environmental carriers like wind 

and/or rain (Martínez-Lladó et al., 2007; Vergnoux et al., 2011). However, the main 

emissions of PAHs occur through anthropogenic activities, including incomplete combustion 

of organic materials, transport accidents, fossil fuel refineries, and productions of coal-tar, 

asphalt and wood preservatives. The persistence of these PAHs is often caused by binding to 

either organic matter in soils and sediments or nonaqueous phase liquids (NAPLs) such as 

light or crude oil, creosote, coal tar, and soot-like materials (Ortega-Calvo et al., 2013; 

Tejeda-Agredano et al., 2011; 2014). Scenarios typically polluted by PAHs are shown in Fig. 

2. 

 

1.1.2 Ecotoxicological effects of PAHs 
According to the United States Environmental Protection Agency (US-EPA), 16 PAHs have 

been proposed as priority pollutants (Keith and Telliard, 1979). They are listed in Table 1. 

Both PAHs and their derivatives exhibit ecotoxicity to diverse targets. The effects may range 

from the sub-cellular genomics (genotoxicity) to the physiology and behaviour of single or 

complex cells (cytotoxicity), or complex living communities and ecological food webs 

1-Methylanthracene 7,12-Dimethylbenz[a]anthracene 

(a) 

(b) 

 Phenanthridine Dibenzofuran 

http://www.chemaxon.com/marvin/sketch/index.%20php
http://www.chemaxon.com/marvin/sketch/index.%20php
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(ecotoxicity). Each PAH species can cause toxicity at different levels, depending on its 

structure, properties and environmental fate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 Macro- and micro-scale showing PAH-polluted scenarios and environmental fate of PAHs.  
 

 

It was found that PAHs possessing bay or fjord regions in their molecular structures (Fig. 3) 

are the most potent carcinogens (Sundberg et al., 1997). However, a number of studies 

evidenced that the environmental fate of PAHs is a critical factor influencing their 

ecotoxicity (Bellas et al., 2008; Martínez-Lladó et al., 2007; Su and Yang, 2009; Verrhiest et 

al., 2001). Among these studies, bioavailability of PAHs is a factor that exerts a strong 

influence on their toxicity. For example, sediments polluted with PAHs are more toxic to 
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benthic biomarkers than the overlying water column (Bellas et al., 2008; Verrhiest et al., 

2001).  

 

 

 

 

 

 

 
Figure 3 Molecular structures of PAHs. The arrows show bay (a) and fjord (b) regions. The chemical 
structures were drawn with MarvinSketch (http://www.chemaxon.com/marvin/sketch/index.php, 
Available on 5 Feb., 2014). 
 

 

1.1.3 Properties and environmental fate of PAHs 
PAHs are lipophilic compounds with a strong hydrophobicity. The number of benzene rings 

in PAHs is in accordance to their molecular weight, which reflects the hydrophobicity and 

can divide PAHs into 2 groups: low molecular weight (LMW)-PAHs (comprised of less than 

4 benzene rings) and high molecular weight (HMW)-PAHs (comprised of at least 4 benzene 

rings). The molecular weight influences water solubility (Sw), volatility and hydrophobicity 

of PAHs, where LMW-PAHs show higher Sw and volatility but lower hydrophobicity than 

HMW-PAHs. The difference of hydrophobicity is also described by the octanol-water 

partitioning coefficient (Kow) and the organic carbon-normalized sorption coefficient (Koc). 

These two coefficients are important to describe the environmental fate of PAHs. The 

sorption capacity of PAHs to the organic matter shows a linear regression relationship with 

the partitioning capacity of PAHs. This linear regression is described by equation (i) with a 

coefficient of determination (R2) = 0.98 (Schwarzenbach et al., 2003). The slope on the 

intercept in this equation increases in accordance to the molecular weight of PAHs. Some 

environmental properties of the 16 US-EPA PAHs are shown in Table 1 and described in 

Fig. 2.  

 

                                                                                                            (i) 

 

 

 

 Benzo[a]pyrene Benzo[c]phenanthrene 

 (a)  (b) 

http://www.chemaxon.com/marvin/sketch/index.php
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1.2 Bioremediation of PAHs and its limitations 
 

Bioremediation is a treatment technology for restoration of polluted environments, and it is 

recognized as an environmentally benign strategy. Bioremediation may be driven either by 

microbial functions only or by interconnection between microbes and the plant rhizosphere 

(Fester et al., 2014). Biological and non-biological remediation processes optimized for PAH 

pollution has been reviewed recently (Gan et al., 2009). Bioremediation may provide more 

advantages over other technologies, because the rehabilitated soil or sediment can retain 

many of its key functions, allowing its reuse after treatment. A set of bioremediation 

technologies for rehabilitation of PAH-polluted environments such as land farming (Wang et 

al., 1990), composting (Šašek et al., 2003), prepared-bed bioreactor (Ellis et al., 1991) and 

slurry-phase bioreactor (Mueller et al., 1991), is valid and available in the remediation 

market. The price of bioremediation is comparable to other non-biological techniques, such 

as chemical extraction, incineration and thermal desorption, which ranges from 20 to 70 € m-

3 (Elskens and Harmsen, 2007; Hyman and Dupont, 2001). Bioremediation at an average 

cost of 45 € m-3, is a realistic alternative to excavation and disposal, priced usually at 200 € 

m-3. Although biodegradation is the driving force for bioremediation of PAHs, the 

environmental factors that influence its biodegradation such as bioavailability remain 

unpredictable. This poor predictability in bioremediation of PAHs is a large limitation when 

evaluating the viability of this technology for treating contaminated soils and sediments 

(Ortega-Calvo et al., 2013). To this end, the integration of a bioavailability-efficient 

technology into current bioremediation practices at no additional cost will ensure that the 

target values for risk reduction and the cost-effectiveness of the treatment can be achieved. 

 

1.2.1 Biodegradation of PAHs 
Biodegradation driven by many bacteria and fungi is one of the most direct pathways for the 

dissipation of PAHs in nature. This microbial activity is dependent on the stability of the 

benzene rings in the PAH molecules and on other factors related to the hydrophobicity of 

PAHs (Niqui-Arroyo et al., 2011). The half lives of LMW-PAHs in nature, such as 

phenanthrene, range from 16-126 days, while HMW-PAHs, such as benzo(a)pyrene, possess 

substantially longer half lives of up to 1400 days (Husain, 2008). The estimation of half-life 

takes into account the reduction in PAH concentrations caused mainly by biodegradation. 
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The metabolic pathways for utilizing LMW-PAHs by microorganisms were studied since the 

1980s, and later (in the 1990s) for HMW-PAHs. Some metabolic pathways of such LMW-

PAHs like naphthalene and phenanthrene have been proposed, which are shown in Figs. 4 

and 5, respectively. In case of HMW-PAHs, their metabolic pathways found in diverse 

bacterial taxa were well summarized by Kanaly and Harayama (2000; 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Bacterial metabolic pathways of naphthalene to salicylate. The pathways were modified 
according to a summary of Eaton and Chapman (1992), where the chemical structures were drawn with 
MarvinSketch (http://www.chemaxon.com/marvin/sketch/index.php, Available on 5 Feb., 2014). 

http://www.chemaxon.com/marvin/sketch/index.php
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Figure 5 Bacterial metabolic pathways of phenanthrene. The figure was modified according to the 
proposed pathways elucidated by Moody et al. (2001), where the chemical structures were drawn with 
MarvinSketch (http://www.chemaxon.com/marvin/sketch/index.php, Available on 5 Feb., 2014). 
 

 

http://www.chemaxon.com/marvin/sketch/index.php
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The aerobic metabolism of PAHs has been well studied, and it occurs through three main 

catabolic activities (Cerniglia, 1992; Haritash and Kaushik, 2009; Husain, 2008; Kanaly and 

Harayama, 2000; Peng et al., 2008; Semple et al., 1999; Steffen et al., 2000): 

 

1) Oxidation of aromatic ring by dioxygenase (Fig. 6), exclusively for bacteria and usually 

through their metabolism to use PAHs as a carbon and energy source, which may lead to 

a co-metabolic process; 

 

 

 

 

 
 
 
Figure 6 Biodegradation at the first step for breaking down the aromatic ring of PAHs by dioxygenase. 
The figure was summed up from the literatures cited. The chemical structures were drawn with 
MarvinSketch (http://www.chemaxon.com/marvin/sketch/index.php, Available on 5 Feb., 2014). 
 

 

2)  Oxidation by means of lignin and manganese peroxidases excreted from white-rot fungi 

(Fig. 7), considered as a co-metabolic process of PAHs in nature;  

 

 

 

 

 

 

 
 
Figure 7 Biodegradation at the first step for breaking down the aromatic ring of PAHs by lignin and 
manganese peroxidases. The figure was summed up from the literatures cited. The chemical structures 
were drawn with MarvinSketch (http://www.chemaxon.com/marvin/sketch/index.php, Available on 5 
Feb., 2014). 
 

 

3) Oxidation with cytochrome P450 monooxygenase found in both prokaryotes and 

eukaryotes (Fig. 8), it is typically relevant to the detoxification and metabolite transform, 

but does not usually entail the mineralization of PAHs.  

 PAH 

O2, Dioxygenase 

Bacteria, Algae 

cis-Dihydrodiol 

PAH 

Fungi 

Quinone 

H2O2, Lignin- / Mn-peroxidases, 
Laccases  

http://www.chemaxon.com/marvin/sketch/index.php
http://www.chemaxon.com/marvin/sketch/index.php
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Figure 8 Biodegradation at the first step for breaking down the aromatic ring of PAHs by cytochrome 
P450 monooxygenase. The figure was summed up from the literatures cited. The chemical structures 
were drawn with MarvinSketch (http://www.chemaxon.com/marvin/sketch/index.php, Available on 5 
Feb., 2014). 
 

 

The current knowledge on the biodegradation of PAHs reveals that most PAHs listed in 

Table 1 can be degraded through aerobic metabolism, except for some HMW-PAHs such as 

benzo[a]pyrene that require co-metabolic process (Kanaly and Harayama, 2000; 2010). The 

co-metabolism of PAHs does not provide any benefit to the microbial cells, as because it 

does not cause extensive modification of PAHs neither incorporation them into biomass nor 

direct conversion them into CO2. Recent findings have demonstrated also that 

microorganisms can use other electron acceptors, such as nitrates and sulphates, for 

oxidation of PAHs (Quantin et al., 2005; Rothermich et al., 2002). Futhermore, it was 

evidenced that biodegradation of PAHs in anaerobic environments could occur only in the 

presence of a second carbon source like acetate or glucose (Ambrosoli et al., 2005). 

 

The biodegradation of PAHs sorbed to black carbon or NAPLs is typically a slow process 

that contributes to their long-term persistence in environments (Lopez et al., 2008; Ortega-

Calvo and Gschwend, 2010; Ortega-Calvo et al., 1995). Dissolved organic carbon (DOC) 

also plays a key role in the biodegradation of PAHs. It was found that the addition of DOC in 

the form of humic fractions to PAH-polluted soils caused an enhancement of biodegradation, 

probably as a result of the enhanced desorption of PAHs from soils to the aqueous fraction 

(Bengtsson and Zerhouni, 2003; Bogan and Sullivan, 2003; Haderlein et al., 2001). The 

other DOC-mediated enhancements of PAH biodegradation include the enlargement of PAH 

solubility (Liang et al., 2007), a direct access to DOC-sorbed PAHs due to the physical 

association of bacteria and DOC (Ortega-Calvo and Saiz-Jimenez, 1998), and an increased 

diffusive flux toward bacterial cells caused by DOC (Haftka et al., 2008). 

 

PAH 

Cytochrome P450- / Methane-
monooxygenases  

Bacteria, Algae, Fungi 

Arene oxide 

http://www.chemaxon.com/marvin/sketch/index.php
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Due to their charged nature and high specific surface, natural clay minerals also play an 

important role in the biodegradation of PAHs. Microbial cells often show a high affinity for 

clay surfaces, as evidenced by their spontaneous association in suspensions and percolation 

columns (Lahlou et al., 2000; Ortega-Calvo et al., 1999; Velasco-Casal et al., 2008). This 

association can explain, for example, the population density of PAH-degrading mycobacteria 

in the PAH-enriched clay fraction of a long-term polluted soil (Uyttebroek et al., 2006). 

Surface of clay can also scavenge organic chemoeffectors from the pore water by sorption, 

thereby eliminating their effect in promoting the transport of chemotactic bacteria through 

porous materials (Velasco-Casal et al., 2008), and associate with organic matter, resulting in 

slow desorption of PAHs with limited bioavailability to microbial degradation (Lahlou and 

Ortega-Calvo, 1999). Clay-rich soil may also present a limited oxygen and nutrient supply to 

PAH-degrading populations, due to slow diffusion and low hydraulic conductivity (Niqui-

Arroyo et al., 2006). 

 

The biodegradation in bioremediation of PAHs is often found to have a conceptual link with 

pollutant bioavailability and microbial accessibility toward these pollutants. This 

interconnection is proposed with a graphical model described in Fig. 9. 

 

1.2.2 Bioavailability of PAHs 
Due to their strong hydrophobicity and sorption behaviour, PAHs are recognized as poorly 

available pollutants in nature. However, aged PAHs can still be extracted by vigorous solvent 

extraction, but they possess a lower bioavailability and risks compared with the more 

recently introduced pollutants (Alexander et al., 2000). Partitioning of PAHs from sorbents 

and NAPLs may occur through weak chemical activity gradients that promote their uptake 

and transformation by active microbial cells. The partitioning kinetics can be determined in a 

biphasic NAPL/water system that maintains the integrity of the organic phase, resulting in a 

constant interfacial area (Ortega-Calvo and Alexander, 1994). This method allows the 

accurate estimations of partitioning rates and equilibrium concentrations, avoiding potential 

interferences caused by the dispersions of NAPL due to shaking, microorganisms and 

biostimulants (Garcia-Junco et al., 2003; Ortega-Calvo et al., 1995; Tejeda-Agredano et al., 

2011). It also allows for a direct comparison of biodegradation rates measured under the 

same conditions. Hence, biodegradation rates may reflect the dependencies of restricted 

phase exchanges, and the pollutants may persist for longer periods of time. This persistence 

may increase environmental risk of PAHs. Understandings of both environmental fate of 
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PAHs and microbial functions and responses in PAH-polluted scenarios together with taking 

environmental risk of PAHs into account are essential for improving the bioremediation 

technology. An interconnection between pollutant bioavailability, bioremediation and 

environmental risk of PAHs is represented in Fig. 10.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 9 Impact of microbial chemotaxis on bioavailability and biodegradation of pollutants in PAH 
bioremediation (Krell et al., 2013, see also the list of author’s publications, page 1).  
 
 

A useful indicator of bioavailability is the fraction of potentially biodegradable PAHs over 

time in the absence of limitations other than restricted phase exchanges. This is also known 

as the bioaccessible fraction (Semple et al., 2007). Another bioavailability indicator is the 

chemical activity of PAHs, which is the fraction of the aqueous solubility of PAHs in liquid 

state that can be measured as freely dissolved chemical concentrations (Cfree) in the aqueous 

phase of an environmental sample (Reichenberg and Mayer, 2006). Desorption of PAHs 

from polluted soils and sediments, is well represented by a biphasic pattern. A slow 

desorption rate of PAHs may be prominent if soils are enriched with semisolid components, 
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such as NAPL-like creosote materials that possess a strong sorption affinity for PAHs. These 

materials limit biodegradation rate of PAHs because they possess restricted surface areas and 

allow the PAHs to diffuse slowly from these sorbents. Bioavailability of native PAHs present 

in soils and sediments can also be assessed with an accelerated biodegradation assay, 

characterized by a) inoculation of a sample containing PAHs with a sufficient number of 

PAH-degraders, b) monitoring the biodegradation activity through 14C-mineralization 

measurements, and c) a single-step chemical analysis of native PAHs in the residues (Ortega-

Calvo et al., 2013).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 10 Overview of conceptual interconnection of pollutant bioavailability, bioremediation and 
environmental risk in PAH bioremediation (Ortega-Calvo et al., 2013, see also the list of author’s 
publications, page 1). 
 

 

Some recent strategies for bioremediation of PAHs, focusing on the enhancement of 

pollutant bioavailability under acceptable environmental risks have been well addressed 

(Ortega-Calvo et al., 2013). 
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1.2.3 Microbial accessibility towards PAHs 
Chemotaxis has been proposed as an effective tool of microorganisms to access the 

pollutants and further increase pollutant bioavailability and biodegradation. During the past 

decade, it has been conceived that bacterial chemotaxis increases bioavailability and 

biodegradation rate of PAHs either they exist freely or with binding to their sorbents at low 

bioavailable regimes (Grimm and Harwood, 1999; Krell et al., 2013; Law and Aitken, 2003; 

Marx and Aitken, 2000; Ortega-Calvo et al., 2003). The best studied example is the capacity 

of P. putida G7 to degrade naphthalene. Grimm and Harwood (1999) have proposed that 

NahY-mediated taxis towards naphthalene might facilitate its biodegradation. Proof of this 

hypothesis was brought by Aitken and co-workers. Using a heterogeneous aqueous system, 

they were able to demonstrate that chemotaxis enhances naphthalene biodegradation (Marx 

and Aitken, 2000). Subsequent studies using chemotactic and non-chemotactic strains of P. 

putida G7 clearly evidenced that chemotaxis increased naphthalene degradation when the 

compound is present in a NAPL (Law and Aitken, 2003). There are some studies that 

compare the pollutant-degrading capacity of microorganisms with their chemotactic capacity. 

Interestingly, in some cases chemotaxis was only observed towards compounds which were 

degraded by the microorganism whereas structurally similar non-substrate compounds were 

not found to be chemoattractants (Pandey et al., 2012; Samanta et al., 2000), which confirms 

the link between chemotaxis and biodegradation. 

 

Althought the chemical gradients of partitioned PAHs from their sorbents may result in 

exclusively low exposure concentrations, they are still detectable by bacterial chemotaxis. 

Particularly, the existence of PAH-degrading bacteria at the interface of such low 

bioavailable PAHs and aqueous microenvironments is required for effective biodegradation. 

However, bacterial chemotaxis needs to be mediated with water saturated systems. Recently, 

it was evidenced that bioavailability of naphthalene can also be promoted by the chemotactic 

transport of P. putida G7 through liquid films of water along the oomycete mycelia, which 

act as pathways for mobilization (Furuno et al., 2010). The impacts of microbial accessibility 

through chemotactic mechanism on bioavailability and biodegradation of pollutants in 

bioremediation are represented in Figs. 9 and 10. 

 

In general, microbial accessibility towards pollutants in soils or sediments is limited by either 

microbial cell physiology or environmental factors. The pollutant-degrading bacteria are 
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usually limited in the accessibility towards pollutants in the soil structure (Fredslund et al., 

2008; Uyttebroek et al., 2006). However, diverse strategies with the aim to improve 

microbial accessibility in bioremediation of PAHs have been proposed (Ortega-Calvo et al., 

2013). Notwithstanding, the transport of non-flagellated PAH-degrading bacteria through 

water-saturated porous media is somehow difficult even with such strategies, for example, 

electroosmotic mobilization (Wick et al., 2004; 2007b) and mycelial networking (Kohlmeier 

et al., 2005; Wick et al., 2007a).  
 

 

1.3 Exploiting microbial influences on bioremediation of PAHs 
  

1.3.1 Production of surface-active compounds 
The production of surface-active compounds (surfactants) by microorganisms is an important 

microbial process that affects the bioavailability of hydrophobic organic pollutants like 

PAHs. Many different surfactants are synthesized by a wide variety of microorganisms, such 

as Pseudomonas, Bacillus, Acinetobacter and Mycobacterium (Desai and Banat, 1997; Lang 

and Wullbrandt, 1999; Maier and Soberon-Chavez, 2000). Despite considerable amounts of 

effort expended in researching these compounds, the exact physiological role that microbial 

surfactants play has not yet been completely elucidated. Otherwise, it does not seem to be 

restricted exclusively to the solubilization of hydrophobic carbon sources, as surfactants can 

also be produced when the microorganisms are grown with water-soluble substrates, such as 

glucose. The surfactants produced biologically are known as biosurfactants that are 

important in diverse biotechnological aspects. These biosurfactants play a key function in 

numerous ecological processes and have been linked to microbial adhesion, antagonistic 

effects toward other microorganisms, heavy metal sequestration and cell-cell 

communication. Laboratory and field studies have also shown that biosurfactants can be used 

successfully for environmental applications, such as the restoration of pollution caused by 

heavy metals and hydrocarbons (Harvey et al., 1990; Herman et al., 1995; McCray et al., 

2001; Mulligan et al., 1999). It is conceivable, therefore, that biosurfactants are able to 

improve PAH-bioremediation performance.  

 

Indeed, biosurfactants exhibit the ability to dissolve pure, solid PAHs, such as phenanthrene, 

hence increasing their rate of biodegradation (Garcia-Junco et al., 2001; 2003; Resina-Pelfort 

et al., 2003). Although the synthesis of biosurfactants is not universal among all 
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microorganisms, their role in increasing the bioavailability of PAHs in natural environments 

is significant. This important function of biosurfactants should be considered for optimizing 

the bioremediation of PAHs under acceptable level of environmental risk. Besides 

biosurfactants, there is a wide variety of other natural organic compounds derived from 

either microbes or plants that can potentially increase the bioavailability of PAHs. For 

instance, cyclodextrins (Garon et al., 2004) and unsaturated fatty acids (Yi and Crowley, 

2007) that have been proposed to stimulate the biodegradation of PAHs in soil through 

surface-influencing mechanism.  

 

1.3.2 Enhancing microbial mobilization  
The bioavailability of PAHs can be increased not only by solubilizing the pollutants, but also 

by promoting the dispersal of microorganisms throughout the polluted matrix. However, the 

positive effect resulting from the mobilization of these microbes in bioremediation is 

dependent on the efficiency of bacterial movement in porous media. It is often restricted by 

high deposition rates and adhesion to soil surfaces of microbial cells. Bacterial active 

motility and taxis may help to overcome the limitation. Meanwhile, chemotaxis as the 

diverse tactic reactions to pollutants of bacteria has been considered through flagellar 

motility as a major tool for accessing the pollutants. Biodegradation studies based on carbon 

tetrachloride (Witt et al., 1999), BTEX compounds (Parales et al., 2000), pesticides 

(Hawkins and Harwood, 2002) and one of the most water soluble PAHs, naphthalene 

(Grimm and Harwood, 1997; Marx and Aitken, 2000), have demonstrated the capability of 

chemotaxis to enhance biodegradation in laboratory-scale microcosms. There have been 

reports on chemotactic responses towards moderately hydrophobic PAHs, such as 

phenanthrene, anthracene and pyrene (Ortega-Calvo et al., 2003). Chemotactic influences 

may be particularly important for the degradation of the most hydrophobic PAHs, such as 

benzo(a)pyrene, which are strongly sorbed to the soil and experience a reduced mobility. 

However, utilization of chemotaxis for enhancing the biodegradation of these PAHs requires 

new experimental and analytical methods, as well as a consideration of new concepts that 

need to be developed.  

 

The best example of chemotaxis-enhanced bioavailability and hence biodegradation of PAHs 

has been studied with naphthalene-degrading P. putida G7. Using a heterogeneous aqueous 

system under a slow-diffusion regime, the rate of biodegradation of naphthalene by P. putida 

G7 was found to exceed the predictions from a model based on diffusion-limited 
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biodegradation (Marx and Aitken, 2000). This indicated that bacterial movement through 

chemotaxis was faster than substrate mass transfer within the aqueous phase, thus enhancing 

the rate of substrate acquisition. A subsequent study that also used chemotactic and non-

chemotactic strains of P. putida G7 clearly demonstrated that chemotaxis increased 

naphthalene degradation when the compound is present in a NAPL (Law and Aitken, 2003). 

In this case, chemotaxis promoted partitioning and biodegradation of naphthalene by creating 

a steeper gradient as the cells accumulated near the NAPL-water interface. Ecological 

service using mycelial network of fungi and oomycetes has recently been found to facilitate 

chemotactic transport of P. putida G7 towards PAHs, which later promote bioavailability 

and biodegradation of such PAHs (Furuno et al., 2010; Harms et al., 2011; Kohlmeier et al., 

2005). This study evidenced that bacterial chemotaxis requires a liquid phase for motility. 

Interestingly, the liquid films surrounding fungal mycelia provide appropriate environments 

for chemical gradients and chemotactic responses by motile bacteria. Another study showed 

that the exposure regime of the chemical also appears to influence the type of tactic response 

(Hanzel et al., 2010). Naphthalene caused in the aqueous phase chemoattraction by P. putida 

G7, but when such chemical was exposed from a vapor phase, it acted as a repellent, even at 

lower doses than in the aqueous phase. 

 

Bacterial chemotaxis has the potential to not only increase the degradation of 

chemoattractants, but it also has an important role in the establishment of biofilms (O'Toole 

and Kolter, 1998; Singh et al., 2006) and mixed microbial communities (Perumbakkam et al., 

2006) that may facilitate bioremediation. The co-adhesion and synergistic interaction of 

various microbial species might be strategic to improving the biodegradation of recalcitrant 

compounds. A technological innovation based on this concept relies on the mobilization 

potential of chemotactic pollutant-degrading microbes taken from plant samples (Ortega-

Calvo et al., 2003). It was found that chemotaxis towards PAHs in bacteria isolated from 

rhizospheric soils that were contaminated with hydrocarbons, where these bacteria are able to 

move chemotactically at speeds of approximately 1 mm min-1 (Ortega-Calvo et al., 2003). It 

has been shown also in later research that bacterial motility and transport can be controlled 

through an optimal set of chemical effectors (Jimenez-Sanchez et al., 2012; Ortega-Calvo et 

al., 2011; Velasco-Casal et al., 2008). In well-controlled column systems, the authors found 

that different effectors could influence the deposition of a chemotactic, naphthalene-

degrading P. putida G7, in selected porous environments (sand, forest soil, and clay 

aggregates). Cellular deposition, however, was concomitantly dependent on the cellular 
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motility (hyper-motility, attraction or repulsion), the sorption of chemical effectors to the 

column packing materials, and the resulting pore-water concentration. For example, an 

exposure of the bacterial cells to salicylate induced a smooth movement with few 

acceleration events and positive taxis, while cells exposed to silver nanoparticles (AgNPs) 

exhibited tortuous movement and repulsion (Jimenez-Sanchez et al., 2012). Although 

glucose was metabolized by P. putida G7, it did not cause any attraction, but it could induce 

hyper-motile mode of the bacterial cells, characterized by a high frequency of acceleration 

events, a high swimming speed (> 60 μm s-1) and a high tortuosity in the trajectories. The 

chemically-induced motility behaviours demonstrated a distinct affinity for sand particles in 

batch assays, resulting in the development of breakthrough curves in percolation column 

experiments (Jimenez-Sanchez et al., 2012). The author also found that salicylate reduced 

significantly the deposition of P. putida G7 cells in the column experiments, while glucose 

and AgNPs enhanced the attachment and caused a blocking of the filter, which resulted in a 

progressive decrease in deposition of the bacterial cells. Therefore, modification of chemical 

effectors in environment could assist the improvement of bacterial mobilization in 

bioremediation of pollutants. 

 

1.3.3 Promoting microbial life at pollutant interfaces 
Microorganisms can also increase the bioavailability of PAHs when they are in a direct 

contact with the pollutants, thereby enabling biodegradation to proceed more rapidly 

(Garcia-Junco et al., 2003; Ortega-Calvo and Alexander, 1994).  The main goal of a recent 

study (Tejeda-Agredano et al., 2011) was to target the potential nutritional limitations of 

microorganisms to enhance the biodegradation of PAHs at the interface between NAPL and 

water phase. The study found that biodegradation of PAHs present in fuel-containing NAPLs 

was slow and followed zero-order kinetics, indicating bioavailability restrictions (Tejeda-

Agredano et al., 2011). The authors found that addition of an oleophilic biostimulant 

enhanced the biodegradation, resulting as an S-shaped logistic kinetics curve, and yielded a 

ten-fold increase in the mineralization rates of PAHs. A chemical analysis of residual fuel oil 

also showed that there was an enhanced biodegradation of the alkyl-PAHs and n-alkanes. 

This enhancement in biodegradation was not the result of an increase in the rate of the 

partitioning of PAHs into the aqueous phase, nor was it generated to compensate for any 

nutritional deficiency in the medium. These results indicate that the biodegradation of PAHs 

by bacterial cells attached to NAPLs can be limited by nutrient availability as a result of the 
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simultaneous consumption of PAHs within the NAPLs, but this limitation can be overcome 

by interface fertilization.  

 

As the general concepts for promoting bioavailability and biodegradation are an attempt to 

increase face-to-face interaction betweem pollutant-degrading microorganisms and their 

carbon and energy source (pollutants). Flagellated pollutant-degrading microorganisms can 

greater access towards pollutants and hence reside at the pollutant interfaces. However, non-

flagellated pollutant-degrading microorganisms require much longer time to access such 

pollutant interfaces. As mentioned previously, even under the aeration system that could 

enhance chemical partitioning of PAHs from NAPL and/or ideally increase the dissolution of 

atmospheric oxygen to the aqueous phase has been established, the mineralization rate of 

PAHs was not accelerated (Tejeda-Agredano et al., 2011). Hence, the aeration system with 

physical movement within aqueous microenvironment may be an influencing factor 

interrupting the bacterial dwelling at the pollutant interface. It would be a challenging issue 

to evaluate this physical influence on microbial biofilm formation, especially in the 

biodegradation of pollutants at low bioavailable regimes. 

 

 

1.4 What are oomycetes? 
 

1.4.1 Taxonomic position of oomycetes 
Oomycetes (Öomycetes Winter, 1897; classified into the class Peronosporomycetes Dick, 

2001) are fungus-like eukaryotic microorganisms (also known as pseudofungi, lower fungi 

or water moulds, on the basis of earlier classifications). They belong to a major lineage of 

“heterokonts or stramenopiles” (correct Latin spelling, straminopiles (Adl et al., 2005)). 

Heterkonts belong to the phylum Heterokontophyta and comprise mainly algae and 

pseudofungi, which has been classified recently under the super-group of Chromalveolata 

(Adl et al., 2005) (called here as the kingdom Chromalveolata). The word “heteroknonts” 

refers to biflagellated motile cells with anterior and posterior flagella (Adl et al., 2005). The 

recent taxonomic position of oomycetes and some of their notable members are shown in Fig. 

11. The typical life cycle and unique ecological impacts of oomycetes are addressed below.  
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Figure 11 Taxonomic position of oomycetes and their notable members. 

 

 

1.4.2 Life cycle of oomycetes 
As oomycetes are fungus-like eukaryotic microorganisms, they are able to grow in the 

filamentous mode. The filamentous formation is a vegetative stage of the oomycete growth. 

This filament is mostly not partitioned by septa, called as aseptate (or coenocytic) hypha. 

This kind of hypha is similar to a pipeline, where the cytoplasm and genetic material are 

homogenously flowing inside. The hyphal growth typically forms a structure of hyphal mat, 

known as mycelium. In the reproductive stage, oomycetes are able to reproduce through 

sexual and asexual systems. The sexual reproduction of oomycetes originates a reproductive 

propagule called as oospore, which is produced from a cytoplasm merged between the parent 

mycelia (female one called oogonium and male one called antheridium). Oospores are 

characterized by their spherical shape, thick walls and absence of motility. They are known 
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to be produced in adverse environmental conditions, where the thick cell wall guarantees 

their survival. Under favourable conditions, these sexual spores germinate and produce germ 

tubes. These germ tubes may develop further to be mycelial networks or sporangia that are 

able to form asexual spores called as zoospores. These zoospores are motile with two flagella 

(posterior and anterior). These zoospores are produced with the aim to interact with their 

target locations, sensing the environment selectively and directionally through chemotaxis, 

electrotaxis, autotaxis, or autoaggregation. Once they find their target locations, zoospores 

perform encystment and form germ tubes. Zoospore development in oomycetes is well 

documented (Walker and van West, 2007). The typical life cycle of oomycetes is shown in 

Fig. 12.  

 

1.4.3 Ecology of oomycetes 
Most oomycetes are saprophytes and parasites. They are often found in terrestrial and aquatic 

rhizospheres (i.e. water-saturated soils or sediments of wetlands, mangrove forests, streams, 

lakes and etc.), and few of them have been described in marine habitats (Dick, 2001; Hulvey 

et al., 2010). They live at the interface of biphasic habitats (solid-liquid, solid-air or liquid-

air). They are known for on their parasitic lifestyles interacting with diverse hosts. Among 

them, some are known as pathogens of several economic crops (i.e. Phytophthora and 

Pythium) and fishes (i.e. Saprolegnia) (Walker and van West, 2007), and some are known as 

biocontrol agents like Pythium oligandrum (a mycoparasite of other plant pathogenic 

oomycetes and fungi) (Benhamou et al., 2012) and Lagenidium giganteum (a parasite of 

mosquito larvae) (Kerwin, 2007). Based on the unique lifestyle of oomycetes to form 

zoospores as a dispersal tool to localize remote places, most studies focus on how these 

zoospores interact with other organisms in nature. Numerous studies have revealed 

interactions between oomycete zoospores and their host plants or antagonistic 

microorganisms (Blanco and Judelson, 2005; Heungens and Parke, 2000; Timmusk et al., 

2009; van West et al., 2003). Although they are recognized as invasive parasites, they also 

cause beneficial impacts in ecosystem against pathogens of plants and animals (Benhamou et 

al., 2012; Kerwin, 2007). Moreover, some studies evidence that leaf litter-decomposing 

oomycetes are one of the key interacting microbes, enhancing the consumption behaviour of 

this leaf litter by benthic invertebrates, what results in effective biogeochemical turnover and 

nutrient cycling in freshwater ecosystem (Aßmann et al., 2010; 2011). 
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Figure 12 Life cycle of oomycetes. The figure was drawn based on own microscopic observations of 
Pythium aphanidermatum and information taken from the literature. 
 

 

1.5 Oomycetes in bioremediation of PAHs 
 

1.5.1 Mycelial networks 
Application of oomycetes in bioremediation is likely unknown. However, the potential of 

mycelial networks in bioremediation of PAHs was firstly revealed by Kohlmeier et al. 

(2005). The authors found that mycelial networks of higher fungi could facilitate the 

mobilization of flagellated PAH-degrading bacteria. They also hypothesized that the bacteria 

may swim along the liquid film surrounding the fungal hyphae, while a limitation of this 

fungal facility had yet been found with non-flagellated PAH-degrading bacteria. The author 

also proposed the concept of “fungal highway”, which well describes this ecological service 

of mycelial networks of filamentous fungi. Later on, the role of mycelial networks formed by 

a rhizosphere oomycete, Pythium ultimum was investigated (Wick et al., 2007a). This work 
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showed that the oomycete could promote the accessibility of a pollutant-degrading 

bacterium; Pseudomonas putida PpG7 (NAH7) to its carbon source by providing a 

continuous network of water-paths within the soil matrix. Moreover, the liquid film created 

along the mycelial network was found to be a cross bridge simulated with a chemical 

gradient of pollutant that was further attracted by motile pollutant-degrading bacteria through 

chemotaxis (Furano et al., 2010). This fungal model system could potentially apply to the 

bioavailability and biodegradation of pollutants in soil. In addition to the interesting unique 

feature of oomycete hyphae without partition septa (i.e. all the cytoplasm flows through 

along the hyphae), it was found that the pollutants accumulated in the form of vacuole and 

they were transported within this “biological pipeline” (Furano et al., 2012). These effective 

ecological services (Fig. 13) of oomycetes reveal a great impact of biotechnological 

development in bioremediation technology. Further than the mycelial network, when we look 

at the life cycle of oomycetes, other compartment of their cycle such as zoospores would be a 

challenging component for understanding the whole concept of their ecological services in 

bioremediation of pollutants. While, the impacts of these eukaryotic zoospores and their 

development within polluted scenarios are still unknown. The possible applications of these 

zoospores for bioremediation of pollutants are addressed below. 

 

1.5.2 Eukaryotic zoospores? 
Eukaryotic zoospores can be formed not only by fungi and oomycetes but also by algae and 

protists (Fan et al., 2002; Gleason and Lilje, 2009; James et al., 2006; Rasconi et al., 2012; 

Walker and van West, 2007). These zoospore-producing organisms play diverse ecological 

roles as phototrophs, saprophytes, parasites or symbionts. They live in a wide scale of 

habitats, ranging from the unique mutual lifestyle within the cattle rumen to freshwater lakes, 

mangrove forests and oceans. Numerous studies have revealed interactions between 

phytopathogenic zoospores and their host plants or microbial antagonists (Blanco and 

Judelson, 2005; Heungens and Perke, 2000; Timmusk et al., 2009; van West et al., 2003). 

The physiology of zoospores is different dependent on each taxonomic species but reveals 

similarity with a possession of at least a flagellum for their translocation. Generally, an 

aqueous phase is required for the induction and formation of zoospores, in which they can 

swim along for a distance prior to settlement and encystment.  
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Figure 13 Ecological services of oomycete mycelia for an enhanced mobilization of pollutants and 
flagellated pollutant-degrading bacteria. The figure was drawn based on the literature cited, and points 
at the question how zoospores survive in polluted scenarios and how they can be applied for enhanced 
bioremediation of pollutants. 
 

 

The orientation of zoospores to their appropriate target is directed by their swimming 

behaviour and motility responses mainly through chemotaxis (Appiah et al., 2005; Blanco 

and Judelson, 2005; Latijnhouwers et al., 2004). A long swimming period up to 2 days in 

axenic aqueous solution can be observed with some fungal zoospores (Gleason and Lilje, 

2009). Moreover, some eukaryotic zoospores of marine algae showed a chemotactic response 

toward signalling molecules produced by bacterial populations, which leads to complex 

biofilm formation of this eukaryote-prokaryote consortium (Joint et al., 2002; Patel et al., 

2003; Twigg et al., 2014). The ecological impacts of zoospores have been studied mainly in 

their natural habitats, but their development within polluted environments has remained 

relatively unexplored. Moreover, the mechanisms of how eukaryotic zoospores interact with 

prokaryotic population during their swimming and their interference in hydraulic activity 

within aqueous microenvironments are still unknown. These ecological impacts of zoospores 
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may enhance bioaccessibility of pollutant-degrading bacteria, which may further increase 

bioavailability of pollutants in bioremediation. 
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CHAPTER II: OBJECTIVES 
 

 

This work aims to evaluate the impacts of oomycete mycelia and zoospores in 

bioremediation of PAHs. Within this framework, we have examined the idea on how to 

utilize the ecological services provided by the unique lifestyles of oomycetes either their 

filamentous growth or in the formation of zoospores that create subsequently the mycelial 

network at their remote places. Theses ecological applications of oomycetes are proposed 

here as a possible tool for enhancing microbial accessibity and pollutant bioavailability. The 

overall knowledge for such applications in promoting bacterial degradation of PAHs was 

also investigated. The research studied the roles of oomycetes/bacteria interactions in 

ecological aspects, in the biodegradation of PAHs and in the bacterial mobilization. The 

objectives of each study are indicated below. 

 

Ecological aspects: 

• Evaluation of microbial antagonisms among oomycetes and PAH-degrading bacteria. 

• Investigation of PAH-polluted scenarios affecting filamentous growth and zoospore 

development in oomycetes. 

• Exploration of ecological interaction between oomycetes and PAH-degrading bacteria 

within PAH-polluted scenarios. 

 

Biodegradation of PAHs: 

• Investigation of functional interaction between oomycetes and PAH-degrading bacteria 

in promoting bacterial degradation of sparingly available pollutants, using non-

flagellated phenanthrene-degrading Mycobacterium gilvum VM552 in a NAPL-polluted 

system. 

• Evaluation of biological and physicochemical factors influencing such interaction 

between oomycetes and PAH-degrading bacteria in biodegradation of pollutants. 

 

Bacterial mobilization: 

• Investigation of swimming, chemotaxis and encystment behaviours of oomycete 

zoospores on hydraulic activity within aqueous microenvironments. 
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• Evaluation of possible roles of oomycete zoospores in mobilization of PAH-degrading 

bacteria. 
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CHAPTER III: MATERIALS AND METHODS 
 

 

3.1 List of chemicals and solutions 
 

3.1.1 Chemicals 
Non-polar solvents (n-hexadecane (HD) and 2,2,4,4,6,8,8-heptamethylnonane (HMN)), all 

PAHs (naphthalene, fluorene, phenanthrene, fluoranthene, pyrene and anthracene), acridine 

orange, o-terphenyl and 17α(H),21β(H)-hopane were purchased from Sigma-Aldrich, 

Germany. Polar solvents (pure grade acetone and absolute ethanol) and NaOH were 

purchased from Panreac, Barcelona, Spain. Heavy fuel oil RMG 35 (ISO 8217) was obtained 

from the Technical Office of Accidental Marine Spills, University of Vigo, Spain. This fuel 

has a high viscosity and other characteristics similar to the Prestige heavy oil, which is 

highly resistant for degradation (Tejeda-Agredano et al., 2011). 14C-labelled phenanthrene 

(13.1 mCi mmol-1, radiochemical purity >98%) was purchased from Sigma-Aldrich, 

Germany.  
 

3.1.2 Organic carbon-containing solutions from natural sources 
Natural lake water was collected in the summer of 2012, at Embalse Torre del Águila, 

Seville, Spain and kept frozen (-80 ºC) until use. It was sterilized with autoclave at 121 ºC, 

15 psi for 15 min before uses. Humic acid was collected from a soil located in the National 

Park of Doñana, Huelva, Spain. It was prepared by dissolving in 1 M NaOH with a final 

concentration of 0.1% (w/v), and the pH 6 was adjusted with HCl (Tejeda-Agredano et al., 

2014). Relevant physicochemical properties of these solutions can be found in Table 2 and 

Fig. 14.  

 

3.1.3 In vitro production of root exudates 
Root exudates of three representative plants commonly used in bioremediation of PAHs 

(Festuca arundinacea, Lolium perenne and Helianthus annuus (sunflower)) were prepared 

with the following protocols. Briefly, seeds of F. arundinacea and L. perenne were surface-

sterilized with absolute ethanol for 1 min, followed by sodium hypochlorite (1% active 

chlorine) for 30 min. The surface-sterilized seeds were rinsed 3 times with sterilized distilled 

water for 5 min each time. Two surface-sterilized seeds of either L. perenne or F. 
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arundinacea were placed on a perlite layer (0.25 g) in a sterilized test tube (150×25 mm) 

containing an inorganic salt solution (MM, pH 5.7) (Tejeda-Agredano et al., 2011). The test 

tube was closed with transparent polypropylene caps (BELLCO, K25) and incubated in 

darkness at 25 ± 1 ºC to allow the germination of the seeds. Then, the test tube was 

transferred to an incubation room under the same temperature with an irradiation of light at 

30 μE m-2 s-1 for 18-hour photoperiod and maintained there for 45 days.  

 

 
Table 2 Relevant physicochemical properties of organic carbon-containing solutions used in this thesis 

Solution TOCa (mg L-1) pH Conductivity (S m-1) 

Humic acid 470b 6.10 ± 0.03 1.12 ± 0.00 

Helianthus root exudates 56.77 ± 1.97 4.85 ± 0.05 0.07 ± 0.00 

Festuca root exudates 17.87 ± 0.35 5.74 ± 0.01 0.12 ± 0.00 

Lolium root exudates 10.07 ± 4.05 6.05 ± 0.05 0.12 ± 0.00 

Sterilized lake water 9.00 ± 0.12 7.80 ± 0.14 0.42 ± 0.01 

All the measurements were done at least in duplicate. The results are reported with mean ± standard 
deviation (SD). aTotal organic carbon (TOC) was measured using Shimadzu TOC-VCSH with ASI-V 
auto sampler after filtration through Whatman® No. 1 (pore size, Ø = 11 μm). bTOC concentration in 
1 g L-1 humic acid solution was in accordance to the elemental analysis reported by Lahlou et 
al. (2000). 
 

 

In the case of H. annuus, the seeds were surface-sterilized with absolute ethanol for 3 min, 

followed by 57% sodium hypochlorite (14% active chlorine) for 25 min. The surface-

sterilized seeds were rinsed 3 times with sterilized distilled water for 5 min each time. These 

seeds (50 seeds) were placed on a square piece of stainless steel wire cloth installed within a 

glass jar (1-L capacity, 28×11.5 cm) that contained 500 ml of MM. The jar was closed firmly 

with a pressure system that used a glass lid and sealed with Parafilm. The jar was transferred 

to an incubation room at 25 ± 1 ºC with an irradiation of light at 65.24 μE m-2 s-1 and for 18-

hour photoperiod and maintained there for 30 days. The experiments were carried out under 

aseptic condition, and were done in triplicate for each plant species. More details of the 

procedure can be found elsewhere (Tejeda-Agredano et al., 2013). To harvest root exudates 

derived from each plant, the whole volume of MM-containing the plant exudates was 

collected and centrifuged at 31000 ×g for 3 h to remove unwanted residuals, following the 

method described by Haftka et al. (2008). The root exudates were stored at -20 ºC until 

further use. Note that the plant seeds shall be situated at the surface of either perlite or 
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stainless steel wire cloth, and must not be submerged for avoiding the anoxic condition in the 

plantlet and allowing the development of plant roots lead to production of the root exudates. 

Some of their physicochemical properties of the different root exudates can be found in 

Table 2 and Fig. 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Elemental compositions of lake water and root exudates. The compositions were determined 
with ICP-OES (Varian ICP 720-ES simultaneous ICP-OES with axially viewed plasma) after filtration 
through nylon filters (pore size, Ø = 0.45 μm) and acidification with 2% HNO3 (30%). 
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3.2 Microorganisms 
 

3.2.1 Microbial stocks and growing conditions 
A primary stock of an oomycete, Pythium aphanidermatum (a massive zoospore-producing 

oomycete) originated from the culture collection at Aberdeen Oomycete Laboratory, 

University of Aberdeen, UK. Together with another oomycete, Pythium oligandrum CBS 

530.74 (mycoparasitic oomycete used for biological control of diverse fungal and other 

oomycete infections) that was purchased from Centraalbureau voor Schimmelcultures (CBS), 

Fungal Biodiversity Centre, Institute of the Royal Netherlands Academy of Arts and 

Sciences (KNAW), Utrecht, The Netherlands. Both oomycetes were grown routinely at 25 

ºC on diluted V8 (DV8) agar [4% (v/v) filtered Campbell’s V8 juice; 20 g agar powder 

(Panreac, Barcelona, Spain); 1 L distilled water].  

 

PAH-degrading bacteria used in this thesis were a non-flagellated Mycobacterium gilvum 

VM552 (isolated from a PAH-polluted soil and able to use phenanthrene, naphthalene, 

fluoranthene, pyrene and anthracene as a sole source of carbon and energy) and a motile 

naphthalene-degrading bacterium, P. putida G7. These bacteria were grown previously in 

mineral salt medium supplemented with phenanthrene for M. gilvum VM552 (described by 

Tejeda-Agredano et al. (2011)) or salicylate for P. putida G7 (described by Jimenez-Sanchez 

et al. (2012)) as their sole sources of carbon and energy, aiming to preserve their metabolic 

capacity. Bacterial cells were then collected at their exponential phases (~12 h for P. putida 

G7 and ~96 h for M. gilvum VM552) and maintained by mixing with 20% (v/v) glycerol, 

which were further kept at -80 ºC as a primary stock. 

 

3.2.2 Preparation of oomycete biomass 
The biomass (sole mycelia) of both oomycetes was prepared by growing them for 4 days at 

25 ºC on V8 agar [200 mL Campbell’s V8 juice; 20 g agar powder (Panreac, Barcelona, 

Spain); 3 g CaCO3; 1 L distilled water]. The hyphal mats growing on the agar were cut into a 

piece of 1 cm2, and the aerial hyphae were scraped out by sterilized spatula. This hyphal mat 

was used in mineralization experiments (see also 3.6) aiming to evaluate the influence of 

oomycetes on bacterial mineralization of PAHs initially present in a NAPL. The differences 

of biomass dry weight and capacity of the hyphal mats to be a source of zoospore formation 

according to the different oomycetes were evaluated by considering the same growing area 

(cm2) of the hyphal mats tested. 
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3.2.3 Production of oomycete zoospores  
The 4-day-old hyphal mats of Py. aphanidermatum growing on DV8 agar (described in 

3.2.1) were used for production of zoospores. Briefly, ten pieces (1 cm2) of the hyphal mats 

growing on the agar were cut, and were then soaked with 10 mL of test solutions. The test 

solutions including distilled water, lake water (see also 3.1.2) and pond water (collected from 

Maria Luisa Park, Seville, Spain) were sterilized with autoclave at 121 ºC, 15 psi for 15 min 

and tested for zoospore formation. Zoospores were released by the oomycete after incubation 

at 25 ºC for 5-6 h. The approximate number of zoospores formed was quantified with 

BLAUBRAND® counting chambers (Germany). The lake water solution, which gave the 

highest number of zoospores, was selected and used for zoospore production throughout this 

thesis. Under the same production protocol, no zoospore formed by Py. oligandrum was 

observed. 

 

3.2.4 Preparation of bacterial biomass 
Bacterial biomass was prepared in accordance to the purposes of experiments. For all tests 

except for mineralization experiments, both PAH-degrading bacteria were transferred from 

primary stocks (see also 3.2.1) and re-grown in tryptic soy broth (TSB) (Sigma-Aldrich, 

Germany) at 30 ºC with shaking at 150 rpm for two different periods of incubation 

(overnight (~12 h) or 4 days (~96 h)). These periods refer to the exponential and stationary 

phases of P. putida G7 growth at 12 h and 96 h, respectively, while only exponential phase 

cells (96 h) of M. gilvum VM552 were prepared. The bacterial cells were collected by 

centrifugation at 4303 ×g for 5 min, then washed twice and re-suspended with the sterilized 

lake water for further uses. The initial cell density of bacteria was adjusted by an optical 

density at 600 nm (OD600 nm) of 1.5. This OD value corresponded to 1010 and 108 colony 

forming units (CFU) mL-1 for P. putida G7 and M. gilvum VM552, respectively.  

 

M. gilvum VM552 was used as PAH-degrader in mineralization experiments (see also 3.6). 

The bacterium was transferred from primary stocks (see also 3.2.1) and re-grown on tryptic 

soy agar (TSA) (Sigma-Aldrich, Germany) for a few days. Then, this culture was transferred 

to grow in its mineral salt medium supplemented with phenanthrene (Tejeda-Agredano et al., 

2011) as a sole source of carbon and energy. Bacterial cells were collected at its exponential 

phase (96 h) of growth. The culture broth was collected by filtrating through a glass filter 

(pore size, Ø = 40 μm) to remove excess phenanthrene. This culture filtrate was then 
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incubated overnight to allow the complete degradation of remaining phenanthrene. The 

biomass was collected by centrifugation at 4303 ×g, then washed twice and re-suspended in 

sterilized lake water. The cell density of bacterial suspension was adjusted at an OD600 nm of 1, 

which corresponded to 106 CFU mL-1. 

 

Bacterial cells with different growth phases and conditions, used in different experiments 

were summarized below. 

 

1)  4-day old cultures of both P. putida G7 and M. gilvum VM552 grown in TSB at 30 ºC 

were used in section 4.1 Ecological interaction between eukaryotic zoospores and 

PAH-degrading bacteria in PAH-polluted scenarios. 

 

2)  4-day old culture of M. gilvum VM552 grown in mineral salt medium supplemented with 

phenanthrene at 30 ºC were used in section 4.2 Promoting microbial life at the 

interface of NAPL and water: a strategy to enhance biodegradation of sparingly 

bioavailable PAHs. 

 

3)  4-day old cultures of both P. putida G7 and M. gilvum VM552, together with overnight 

culture of P. putida G7 grown in TSB at 30 ºC were used in section 4.3 Biomobilization 

of pollutant-degrading bacteria by chemotaxis of eukaryotic zoospores. 

 

 

3.3 Antagonism tests of oomycetes and PAH-degrading bacteria 
 

3.3.1 Dual culture test on solid agar 
The antagonism tests among oomycetes (Py. aphanidermatum and Py. oligandrum) and 

PAH-degrading bacteria (M. gilvum VM552 and P. putida G7) were carried out using dual 

culture streak plate technique. Two different media (DV8 agar and TSA) were used. These 

two media were differentiated by their constituents and by the concentration of total carbon 

available for growth, as indicated by the manufacturers. The concentration of total carbon 

was 2% (w/v) in TSA and 0.2 % (w/v) in DV8 agar. The bacteria were streaked firstly on the 

agar at ~2 cm from the edge of agar plates, which were then incubated at 30 ºC until the 

opaque colonies of the bacteria appeared. An agar plug (Ø = 0.5 cm) of the 4-day old culture 

of each oomycete grown on DV8 agar was placed on the opposite of the bacterial colony in 
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the test agar plates. All the plates were incubated at 25 ºC and observed everyday. 

Appearance of inhibition zone (no growth of oomycete hyphae) around the bacterial colony 

indicates the positive antagonistic activity, while mycelial growth of oomyctes at this zone 

and/or covering the bacterial colony indicates the absence of antagonistic activity. The 

experiments were done in triplicate. 

 

3.3.2 Dual culture test in aqueous solution 
This test aims to evaluate the influence of PAH-degrading bacteria (M. gilvum VM552 and P. 

putida G7) on zoospores formation, which was performed in sterilized lake water at different 

bacterial cell densities. It was done only with the massive zoospore-producing oomycete, Py. 

aphanidermatum. The bacteria were grown for 4 days under the condition described 

previously (see also 3.2.4). Then, the initial cell density was adjusted at OD600 nm of 1.5. The 

bacterial suspension was diluted 10-fold serially with sterilized lake water before being used 

in the production of zoospores (see also 3.2.3). The number of zoospores formed in each 

bacterial cell suspension was counted and compared to the control without bacterial cells. 

The count was done twice after 4 and 6 h of incubation. The experiments were done at least 

in triplicate. 

 

3.4 Design of PAH-polluted scenarios 
 

3.4.1 Preparation of PAH-containing solutions 
PAHs (naphthalene, fluorene, phenanthrene, fluoranthene, pyrene and anthracene) listed in 

Table 3 were previously sterilized by dissolving them in pure dichloromethane, and re-

crystallizing after the complete volatilization of the solvent at ambient temperature for 12 h. 

PAH-containing solutions were prepared by adding 100 mg L-1 of each sterilized PAH to 

non-polar or polar solvents and organic solutions (shown in Table 4), and maintaining for 15 

days to allow its dissolution and/or saturation. Some properties of each PAH can be found in 

Table 1. 

 

3.4.2 Estimation of exposure concentrations of PAHs  
The different exposure regimes of PAHs existing in aqueous microenvironments were 

designed for evaluating their influences on the zoospore development and the interaction 

between zoospores and PAH-degrading bacteria. At high exposure regimes of PAHs, either 
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dissolved in polar solvents or in solutions containing DOC, the exposure concentration (Cexp) 

of PAHs was estimated from the solubility of PAHs and the properties of solutions used. 

PAHs present in polar solvents dissolved completely, and were considered to cause a 

maximum value of Cexp, because these solutions mixed well with the aqueous phase of the 

microbial suspensions. The Cexp of PAHs dissolved in equilibrated (15 days of saturation) 

DOC-containing solutions resulted from the simultaneous dissolution of solid PAHs and 

sorption to DOC (Schwarzenbach et al., 2003), which was estimated by equations (ii) and 

(iii), and the results are shown in Table 3. 
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=                      (ii) 

 

In equation (ii), fw is the fraction of PAH remaining freely dissolved (i.e. not associated to 

DOC) in water at equilibrium, [DOC] is the concentration of DOC (in kg L-1 of total organic 

carbon (TOC) of the solution shown in Table 2), and Koc (in L kg-1) is the organic carbon-

normalized sorption coefficient of the considered PAH (Table 1). Once equilibrium is 

achieved after 15 days of saturation, fw corresponds to the aqueous solubility (Sw) of each 

PAH. Therefore, Cexp in each DOC-containing solution was estimated by equation (iii): 
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Table 3 Exposure concentrations of PAHs dissolved in lake water 

PAHs Cexp (mg L-1)a 

Naphthalene 31.3 

Fluorene 2.0 

Phenanthrene 1.3 

Fluoranthene 0.41 

Pyrene 0.20 

Anthracene 0.050 

aCexp of each PAH dissolved in lake water, which contained 9 mg L-1 of dissolved organic carbon 
(Table 2), was calculated with equations (ii) and (iii). 
 

 



 
 

44 
 

 

At low exposure regimes with non-polar solvents, PAHs also dissolved completely but the 

solvents exhibited a differentiated phase with the aqueous suspensions that contained the 

microbial cells. Therefore, the Cexp of PAHs exposed from non-polar solvents was estimated 

from the octanol-water partitioning coefficient (Kow) shown in Table 1 by equation (iv), 

where [PAH] is the concentration of each PAH added in the solvents. The results are shown 

in Table 4. 
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Table 4 Exposure concentrations of naphthalene and phenanthrene in diverse solutions used for 
chemotaxis and settlement assays with zoospores 

Solutions  TOCa (mg L-1) 
Cexp (mg L-1) 

Naphthalene Phenanthrene 

Non-polar solventsb: 

     HD and HMN 
NA 0.043 0.003 

Polar solventsc: 

     Acetone and ethanol 
NA 100 100 

Organic solutionsd:    

     Humic acid 470e  8.5 

     Helianthus root exudates 56.77 ± 1.97  2.0 

     Festuca root exudates 17.87 ± 0.35  1.3 

     Lolium root exudates 10.07 ± 4.05  1.3 

     Lake water 9.00 ± 0.12  1.3 

All the measurements of TOC were done at least in duplicate; the results are reported as means ± SDs. 
aTOC was measured using a Shimadzu TOC-VCSH equipment with ASI-V auto sampler after filtration 
through Whatman® No. 1 (pore size, Ø = 11 μm). bCexp of PAHs partitioning from these solvents was 
calculated by equation (iv). cBoth PAHs were completely dissolved. dCexp of PAHs dissolved in these 
solutions containing DOC was calculated by equations (ii) and (iii). eTOC concentration in 1 g L-1 
humic acid solution was in accordance to elemental analysis reported by Lahlou et al. (2000). 
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3.5 Observation of zoospore development in PAH-polluted scenarios 
 

Zoospore development was observed at three stages: formation, chemotaxis and settlement. 

All developmental stages of zoospores were visualized by either normal light or fluorescence 

mode of a phase contrast Axioskop 2 Carl Zeiss microscope (Jena, Germany) connected with 

a Sony ExwaveHAD color video camera (Tokyo, Japan).  The fluorescence was observed 

after staining with 0.02% (w/v) acridine orange.  

 

 

3.5.1 Evaluation of zoospore formation 
The influence of PAHs on formation of zoospores was assessed using all 6 PAHs listed in 

Table 3, where the Cexp of each PAH was indicated. The assessment was done by 

quantifying the number of zoospores formed in organic solutions (sterilized lake water) 

either containing each PAH or not. For the assessment in the presence of PAH-degrading 

bacteria, a 10-fold dilution of bacterial cells (OD600 nm = 1.5) in each solution used above was 

prepared and used for zoospore formation. The number of zoospores was quantified with the 

counting chamber after incubation at 25 ºC for 10-12 h (see also 3.2.3). Only two PAHs that 

showed the highest effect on zoospore formation were selected and used for further tests of 

their influence on zoospore chemotaxis and settlement.  

 

3.5.2 Observation of zoospore chemotaxis 
Chemotaxis of zoospores was observed either in presence or absence of PAH-degrading 

bacteria. For tests in the presence of bacteria, a 10-fold diluted suspension of bacterial cells 

(OD600 nm = 1.5) was mixed with the zoospore suspension. A set of polar solvents (acetone 

and ethanol) and DOC solutions (humic acid, root exudates and lake water) either containing 

PAH or not, was used for chemotactic assay of zoospores. The chemotactic assay was carried 

out by modified chemical-in-capillary method (Ortega-Calvo et al., 2003). A 1-μL capillary 

tube (inside diameter = 0.20 mm and outside diameter = 0.66 mm) (Microcaps®, Drummond, 

Broomall, PA, USA) was filled with the test solvents or solutions by capillary force. The 

filled capillary tube was subsequently inserted into a chamber that was filled either with 

zoospore or zoospore-bacterium suspension (Fig. 15a). Chemotactic responses of zoospores 

towards those prepared solvents or solutions were observed after incubating such 

preparations at 25 ºC for 0.5-1 h and quantified by counting the number of zoospores 

encysted inside the capillary tubes. The assay was done at least in four replications. 
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Figure 15 Schematic diagram of chemotaxis and settlement assays. The chemical-in-capillary method 
(a) was applied in chemotaxis assays. The chemotactic response of zoospores was quantified by 
counting directly the number of encysted zoospores inside the capillary tube filled with different test 
solutions. A chamber filled with different non-polar solvents (b) was prepared for observation of 
selective settlement by zoospores. The circles (yellow in online version) represent the encysted 
zoospores. 
 

 

3.5.3 Observation of zoospore settlement 
For the observation of zoospore settlement, non-polar solvents (HD and HMN) either 

containing PAH or not, were added into a chamber filled with the microbial suspensions (Fig. 

15b). Both solvents formed a differentiated phase with water, and the interface constituted a 

substratum for zoospore settlement (Fig. 15b). Settlement of zoospores was observed either 

in presence or absence of PAH-degrading bacteria. For tests in the presence of bacteria, a 10-

fold diluted suspension of bacterial cells (OD600 nm = 1.5) was introduced in the zoospore 

suspension. The settlement behaviours within the chambers were also visualized with a phase 

contrast microscope connected with a colour video camera, using either normal light or 

fluorescence mode for tracking the position of microbial cells. The motion videos in the 

fluorescence mode were recorded after direct staining the chambers with 0.02% (w/v) 

acridine orange. Both light and fluorescence micrographs were taken from the video records 

processing by snapshot tool in Windows Movie Maker, Microsoft Windows XP. The side 

view of encysted zoospores germinated on different non-polar solvents was also observed 

using the chemical-in-capillary method, where the capillary tubes were filled with HD or 
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HMN. The micrographs derived from the last experiment were also taken and processed by 

the same protocol described before. 

 

 

3.6 Mineralization of PAHs under bioavailability restrictions 
 

3.6.1 Preparation of NAPL 
The NAPL was constituted by heavy fuel oil (see also 3.1.1) mixed with HMN at a ratio 1:1 

(w/v), to reduce its viscosity. The 14C-labelled phenanthrene (see also 3.1.1) was dissolved in 

the NAPL at an approximate final concentration of 50,000 dpm mL-1. The mixture was 

shaken at 120 rpm for a few hours to allow the homogenization of 14C-labelled phenanthrene 

in the NAPL. 

 

3.6.2 Preparation of microbial biomass 
M. gilvum VM552 was used in the experiments as PAH-degrader. It was prepared as 

described previously (see also 3.2.4). The initial cell density of this bacterium was adjusted 

at OD600 nm = 1, and 1 mL of this bacterial suspension was introduced into a biometer flask 

containing 70 mL of sterilized lake water, giving the final cell density of 106 cell mL-1 in this 

system.  

 

The impact of oomycetes on bacterial mineralization of PAHs initially present in a NAPL 

was evaluated using two oomycete species (Py. aphanidermatum and Py. oligandrum). 

Either sole oomycete mycelia (see also 3.2.2) or mycelia grown on DV8 agar (see also 3.2.3) 

were introduced in the biometric system prepared above (Fig. 16). Both types of oomycete 

biomass were prepared by considering the same growing area (20 cm2) of the oomycetes 

either grown on DV8 (for mycelia grown on DV8 agar) or V8 (for sole mycelia) agars. This 

growing area was cut into separated pieces with an area of 1 cm2 each, and the whole 20 

pieces of oomycete biomass were introduced into the biometer flask. The differences of 

biomass dry weight and capability to form zoospores of each oomycete species present in the 

biometric systems were evaluated. 
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Figure 16 Set-up diagram of mineralization experiments. Five different sets of the experiments 
including the presence of bacteria and oomycete grown on DV8 agar (a), bacteria and oomycete 
mycelia (b), bacteria and DV8 agar (c), bacteria without any supplements (d) and a control of oomycete 
grown on DV8 agar (e), were prepared (see also 3.6 for the detailed procedures). 
 

 

3.6.3 Set-up for radiorespiratory assays  
The radiorespiratory assay was performed in biometer flasks following the protocol 

described by Tejeda-Agredano et al. (2011). Briefly, a biphasic system of NAPL-water was 

installed by introducing the NAPL (see also 3.6.1) inside an open-ended glass tube (Ø = 2 

cm, 10 cm length, four slots in the base) upon the aqueous solution of 70-mL sterilized lake 

water Fig. 16. Respiration was determined by trapping 14CO2 with 1 mL of 0.5 M NaOH. No 

significant loss of 14CO2 was expected during the mineralization experiments, as all biometer 

Oomycete grown on DV8 
agar 
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flasks were sealed with Teflon-lined closures. The trapped radioactivity was measured by the 

LS 6500 Scintillation Counter (BECKMAN COULTER, USA). The experiments were 

performed under aerated (shaking reciprocally at 80 rpm) and static conditions and incubated 

at 25 ºC. The experiments were done at least in duplicate. 

 

 

3.7 Metabolic evaluation of PAHs in mineralization experiments  
 

3.7.1 Calculation of mineralization rate  
The maximum mineralization rate was calculated as the slope of the linear regression line for 

at least five successive points of the mineralization curve for the approximate time period of 

300-400 h. The total concentration of phenanthrene dissolved in the NAPL (1 g of fuel 

oil:HMN (1:1 w/v)) was 210 μg mL-1, and therefore 1 dpm of 14C-labelled phenanthrene 

corresponded to approximately 4.2 ng of the total phenanthrene. 

 

3.7.2 Measurement of end-point mass balance of [14C] 
At the end of mineralization experiments, the NAPL was removed from each biometer flask, 

where the whole solid phase in the biometric system was separated from the whole liquid 

phase by centrifugation at 4303 ×g for 10 min. The solid phase was broken down roughly by 

sterilized spatula, and was suspended with a known volume of sterilized distilled water. The 

suspension was then sonicated for 1 h in a sonicator bath (Branson 3510) and homogenized 

with a vortex for a few min. Radioactivity was determined in both solid and liquid phases 

with the scintillation counter. The percentages of 14C accumulated in the solid phase and 14C 

dissolved in liquid phase were calculated using the radioactivity data. These percentages 

were compared with the percentages of 14C mineralized (14CO2 recovered in the trapping 

system), and 14C remained in the NAPL phase that was calculated by the difference. 

 

3.7.3 Analysis of residual NAPL 
The residual NAPL collected from each biometer flask (Fig. 16) was analyzed for its 

composition of hydrocarbons. The NAPL sample was dissolved in dichloromethane, which 

was later dried over Na2SO4 and concentrated to 5 mL. A 0.5-mL aliquot of this suspension 

was used for gravimetric analysis. The fractions of either saturated or aromatic hydrocarbons 

in the aliquot were then processed with column chromatography following the US-EPA 
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method 3611b, using gas chromatography-mass spectrometry (GC-MS) as described by Vila 

and Grifoll (2009). Briefly, o-terphenyl was used as internal standard. Degradation 

percentages of alkanes were determined by comparing the hopane-normalized data from 

reconstructed extracted-ion chromatograms (ion m/z 85), obtained from the saturated 

fractions. The 17α(H),21β(H)-hopane was used as a conserved internal marker, detected by 

the extracted-ion chromatograms (ion m/z 191). The 16 US-EPA PAHs (Table 1) and some 

of their alkyl derivatives were analyzed from reconstructed ion chromatograms of the 

aromatic fractions obtained by using correspondent molecular ions, and were quantified by 

the standard calibration curves derived from non-substituted PAHs (Kostecki and Calabrese, 

1992). The analyses were performed using the samples obtained from triplicate biometric 

flasks. 

 

 

3.8 Characterization of microbial colonization at NAPL-water interface 
 

3.8.1 Observation of NAPL-surface topography 
The shape of NAPL drops in contact with the water phase was considered in relevant for the 

microbial activity at the NAPL-water interface. The shapes of NAPLs (side view) in 

biometer flasks established for mineralization experiment were photographed (Fig. 17), and 

the NAPL-water contact angle (θnw) was measured (Fig. 18) with a protractor. Conceptual 

observation of the contact angle was performed following the theory described by Grate et al. 

(2012). The variation of this contact angle according to the time scale of the experiment was 

proposed here as a factor influenced by the surface tension and wettability of NAPL in 

contact with water phase, which has further relevance in the kinetics of chemical exchange 

between NAPL and water phase. The interconnections between the contact angle and either 

biofilm formation or microbial mineralization of PAHs were also addressed and discussed. 

 

3.8.2 Observation of biofilm formation 
The microbial consortium developed at the NAPL-water interface installed in the biometer 

flask of the mineralization experiments was observed directly and photographed, aiming to 

compare the change of surface roughness caused by microbial colonization across different 

treatments (Fig. 16) and conditions (see also 3.6.3) achieved during mineralization 

experiments. This microbial consortium was considered as a biofilm at the NAPL-water 

interface, which was photographed from the bottom of the biometer flask (Fig. 17). At the 
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end of the mineralization experiments, the biofilms were sampled directly from the NAPL-

water interfaces with a transfer loop and stained with 0.02% (w/v) acridine orange. The 

stained biofilm was then observed with a phase contrast microscope under fluorescence 

mode, connected with a photo camera (Photometrics CoolSNAPTM). Micrographs were 

photographed and processed with RS Image Version 1.9.2 (Roper Scientific, Inc.). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 17 Observations of NAPL-surface topography and biofilm formation at NAPL-water interface. 

The arrows show the viewing directions of such observations. 

 

 

3.9 Analysis of abiotic influences in mineralization experiment 
 

3.9.1 Measurement of dissolved oxygen (DO)  
A set of experiments that imitate the conditions achieved during mineralization experiments 

(Fig. 16) was established in the absence of NAPL. Variation of DO values in the water phase 

of the biometric systems influenced either by different oomycetes or by operating conditions 
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(aerated and static) was measured according to a time scale of incubation using an oxygen 

meter (OXI 45 DL, CRISON). The biometric systems prepared with adding the sterilized 

lake water alone were used as controls. The experiments were done at least in duplicate. 

 

 

 

 

 

 

 

 

 
 

 

Figure 18 Determination of contact angle (θnw) of NAPL in contact with water phase. 

 

 

3.9.2 Measurement of TOC 
A set of experiments that imitated the conditions of the mineralization experiments (Fig. 16) 

was established either with or without the NAPL. The variation of TOC values, as influenced 

either by different oomycetes or by operating conditions (aerated and static), was measured 

with time. These TOC values were proposed as DOC within the biometric systems. TOC was 

measured using Shimadzu TOC-VCSH with ASI-V auto sampler after filtration through 

Whatman® No. 1 (pore size, Ø = 11 μm). The biometric systems prepared with sterilized lake 

water only were used as controls. All the measurements of TOC were done at least in 

duplicate. 

 

 

3.10 Determinations of motility and cell size of PAH-degrading bacteria 
 

3.10.1 Determination of bacterial motility 
The motility levels of P. putida G7 cells, determined by their swimming speed, were affected 

by the growth phases (see also 3.2.4). Briefly, swimming cells of P. putida G7 were 

collected by centrifugation at 1108 ×g after growing the bacterium in TSB at 30 ºC for 12 h 
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(exponential phase) and 96 h (stationary phase). The bacterial cells were washed twice and 

re-suspended in sterilized lake water. Cell density of this bacterial suspension was adjusted 

to OD600 nm = 1.5 and used for motion analysis accordingly. The motility of P. putida G7 

cells was studied with a phase contrast microscope connected to a colour video camera. The 

video records were processed by the Windows Movie Maker. A time length of 5.54 s of the 

video records was cut and used for motion analysis. The longest swimming paths of bacterial 

cells were randomly selected, and their swimming speeds (in µm s-1) were analysed with the 

CellTrak program (version 1.5, Motion Analysis Corporation, Santa Rosa, CA, USA). An 

average of all speeds computed was determined as global speed, and was indicated elsewhere 

with the population number (N) of bacterial cells analysed. 

 

3.10.2 Cell size determination 
Non-flagellated cells of M. gilvum VM552 and P. putida G7 cells from two different growth 

phases (as indicated in 3.10.1) were used for the cell size measurement. The cell size 

determined with means of length, breadth and length/breadth (L/B) ratio was used to 

characterize the bacterial physiology. The size was measured by image processing with 

snapshot tool in the Windows Movie Maker, using the video records taken from phase 

contrast microscope connected with a video camera as described in 3.10.1. Population 

number (N) of bacterial cells measured was indicated with the averages of length, breadth 

and L/B ratio in each bacterial population mentioned above.  

 

 

3.11 Evaluation of bacterial mobilization by zoospores 
 

3.11.1 Evaluation of zoospore chemotaxis  
Modified chemical-in-capillary method was adapted from Ortega-Calvo et al. (2003) and 

used for testing the zoospore chemotaxis. The method was carried out for both qualification 

and quantification of zoospore chemotaxis towards different concentrations (5, 10, 20, 40, 60, 

80 and 100% (v/v)) of a zoospore attractant (ethanol) diluted by the sterilized lake water. The 

modification of capillary assay was an enlargement of the chamber volume by using 50-µL 

capillary tubes (inside diameter = 0.80 mm and outside diameter = 1.09 mm) (Microcaps, 

Drummond, Broomall, PA, USA) as the arms of the chamber (Fig. 19). This chamber could 

have holding capacity up to 600 µL of zoospore suspension. The filled chamber was inserted 

by 1-µL capillary tubes either filled with zoospore attractant or sterilized lake water (control) 



 
 

54 
 

without heat end-sealing. The solutions were filled into the capillary tubes by capillary force, 

which were then inserted directly into the prepared chamber. The total length (32 mm) of 

these capillary tubes was divided into 4 parts where ~¼ of the capillary tube was inserted 

into the chamber filled with zoospore suspension. The zoospores entering inside the capillary 

tubes were determined as a positive chemotactic response as compared to the control. 

Encystment of zoospores after performing the chemotactic response was able to be observed 

during an hour after the insertion of the test capillary tubes. Therefore, the number of 

encysted zoospores inside the capillary tube was counted after incubating the assay at 25 ºC 

for approximately 1 h. The count was done under a light microscope, where the length of 

capillary tubes containing encysted zoospores was estimated for determining the chemotactic 

reaction. The experiments were done at least in triplicate. The lowest concentration of 

zoospore attractant that showed chemotactic attraction by zoospores was chosen for use in 

any required experiments throughout this thesis. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 19 Modified chemical-in-capillary method for chemotaxis and biomobilization assays in this 
thesis. 
 

 

3.11.2 Biomobilization assay 
The chemotactic behaviour of zoospores was evaluated as a mechanism for mobilization of 

PAH-degrading bacteria. The modified chemical-in-capillary method as described previously 

was used for testing the mobilization of bacterial cells by zoospore chemotaxis. The bacterial 

suspension (control, without zoospores) or microbial mixture of zoospores and bacterial cells 

was filled into the enlarged chamber (Fig. 19). The microbial mixture was prepared by 

removing 1 mL from 10-mL zoospore suspension, and replacing with 1 mL of bacterial 
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suspension in the sterilized lake water prepared as described previously. The initial cell 

density of each bacterium used in this assay was adjusted at an OD600 nm = 1.5, while the final 

cell density was approximately 109 CFU mL-1 and 107 CFU mL-1 for P. putida G7 and M. 

gilvum VM552, respectively. The prepared chambers were inserted with 1-µL capillary tubes 

filled with either the zoospore attractant or sterilized lake water as controls (Fig. 19). The 

experimental sets were incubated at 25 ºC for approximately 1 h. The encysted zoospores in 

the capillary tubes (encysted zoospores µL-1) were counted under a light microscope to 

ensure the chemotactic response of zoospores. The assayed capillary tubes were taken out of 

the chamber and cleaned their outer wall three times with sterilized distilled water. The 

whole liquid volume (1 µL) inside each capillary tube was transferred by pumping into a 

known volume of sterilized lake water, which was later diluted serially with the same 

solution. The number of bacterial cells entering into the capillary tube (CFU µL-1) was 

quantified after spreading the appropriate dilution prepared previously on TSA supplemented 

with 0.3 g L-1 of cycloheximide (Sigma-Aldrich, Germany). The experiments were done at 

least in triplicate. 

 

3.11.3 Determination of biomass flow 
In order to discriminate the mobilizing efficiency of bacterial biomass caused by zoospores 

from the hydraulic influence of fluid flowing continuously through open-end capillary tubes, 

we determined here the spontaneous flow rate of fluid caused by either capillary force or 

aqueous evaporation. Flow velocity (u) of M. gilvum VM552 cells flowing through capillary 

tubes filled with zoospore attractant was tracked as a represent spontaneous flow velocity 

(uo) of fluid body flowing through the capillary tubes. The experimental set-up was prepared 

as same as the biomobilization assay, which was incubated at 25 ºC for approximately 10 

min to allow the steady fluid flow. Motion videos of the flowing cells were recorded, which 

were then processed by the Windows Movie Maker as described previously (see also 3.10.1). 

The uo was an average of flow velocities derived from ten bacterial cells randomly selected 

along the different periods of time record. The flow velocities were computed by the 

CellTrak program. This uo was used further to estimate the mobilizing efficiency and the 

biomass flow velocity, caused by zoospore chemotaxis. The uo was considered based on the 

theory of steady flow of fluid dynamics as described by equation (v), where u is the flow 

velocity and t is the time detected that u. 

 



 
 

56 
 

                                                   0=
∂

∂

t

u
                          (v) 

 

The mobilizing efficiency refers to a mobilizing rate (R) of bacterial cell density mobilized in 

1 s (cells μL-1 s-1), considering that a CFU was developed from a bacterial cell. It was 

calculated by equation (vi), where uzCFU is the bacterial CFU μL-1 mobilized in the presence 

of zoospores and zoospore attractant, uoCFU is the bacterial CFU μL-1 mobilized at the uo, Nz 

and No are the numbers of encysted zoospores counted in the presence and absence of 

zoospore attractant, respectively, and t is the incubation time of the biomobilization assay 

(~3600 s). 
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The biomass flow velocity of bacterial cells due to the zoospore chemotaxis (uz) was 

calculated by equation (vii), where the parameters were described elsewhere above. 
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3.12 Observation of zoospore swimming behaviour  
 

3.12.1 Observation of intrinsic swimming behaviour  
The observation was done the same as described for motility analysis of P. putida G7 (see 

also 3.10.1). Preparation of zoospores was described in 3.2.3. The motion records with a 

length of 5.54 s were prepared for motion analysis with the CellTrak program, where the 

swimming trajectories, speed and rate of change of direction (RCDI) were computed. Ten 

representative zoospores were selected randomly for displaying their swimming trajectories. 

The global speed in µm s-1 and the global RCDI in degree of turning even per second (deg s-

1) were reported with the population number (N) of zoospores analysed. 
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3.12.2 Evaluation of interactive motility between zoospores and bacteria 
The observations were done under the microscope connected with video camera as described 

previously (see also 3.10.1 and 3.12.1). The motion records of swimming zoospores alone or 

with bacterial cells were processed as same as described in 3.12.1. The preparation of 

zoospores and bacteria was described elsewhere of this article. The motion records with a 

length of 5.54 s were prepared, where zoospores or P. putida G7 cells swimming at least for 

5.00 s were randomly selected for motion analysis by the CellTrak program. Swimming 

trajectories of both zoospores and P. putida G7 cells were tracked, while their speed and 

RCDI were computed. The trajectory diagrams were created by randomly selecting the 

representative zoospores or P. putida G7 cells. The global speed and the global RCDI were 

reported with the population number (N) of zoospores and bacterial cells analysed. 

 

 

3.13 Analysis of cellular interaction between zoospores and bacteria 
 

3.13.1 Evaluation of bacterial adhesion on surface of zoospores 
We hypothesized that the size of zoospores in the presence of bacterial cells might be 

influenced by bacterial adhesion. We assumed that if the bacterial cells adhered to the 

surface of zoospores, the apparent size of zoospores should increase. Therefore, the size of 

zoospores in the presence of bacterial cells was measured according to the protocol described 

in 3.10.2. A 10-fold dilution of bacterial cells (OD600 nm = 1.5) suspended in sterilized lake 

water was prepared for zoospore production (see also 3.2.3). 

 

3.13.2 Observation of bacterial chemotaxis towards encysted zoospores 
Chemotaxis of P. putida G7 towards encysted zoospores was also evaluated as a possible 

mechanism that could influence bacterial mobilization. The modified chemical-in-capillary 

method (Fig. 19) was carried out in two steps for this evaluation. First, the chamber was 

filled with a zoospore suspension, and the capillary tube filled with the zoospore attractant 

was inserted into the chamber and incubated at 25 ºC for 1 h. The zoospores were allowed to 

respond chemotactically to their attractant and then encysted inside the capillary tube. 

Number of encysted zoospores inside the capillary tube was counted to ensure the 

chemotactic response of zoospores towards their attractant. Second, the capillary tube from 

the first step was transferred and inserted into a second chamber filled with a bacterial 
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suspension (a 10-fold dilution of bacterial cells (OD600 nm = 1.5), see also 3.2.4). Only P. 

putida G7 cells collected at the exponential phase of growth (reported with actively motile 

by Jimenez-Sanchez et al. (2012)) were used in this experiment (see also 3.10.1). The 

chamber was incubated at the same condition as the first step of the assay. The bacteria 

swimming into the capillary were quantified by CFU developed on TSA supplemented with 

0.3 g L-1 cycloheximide. The experiments were done at least in triplicate. Difference in 

numbers of bacteria counted in the absence and presence of encysted zoospores was 

compared and considered the chemotactic reaction of bacterial cells. 

 

 

3.14 Statistical analysis 
 

Comparison of multiple means with standard deviations (SDs) were performed with the 

SPSS 16.0 computer program (SPSS, Chicago IL, USA), with one-way analysis of variance 

(ANOVA) and Tukey’s post hoc tests at different significant levels indicating separately for 

each comparison. To avoid artifacts from data selection, the population number (N) of each 

dataset for the calculation of mean ± SD or mean ± standard error (SE) was not lower than 30 

individuals. This N was determined elsewhere together with its respective mean and SD or 

SE together with its appropriate statistical value of F-distribution by ANOVA, while SE was 

calculated by equation (viii). 

 

                                            
N

SD
SE =                                 (viii) 
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CHAPTER IV: RESULTS  
 

 

4.1 Ecological interaction between eukaryotic zoospores and PAH-

degrading bacteria in PAH-polluted scenarios 
 

4.1.1 Optimal condition for zoospore formation 
We found that sterilized lake water was an optimal solution for zoospore formation of Py. 

aphanidermatum, as compared with the other solutions tested (Fig. 20). With this optimal 

solution, the oomycete gave the highest number of zoospores after incubation for 6 h. 

Therefore, sterilized lake water was selected and used for zoospore formation throughout this 

thesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 20 Zoospore formation of Py. aphanidermatum in different aqueous solutions. Ten pieces of 1 
cm2 hyphal mat of the oomycete growing on DV8 agar were used for this test. Number of zoospores 
counted after 6 h of incubation was significantly highest in sterilized lake water (F(2, 9) = 10.078, P = 
0.05). The graph was plotted by means of zoospore numbers with error bars of SDs, derived from 
triplicate experiments. Asterisk refers to a statistical difference of means compared by ANOVA. 
 

 

Furthermore, we investigated the influence of the size of hyphal mat on formation of 

zoospores by the oomycete, using the sterilized lake water. With this aim, zoospores were 

formed faster when using 1 cm2 hyphal mat, compared to the one with smaller in size (0.8 

Aqueous solutions 
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cm2) (Fig. 21). However, the numbers of zoospores formed with both sizes of hyphal mats 

increased according to the incubation time. 

 

 

 

 

 

 

 

 

 
 

Figure 21 Zoospore formation of Py. aphanidermatum in lake water. Two different sizes of hyphal mat 
of Py. aphanidermatum growing on DV8 agar (1.0 cm2 per each; with the total area of 10 cm2 and 0.8 
cm2 per each; with the total area of 16 cm2) were tested for formation of zoospores. The graph was 
plotted by means of zoospore numbers with error bars of SDs, derived from triplicate experiments. 
 

 

4.1.2 Antagonistic effects among oomycetes and PAH-degrading bacteria 
The possible antagonistic effects of PAH-degrading bacteria (M. gilvum VM552 and P. 

putida G7) on filamentous growth and zoospore formation in oomycetes (Py. 

aphanidermatum and Py. oligandrum) were evaluated. Both effects were not observed when 

the tests among any bacteria and any oomycetes were performed (Figs. 22 and 23). The 

effects on filamentous growth of oomycetes were not different, even tested on different solid 

agars (TSA and DV8 agar). It was convinced that zoospores were not found in any tests with 

Py. oligandrum. Interestingly, P. putida G7 cells moved out from the colony and along the 

mycelia of the both oomycetes grown on TSA (Figs. 22 and 23). In addition, dense growth of 

Py. aphanidermatum mycelia were observed only over M. gilvum VM552 biomass that 

developed on DV8 agar (Fig. 23b). The number of zoospores produced by Py. 

aphanidermatum (Fig. 23) was decreased significantly in the presence of both bacterial cells 

only at the highest cell densities. Moreover, the decrease of zoospore number fromed in the 

presence of M. gilvum VM552 (108 cells mL-1) (Fig. 23c) was observed after co-incubation 

with the oomycete for 6 h (F(5, 18) = 11.266, P = 0.01). While such decrease in the presence of 

P. putida G7 (1010 cells mL-1) (Fig. 23f) was observed after co-incubation with the oomycete 

for either 4 (F(5, 18) = 18.185, P = 0.01) or 6 h (F(5, 18) = 14.985, P = 0.01). 
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Figure 22 Antagonism tests among Py. oligandrum and PAH-degrading bacteria. The antagonistic 
activities of M. gilvum VM552 (a, b) and P. putida G7 (c, d) against mycelial growth of the oomycete 
on TSA (a, c) and DV8 agar (b, d) were tested by dual culture technique (see also CHAPTER III).  
 

 

4.1.3 Zoospore formation 
The number of zoospores formed by Py. aphanidermatum was used as an indicator of 

toxicity caused by individual PAH in the absence and presence of PAH-degrading bacteria 

(Fig. 24). The toxic influence was different according to each PAH. A negative correlation 

with the estimated Cexp of PAH was observed. Toxicity followed the order: naphthalene 

(91.67 ± 3.21 %) ≥ phenanthrene (84.72 ± 2.78 %) = fluorene (73.61 ± 6.99 %) ≥ 

fluoranthene (66.67 ± 4.54 %) > pyrene (43.06 ± 18.36 %) = anthracene (20.83 ± 15.96 %), 

where % refers to the precentage of reduction in zoospore formation. The Cexp values of 

these PAHs are shown in Table 3. In the absence of PAH, neither M. gilvum VM552 nor P. 

putida G7 cells influenced the zoospore formation (F(2, 10) = 3.520, P = 0.05). We also 

observed that both PAH-degrading bacteria diminished the toxic influence of all PAHs. 

However, this suppression was found at different levels, where M. gilvum VM552 was a 

greater detoxifier in phenanthrene solutions (F(2, 9) = 132.346, P = 0.05), and P. putida G7 

was more efficient in naphthalene solutions (F(2, 9) = 51.066, P = 0.05).  
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Figure 23 Antagonism tests among Py. aphanidermatum and PAH-degrading bacteria. The 
antagonistic activities of M. gilvum VM552 (a, b) and P. putida G7 (d, e) against mycelial growth of 
the oomycete on TSA (a, d) and DV8 agar (b, e) were tested by dual culture technique. The influence 
on the formation of zoospores by M. gilvum VM552 (c) and P. putida G7 (f) was evaluated with two 
different incubation periods (4 (empty bar) and 6 h (filled bar)) using the zoospore production protocol 
(see also CHAPTER III). The graphs were plotted by means of zoospore numbers with error bars of 
SDs, derived from triplicate experiments. Asterisks denote significant differences of means compared 
by ANOVA and Tukey’s post hoc test at P < 0.01.  
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Both PAH-degrading bacteria showed equal level of toxic suppression with pyreneF1, 

anthraceneF2, fluoreneF3 and fluorantheneF4 (F1-4(2, 9) = 11.466, 27.214, 19.840 and 22.234, P 

= 0.05). As naphthalene and phenanthrene showed the highest toxic influence on zoospore 

formation, they were selected for further studies of zoospore chemotaxis and settlement. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 24 Influence of PAHs and PAH-degrading bacteria on zoospore formation of Py. 
aphanidermatum. The number of zoospores formed after 10-12 h of incubation was used to determine 
toxicity of PAHs in the absence of PAH-degrading bacteria (empty bar) and presence of either M. 
gilvum VM552 (light grey bar) or P. putida G7 (dark grey bar) cells, compared to the control without 
PAHs. The graph was plotted by means of zoospore numbers with error bars of SDs derived from at 
least four-replicate experiments. Each Greek letter represents a statistical comparison of each PAH by 
ANOVA and Tukey’s post hoc test, while a different number of letters refers to the significant 
differences of means ± SDs. 
 

 

4.1.4 Zoospore chemotaxis  
Statistical comparison of zoospore chemotaxis resulted in four different levels of response 

(strong, medium, weak and less or no response) across all tests, which included 

measurements in the absence and presence of PAH-degrading bacteria, as well as different 

test solvents or solutions either containing naphthalene (F(20, 107) = 136.698, P = 0.01) and 

phenanthrene (F(20, 110) = 100.652, P = 0.01 ) or without PAH (F(20, 116) = 56.541, P = 0.01) 

(Fig. 25). The estimated Cexp of each PAH in test solvents or solutions is given in Table 2.  
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In the absence of PAH (control) and PAH-degrading bacteria, zoospores exhibited a 

significant attraction toward polar solvents (acetone and ethanol) and Festuca root exudates. 

The attraction of zoospores toward the solvents was diminished in the presence of PAH-

degrading bacteria, although the attraction for Festuca root exudates remained unchanged. 

Also, P. putida G7 slightly enhanced zoospore chemotaxis toward Festuca root exudates, 

while the greatest enhancement was found toward Helianthus root exudates. This strong 

attraction toward Helianthus root exudates mediated by the bacterium was also found with 

the root exudates containing naphthalene or phenanthrene (Vid. 1(4.1), this video and the 

others that support section 4.1, are available at http://digital.csic.es/handle/10261/85538). 

Similar observations of the chemotactic response toward the controls without PAH were also 

occurred in most tests that contained PAH but except for phenanthrene-containing acetone in 

the presence of P. putida G7 cells. Statistical comparisons performed horizontally across 

each environmental chemical confirmed that P. putida G7 cells enhanced significantly the 

positive chemotaxis of zoospores toward naphthalene-containing ethanol (F(2, 10) = 63.340, P 

= 0.01) and lake water (F(2, 9) = 11.345, P = 0.01), and  also toward phenanthrene-containing 

acetone (F(2, 9) = 24.626, P = 0.01) and humic acid (F(2, 9) = 15.514, P = 0.01). Cells of M. 

gilvum VM552 enhanced the positive chemotaxis of zoospores only toward phenanthrene-

containing humic acid (F(2, 9) = 8.601, P = 0.01). Interestingly, in the absence of PAH-

degrading bacteria, the attractive chemotaxis of zoospores toward acetone (F(2, 20) = 48.262, 

P = 0.01) and ethanol (F(2, 20) = 95.614, P = 0.01) was significantly diminished by the 

presence of PAHs. This was possibly due to the highest Cexp of PAH achieved in these 

solvents (Table 4). However, Helianthus root exudates that contained PAHs became 

significantly more attractive for zoospores than without PAHs (F(2, 27) = 29.654, P = 0.01).    

 

4.1.5 Zoospore settlement  
We found that zoospores settled preferentially at the interface between water and hexadecane 

(HD) either containing PAH or not (Fig. 26 and Vid. 2(4.1)). There was no difference among 

all replicate observations (experiments were performed at least in triplicate). This settlement 

could be clearly observed through the accumulative colonization of zoospores, followed by 

their encystment and germination after 1 h of incubation. 

 

 

 

http://digital.csic.es/handle/10261/85538
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Figure 26 Settlement of Py. aphanidermatum zoospores in the absence and presence of PAH-
degrading bacteria at the different pollutant-water interfaces. The substrata were prepared by HD or 
HMN either absence of PAHs (control) or containing with 0.1% (w/v) of naphthalene or phenanthrene. 
The arrows indicate the zoospores randomly touching or settling on the interfaces of water and either 
HMN alone or HMN containing with PAHs. Bars = 50 µm. 
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In the presence of PAHs dissolved in the substrata (what lead to the lowest Cexp of PAH), 

PAH-degrading bacteria did not influence the zoospore settlement at the HD-water interface, 

while no zoospore settlement was observed between the interface of water and HMN (Fig. 

26). The accumulation of PAH-degrading bacteria at the zoospore settlement areas was also 

observed (Fig. 27a, b and Vid. 3(4.1)). Interestingly, we observed that the germ tubes formed 

by encysted zoospores at the HD-water interface stabbed and extended directly into the 

hydrophobic layer of HD (Fig. 27c, d, and Vid. 4(4.1)). In addition, neither HD nor HMN 

was a carbon and/or energy source for growth of this oomycete (Fig. 28). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 27 Co-settlement of Py. apphanidermatum zoospores with PAH-degrading bacteria at the HD-
water interfaces. A fluorescence micrograph (a) showing M. gilvum VM552 cells (arrows, green 
particles) settled around and inside the germinated area (white circle) of encysted zoospores between 
the interface of water and HD-containing phenantrene. The micrograph was taken a few minutes later 
the direct staining with 0.02% (w/v) acridine orange. The enlarged scale of light micrograph (b) shows 
P. putida G7 cells (arrows) co-settled with germinated-encysted zoospores between the interface of 
water and HD-containing naphthalene. Side views of zoospores settlement at the HD-water (c) and 
HMN-water (d) interfaces were examined microscopically using the chemical-in-capillary method (see 
also CHAPTER III), where the zoospores encysted and germinated their germ tubes (arrows) only into 
the hexadecane layer (c). All observations were done at least in triplicate. Bars = 50 µm. All images 
were extracted from Vids. 2-4(4.1). 
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Figure 28 Growth of Py. aphanidermatum in the absence and presence of HD or HMN. Four plugs (Ø 
= 0.8 mm) of 4-day old hyphal mats of Py. aphanidermatum growing on DV8 agar (see also 
CHAPTER III) were inoculated in 20 mL of sterilized lake water supplemented with 1% (v/v) of HD 
or HMN. The oomycete growth was determined by measurement of the dry-weight biomass after 
drying in hot air oven at 55 ºC for 3-4 days. The graphs were plotted by means of increased biomass 
(%) with error bars of SDs, derived from triplicate experiments. There were no significant differences 
of means compared by ANOVA and Tukey’s post hoc test at P > 0.001. F-distribution values and 
significant levels derived from the statistical comparison of day 3, 6, 10, 15 and 20 were F(2, 6) = 0.237 
(P= 0.826), 1.543 (P= 0.305), 0.486 (P= 0.684), 1.224 (P= 0.414) and 2.437 (P= 0.168), respectively. 
 

 

4.2 Promoting microbial life at the interface of NAPL and water: a 

strategy to enhance biodegradation of sparingly bioavailable PAHs 
 

To investigate further the role of oomycetes/bacteria interaction in the context of PAH 

bioremediation, we explored in the second part of this thesis the influence of two oomycetes 

(Py. aphanidermatum and Py. oligandrum) on biodegradation of PAHs initially present in a 

NAPL by M. gilvum VM552.  The experiments were designed to create bioavailability 

restrictions through the association of the PAHs with a NAPL, which was composed by a 

mixture of heavy fuel and HMN. Mineralization activity of M. gilvum VM552 was estimated 

continuously through 14CO2 production from 14C-labelled phenanthrene dissolved in the 

NAPL, while its biodegrading capacity was measured with the end-point concentrations of 

PAHs in the NAPL by GC/MS. 
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4.2.1 Mineralization of NAPL-associated phenanthrene 

The mineralization of 14C-phenanthrene initially present in the NAPL under aerated 

conditions (through continuous shaking reciprocally at 80 rpm) is shown in Fig. 29. Different 

treatments, by adding oomycete mycelia and/or DV8 agar as a supplement, were tested for 

their effects on the mineralization activity of M. gilvum VM552. Mineralization curves in the 

presence of oomycete mycelia and/or DV8 agar were S-shaped, and the rates of 

mineralization were calculated from the slopes at exponential phase of the curves. The rates 

were highest in the presence of oomycetes grown on DV8 agar followed by the conditions 

where DV8 agar was solely the supplement (Fig. 29 and Table 5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 29 Role of oomycetes in mineralization of 14C-phenanthrene associated to a NAPL by M. 
gilvum VM552 under aerated conditions. Two oomycetes were used, Py. aphanidermatum (a) and Py. 
oligandrum (b). The experiments were tested in the presence of the bacterial cells either without any 
supplements (VM552) or supplemented with DV8 agar (VM552 + DV8), oomycete mycelia (VM552 + 
Mycelia), or oomycete-growing DV8 agar (VM552 + Mycelia/DV8). A control without bacterial cells 
was constructed by adding solely oomycete-growing DV8 agar (Mycelia/DV8). The graphs were 



 
 

70 
 

plotted by means of 14C mineralized (%) with error bars of SEs, derived from triplicate experiments. 
Mineralization by bacteria only (with and without DV8) is shown in both panels for better comparison. 
 
 

Table 5 Role of oomycetes in bacterial mineralization of 14C-phenanthrene associated to NAPL under 
aerated conditions 

Oomycete Treatment 

Mineralization 

Rate  

(ng mL-1 h-1)* 
Extent (%)* 

Time 

(days) 

None  
VM552 0.29 ± 0.04c  26.84 ± 2.03c  121 

VM552 + DV8 3.24 ± 0.07b  55.45 ± 1.53a 122 

Py. aphanidermatum  
VM552 + Mycelia  1.67 ± 0.23b,c  28.91 ± 0.19c  122 

VM552 + Mycelia/DV8  5.86 ± 1.39a  49.59 ± 5.74a,b 127 

Py. oligandrum  
VM552 + Mycelia 2.03 ± 0.16b,c  42.01 ± 4.33b  125 

VM552 + Mycelia/DV8 8.27 ± 1.21a  55.59 ± 1.28a  126 

Reported values are shown with mean ± SD. *Different lower case letters in each column refer to a 
statistical difference of means compared, where F-distribution values and significant levels of 
mineralization rates and percentages of mineralization extent were computed with F(5, 10) = 33.713 (P = 
0.05) and F(5, 10) = 33.437 (P = 0.05), respectively.  
 

 

A similar trend of results was observed between different oomycetes (Py. aphanidermatum 

in Fig. 29a and Py. oligandrum in Fig. 29b). However, the highest rate of mineralization 

(8.27 ng mL-1 h-1) was found in the presence of Py. oligandrum grown on DV8 agar. When 

the mycelia of the two oomycetes were the only supplement, the maximum rates of bacterial 

mineralization of 14C-phenanthrene were not significantly different. However, the extent of 

mineralization was approximately two times higher, and the lag phase was shorter, in the 

presence of Py. oligandrum mycelia (Fig. 29 and Table 5). Interestingly, in the absence of 

any supplement, mineralization by M. gilvum VM552 was linear (R2 = 0.99) with a constant 

rate of 0.29 ng mL-1 h-1.  

 

To check whether the enhancement of biodegradation by the oomycete also occurred under 

conditions that promoted biofilm development, a similar experiment as that explained above 

was carried out in static conditions. The results for mineralization of phenanthrene are shown 

in Fig. 30, and the corresponding rates are included in Table 6. We observed that, in all 

treatments, mineralization curves were S-shaped. Under these conditions, the mineralization 

activity of M. gilvum VM552 was enhanced. The maximum rates (2.72-2.90 ng mL-1 h-1, 
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Table 6) of bacterial mineralization were found in the presence of oomycete-growing DV8 

agar, followed by the presence of DV8 agar as a sole supplement. This trend of results was 

similar between different oomycetes (Py. aphanidermatum in Fig. 30a and Py. oligandrum in 

Fig. 30b), and was similar also when compared with aerated conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 Role of oomycetes in mineralization of 14C-phenanthrene associated to a NAPL by M. 
gilvum VM552 under static conditions. Two oomycetes were used, Py. aphanidermatum (a) and Py. 
oligandrum (b). The experiments were tested in the presence of the bacterial cells either without any 
supplements (VM552) or supplemented with DV8 agar (VM552 + DV8), oomycete mycelia (VM552 + 
Mycelia), or oomycete-growing DV8 agar (VM552 + Mycelia/DV8). A control without bacterial cells 
was constructed by adding solely oomycete-growing DV8 agar (Mycelia/DV8). The graphs were 
plotted by means of 14C mineralized (%) with error bars of SEs, derived from triplicate experiments. 
Mineralization by bacteria only (with and without DV8) is shown in both panels for better comparison. 
 

 

Interestingly, in the absence of any supplements, the bacterial mineralization exhibited an S-

shaped curved under static conditions with a maximum rate of 1.31 ng mL-1 h-1. This rate was 
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approximately five times higher than the rate detected in aerated conditions (0.29 ng mL-1 h-

1), which suggested that the mineralization activity of M. gilvum VM552 was greater 

enhanced under static conditions. In addition, we observed that both oomycetes were not able 

to utilize phenanthrene as their carbon and energy source, as revealed by the negligible 

mineralization rates (0.002-0.01 ng mL-1 h-1), either under aerated (Fig. 29) or static (Fig. 30) 

conditions. 

 

 
Table 6 Role of oomycetes in bacterial mineralization of 14C-phenanthrene associated to NAPL under 
static conditions 

Oomycete Treatment 

Mineralization 

Rate  

(ng mL-1 h-1)* 
Extent (%)* 

Time 

(days) 

None  
VM552 1.31 ± 0.09d  53.17 ± 5.88a 168 

VM552 + DV8 2.10 ± 0.10b,c  53.45 ± 0.18a 168 

Py. aphanidermatum  
VM552 + Mycelia  1.75 ± 0.14c,d  48.92 ± 0.27a 149 

VM552 + Mycelia/DV8  2.72 ± 0.35a,b  53.27 ± 0.65a 168 

Py. oligandrum  
VM552 + Mycelia 1.72 ± 0.22c,d  51.31 ± 6.71a 150 

VM552 + Mycelia/DV8 2.90 ± 0.28a  52.24 ± 2.36a 148 

Reported values are shown with mean ± SD. *Different lower case letters in each column refer to a 
statistical difference of means compared, where F-distribution values and significant levels of 
mineralization rates and percentages of mineralization extent were computed with F(5, 11) = 23.361 (P = 
0.05) and F(5, 11) = 0.777 (P = 0.05), respectively.  
 

 

4.2.2 Kinetics and end-point mass balance of mineralization of phenanthrene 
Based on the S-shaped curves of bacterial mineralization, the kinetics of the mineralization 

activity could be divided into lag, exponential and stationary phases. Under aerated 

conditions, the lag phases were shorter than 300 h when the oomycete-growing DV8 agar or 

only DV8 agar was used as a supplement (Fig. 29). These lag phases were extended longer 

in static conditions (Fig. 30), up to 350 h. Moreover, these observations were similar 

between the two oomycetes used. In the supplement with oomycete mycelia alone, the lag 

phases in aerated conditions were extended longer (~1800 h) when the mycelia of Py. 

aphanidermatum (Fig. 29a) were applied, as compared to Py. oligandrum mycelia (~800 h) 

(Fig. 29b). This observation contrasted with the static conditions, where the lag phase was 

shorter (~400 h) in the presence of Py. aphanidermatum mycelia (Fig. 30a), but it was longer 



 
 

73 
 

(~600 h) in the presence of Py. oligandrum mycelia (Fig. 30a). This may relate to the 

different development of oomycetes in these experimental systems. It was found that, within 

the same area of growth, Py. aphanidermatum formed a double amount of biomass, as 

compared to Py. oligandrum (Fig. 31). Moreover, zoospore formation was observed only 

with Py. aphanidermatum (Fig. 32). When only mycelia of this oomycete were used, 

zoospores were formed slightly faster in aerated conditions than those formed in static 

conditions.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 31 Biomass dry weights of oomycetes grown on V8 agar. The oomycetes were incubated at 25 
ºC for 4 days before cutting with a known area, and their aerial mycelia were scraped and dried in an 
oven at 55 ºC for 5 days. The dried biomass was then weighed. The experiment was done in triplicate. 
The results are reported with means, where the error bars refer to SDs.   
 

 

The exponential phases of the bacterial mineralization either compared among conditions or 

treatments tested were also different with variation of time scales. The shortest exponential 

phases (~300 h) were observed when oomycete-growing DV8 agar was supplemented under 

the aerated conditions (Fig. 29). The longer exponential phases (~300-400 h) were observed 

also under these conditions when the oomycete mycelia were supplemented solely, while 

exponential phases with an approximate 700 h were observed in the presence of DV8 agar as 

a sole supplement. Under the static conditions (Fig. 30), the exponential phases of all 

treatments were extended between 700-1800 h. There was also a similar observation between 

different oomycetes under these conditions. However, the extents of mineralization were 

dissimilar for each oomycete. Under aerated conditions, DV8 agar and Py. oligandrum 

grown on DV8 agar were the best supplements, causing a similar mineralization extent 
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(55.6%). These supplements were slightly better than Py. aphanidermatum grown on DV8 

agar, with a mineralization extent at 49.6% (Fig. 29 and Table 5). This could be observed 

clearly when oomycete mycelia were used solely as a supplement, with a mineralization 

extent that was significantly higher (42.0%) when Py. oligandrum mycelia were used instead 

of Py. aphanidermatum mycelia (28.9%). We observed no difference between different 

oomycetes under static conditions (Fig. 30 and Table 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 32 Zoospore formation of Py. aphanidermatum in mineralization experiments. The 
experimental conditions (aerated (a) and static (b)) imitated the mineralization experiments were 
established either in the absence (without) or presence (with) of NAPL. Either oomycete-growing DV8 
agar (Mycelia/DV8) or solely oomycete mycelia (Mycelia) were prepared for quantification of 
zoospore formation. Number of zoospores was quantified at 6-7 h and 12-13 h after installing the 
experiments. The results are reported with means, where the error bars refer to SDs. There was no 
significant difference between means compared in (a) (F(7, 24) = 4.219, P = 0.001) and in (b) (F(7, 24) = 
3.471, P = 0.001). 
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At the end of mineralization experiments, the mineralization and biodegradation activities of 

M. gilvum VM552 were confirmed by measurements of end-point mass balance of 14C and 

end-point concentration of PAHs present in NAPL residuals, respectively. The end-point 

mass balance of 14C was evaluated with a scintillation counter and resulted in four fractions: 
14C mineralized, 14C dissolved in the aqueous phase, 14C accumulated in the solid phase 

(biomass and/or agar residues) and 14C that remained in the NAPL. These percentages were 

well related to the mineralization curves and revealed no losses of substrate carbon from the 

biometric systems. Under aerated conditions, the aqueous-dissolved fractions resulting from 

the treatments supplemented with the oomycetes and/or DV8 agar were not different (Fig. 

33). This observation was similar to static conditions (Fig. 34), and no different results were 

observed between the two oomycetes. It was also observed that adding the sole mycelia of 

Py. aphanidermatum as a supplement did not affect the mineralization activity of M. gilvum 

VM552 (Fig. 33a), as indicated by no significant difference across the mass balance profile 

of 14C. However, the sole mycelia of Py. oligandrum enhanced bacterial mineralization to a 

greater extent than Py. aphanidermatum mycelia (Fig. 33b). Moreover, the fractions of 14C 

associated to the solid phase, either under aerated (Fig. 33) or static (Fig. 34) conditions, 

were often found to be inversely correlated to the fraction still present in the NAPL, what 

suggests that the biological uptake and transformation of 14C-phenanthrene was involved in 

the partitioning of this chemical from the NAPL. Interestingly, the solid-associated fraction 

was often higher than the NAPL-associated fraction in the presence of oomycete mycelia 

and/or DV8 agar under static conditions (Fig. 34).  

 

The biodegradation activities of M. gilvum VM552 (Fig. 35) also revealed the enhancement 

by oomycete mycelia and/or DV8 agar. Five PAHs (fluorene, phenanthrene, antracene, 

fluoranthene and pyrene) present in NAPL residuals taken from all treatments were 

quantified by GC-MS, and compared to the untreated NAPL (Fig. 35a). It was found that the 

five PAHs could be degraded by the bacterium, while phenanthrene is the most degradable 

PAH followed by fluorene (Fig. 35b). Interestingly, and in accordance with mineralization 

results, oomycete mycelia and/or DV8 agar enhanced biodegradation of phenanthrene by the 

bacterium, what was supported by the nearly complete dissappearance of phenanthrene that 

was degraded, as compared to the treatment without any supplements (where 50 % of 

phenanthrene was biodegraded) (Fig. 35b). However, the second abundant PAH found in the 
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untreated NAPL, pyrene, was slightly degraded by the bacterium, while the highest % of 

biodegradation occurred in the absence of any supplements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 33 Mass balance of [14C] present at the end of mineralization experiments under aerated 
conditions. The percentages of 14C mineralized by M. gilvum VM552 (% Mineralized)F1 were taken 
from the end-point of the mineralization curves (Fig. 29). The percentages of 14C dissolved in the liquid 
phase (% Dissolved)F2 and of 14C accumulated in the solid phase (% Accumalated)F3 were quantified 
by a scintillation counter (see also 3.6.3). The percentages of 14C-remained in NAPL residuals (% 
Remained)F4 was calculated by the difference (see also 3.7.2). Asterisks refer to a statistical difference 
of means compared between each percentage in (a) (F1-4(3, 6) = 40.489, 0.927, 11.658, 104.297, P = 
0.01) and in (b) (F1-4(3, 7) = 62.287, 0.686, 6.176, 122.143, P = 0.01), while the controls of sole 
oomycete mycelia-growing DV8 agar (Mycelia/DV8) was excluded from this comparison. 
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Figure 34 Mass balance of [14C] present at the end of mineralization experiments under static 
conditions. The percentages of 14C mineralized by M. gilvum VM552 (% Mineralized)F1 were taken 
from the end-point of the mineralization curves (Fig. 30). The percentages of 14C dissolved in the liquid 
phase (% Dissolved)F2 and of 14C accumulated in the solid phase (% Accumalated)F3 were quantified 
by a scintillation counter (see also 3.6.3). The percentages of 14C remained in NAPL residuals (% 
Remained)F4 was calculated by the difference (see also 3.7.2). Asterisks refer to a statistical difference 
of means compared between each percentage in (a) (F1-4(3, 8) = 1.641, 1.493, 45.958, 17.001, P = 0.01) 
and in (b) (F1-4(3, 7) = 0.127, 3.348, 23.695, 18.304, P = 0.01), while the controls of sole oomycete 
mycelia-growing DV8 agar (Mycelia/DV8) were excluded from this comparison. 
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Figure 35 A set of PAHs found in NAPL residuals collected at the end of mineralization experiments 
under aerated conditions, using the mycelia of Py. oligandrum. Control is an untreated mixture of 
NAPL (fuel:HMN, 1:1 (w/v)). The concentrations of PAHs remained in NAPL residuals were reported 
in μg per g of NAPL (a), while the percentages of PAHs mineralized by M. gilvum VM552 were 
calculated (b). The analysis was done in triplicate. 
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4.2.3 Evolution of NAPL-water contact angle 
The NAPL-water contact angle (θnw) was measured by a protractor using the side view 

photographs from mineralization experiments (Fig. 18). At the starting day of the 

experiments, the NAPL in all treatments exhibited a convex shape with a range of 110-120° 

for θnw (Fig. 36a). Values of θnw measured in the presence of M. gilvum VM552 increased 

gradually with the incubation period, and reached 180° at the end of the experiments (Fig. 

36b). However, θnw at the end of the experiments measured in the controls without bacteria 

(only oomycete mycelia growing on DV8 agar) was within a range of 120-140° (Fig. 36b), 

what suggests that the change of θnw was strongly affected in the presence of M. gilvum 

VM552 cells. Interestingly, we observed that the evolution of θnw with time was in 

accordance to the mineralization activity. This was supported by the sharp increase of θnw 

observed at the end of lag phases in mineralization experiments. This change was observed 

faster during the experiments carried out under aerated conditions (Fig. 29), as compared 

with static conditions (Fig. 30). In addition, the evolution of θnw in the presence of M. gilvum 

VM552 cells alone under aerated conditions (Fig. 29) occurred gradually throughout the 

experimental period, to reach a final value of 180° at the end of the experiments. It seems 

that such changes in θnw indicated the starting point of exponential mineralization rate, 

suggesting that the bacterial cells could settle at the NAPL-water interface and established 

on-site biodegrading activity. Subsequently, this θnw evolution was a result of the microbial 

activity at the NAPL-water interface. It is also conceivable that the gradual change of θnw 

was in accordance to the increase of biofilm density formed at the NAPL-water interface 

(Fig. 36b). 

 

4.2.4 Biofilm formation at NAPL-water interface 
Microbial biofilms were observed at the NAPL-water interface (Fig. 36). These biofilm 

structures developed more densely under static conditions as compared to aerated conditions. 

The densest biofilms were found in the presence of Py. aphanidermatum mycelia under  

static conditions and in the presence of Py. oligandrum mycelia under aerated conditions 

(Fig. 36b). However, these structures were microscopically similar under both aerated (Fig. 

37) and static (Fig. 38) conditions. Interestingly, the presence of oomycete mycelia in the 

biofilm was observed only in the experiments supplemented with Py. aphanidermatum 

grown on DV8 agar under static conditions (Fig. 38). Most biofilm structures were 

constituted by a clump of older bacterial cells (identified as red cells due to RNA labelling 

by acridine organe), surrounded by young cells (labelled green due to DNA). These biofilms 
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were often observed in the presence of exopolysaccharide (EPS) visible as a light yellow thin 

layer that surrounded bacterial cells (Figs. 37 and 38). 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 36 Evolution of NAPL-water contact angle (θnw) and its relevance in biofilm formation at the 
NAPL-water interface under aerated and static conditions of mineralization experiments. The θnw is 
used as a criterion for topographical changes of the NAPL-water interface. The value of θnw is 
compared at the end of mineralization experiments (Final) with that one observed at the start (Start) (a). 
The biofilms developed at the NAPL-water interface were observed at the end of mineralization 
experiments, and their θnw was also determined (b). Asterisks in (b) refer to the dense growth of 
bacterial cells in the biometric systems that prevented the observation of biofilms.  
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4.2.5 Influences of DO and DOC variations on mineralization kinetics 
To discriminate the chemical influences on the mineralization activity of M. gilvum VM552 

from the biological and physical influences, we determined the variation of dissolved oxygen 

(DO) and dissolved organic carbon (DOC). A set of experiments that imitated mineralization 

experiments (but without NAPL) were performed, and DO was measured (Fig. 39). Under 

aerated conditions (Fig. 39a), the values of DO were stable at approximately 6 mg L-1, 

suggesting that physical aeration could supply dissolved oxygen from the atmosphere into 

the water phase at a sufficient level for microbial growth. Also, it was observed that 

oomycete mycelia affected DO only at the initial 300 h in the experiments under static 

conditions (Fig. 39b). The concentrations of DO detected were, however, still high and 

excluded that the lag phase observed in bacterial mineralization was due to competition 

between the bacterium and oomycete. Nevertheless, it was clear that the rich biomass of Py. 

aphanidermatum mycelia was the greatest reducer of DO during the initial 100 h of the 

experiments under static conditions.  

 

For the variations of DOC during the mineralization experiments (Fig. 40), it can be 

concluded that DOC found mainly in the aqueous phase derived from DV8 agar. This 

observation was supported by the significant differences between the treatments 

supplemented solely with oomycete mycelia and in the presence of DV8 agar or oomycete 

grown on DV8 agar. Moreover, DOC in the presence of DV8 agar as a sole supplement was 

found with the highest concentration compared to the other treatments in both aerated and 

static conditions. It was also found that mycelia of both oomycetes did not contribute DOC 

from their biomass. However, it seemed that both oomycete mycelia could increase slightly 

the concentration of DOC in the presence of NAPL under aerated conditions (Fig. 40b). In 

addition, the results suggested that oomycete mycelia played an important role as a nutrient 

exchanger within biometric systems of the mineralization experiment. This observation was 

supported by the significantly higher DOC concentrations in all treatments supplemented 

with oomycete-growing DV8 agar, compared to the treatments supplemented with solely 

oomycete mycelia either under aerated or static conditions. Although oomycete mycelia 

could increase DOC in the aqueous phase, the concentrations of DOC were lower than the 

treatments supplemented solely with DV8 agar, suggesting that the rate of DOC actively 

dissolved from solid agar caused by the growth of oomycetes was faster than their rate of 

nutrient uptake.  
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Figure 39 Variations of DO in the aqueous phase of mineralization experiments. The measurement was 
done in the absence of NAPL and bacterial inoculum, while the experimental sets were performed as 
same as the mineralization experiments under aerated (a) and static conditions (b). Two oomycetes (Py. 
aphanidermatum (PA) and Py. oligandrum (PO)) were used, while five treatments supplemented with 
DV8 agar (DV8), oomycete mycelia grown on DV8 (PA or PO mycelia/DV8) and solely oomycete 
mycelia (PA or PO mycelia) were constructed. Do was measured from a duplicate experimental set, by 
using an oxygen meter. 
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Figure 40 Variations of DOC in the aqueous phase of mineralization experiments. The measurement 
was done in the absence of bacterial inoculum either without or with NAPL, while the experimental 
sets were performed as same as the mineralization experiments under aerated (a, b) and static 
conditions (c, d). Two oomycetes (Py. aphanidermatum (PA) and Py. oligandrum (PO)) were used, 
while five treatments supplemented with DV8 agar (DV8), oomycete mycelia grown on DV8 (PA or 
PO mycelia/DV8) and solely oomycete mycelia (PA or PO mycelia) were constructed. The 
concentration of DOC was assumed by the analysis of TOC, which was measured using a Shimadzu 
TOC-VCSH equipment with ASI-V auto sampler after filtration through Whatman® No. 1 (pore size, Ø 
= 11 μm).  The experiments were done in duplicate, while the analysis of TOC was performed twice 
per each sample. 
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4.3 Biomobilization of pollutant-degrading bacteria by chemotaxis of 

eukaryotic zoospores 
 

4.3.1 Chemotaxis of zoospores and bacterial mobilization 
Zoospore chemotaxis was carried out using a modified chemical-in-capillary method (Fig. 

19) with ethanol as a zoospore attractant. After zoospores were allowed to perform the 

chemotactic reaction, the number of encysted zoospores found inside the chemotactic 

capillary tubes increased with the concentrations of ethanol, but it was inversely correlated 

with the travelling distance of zoospores along the capillary tubes (Fig. 41). It was found that 

the lowest concentration (5% (v/v) ethanol) of zoospore attractant was optimal for 

biomobilization assays, in accordance with the absence of any negative influences on 

bacterial viability (Fig. 42a) and bacterial chemotaxis towards this chemical dose (Fig. 43). 

Therefore, this concentration of ethanol was chosen for biomobilization assays.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 41 Zoospore chemotaxis towards different concentrations of ethanol (a zoospore attractant, 
diluted with sterilized lake water). This investigation was carried out using modified chemical-in-
capillary method (Fig. 19), aiming to search for the optimal concentration of zoospore attractant for 
biomobilization assay. The travelling distance of zoospores entering into the capillary tubes filled with 
different concentrations of ethanol (bar graph) was estimated by wherever zoospores encysted. The 
error bars show an approximate variation of ±3 mm in each observation. The number of encysted 
zoospores per the whole volume (1 μL-1) of the capillary tube (line graph) was counted. The plots were 
derived from at least four-replication of each test, while the error bars refer to SD. 

 



 
 

87 
 

 

 

 

 

 

 

 

 
Figure 42 Bacterial development in the presence of zoospore attractant (5% (v/v) ethanol) or 
cycloheximide. Bacterial cells (96 h of incubation) at the initial OD600 nm of 1.5 were used. No 
significant difference of bacterial counts compared between control and in the presence of either 
zoospore attractant (F(3, 8) = 684.336, P = 0.001) (a) or cycloheximide (F(3, 8) = 55.129, P = 0.001) (b).   
 

 

 

 

 

 

 

 

 

Figure 43 Chemotaxis of P. putida G7 towards zoospores encysted chemotactically towards their 
attractant (5% (v/v) ethanol). The experiment was evaluated by 2 steps of a modified chemical-in-
capillary method (Fig. 19). At the first step, the chamber was filled either with zoospore suspension or 
sterilized lake water (control, without encysted zoospores) (a), where capillary tubes filled with the 
zoospore attractant (5% (v/v) ethanol) were inserted into the chamber and incubated at 25 ºC for 1 h. 
Zoospores were allowed to respond chemotactically to their attractant and to encyst inside the capillary 
tube, where the number of encysted zoospores was counted (b). Afterwards, the capillary tubes tested at 
the first step were transferred into the second chamber filled with bacterial suspension of highly motile 
cells of P. putida G7 (a 10-fold dilution of the initial cell density at OD600 nm = 1.5). The experiment 
was incubated at the same conditions as in the first step. Bacterial cells entering into the capillary tubes 
(a) were quantified by CFU developed on TSA supplemented with 0.3 g L-1 cycloheximide. The 
graphical results are means of at least triplicate experiments, where the error bars represent the SDs of 
those respective means. 
 

 

Bacterial cells with three different motility levels were used for biomobilization assay (Table 

7). M. gilvum VM552 was used as a representative non-motile PAH-degrading bacterium. 

The motility of P. putida G7 cells was determined through their global speeds as computed 

by the CellTrak program. We found that stationary phase cells exhibited a lower level of 
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motility than exponentially growing cells. The lengths and L/B ratios of bacterial cells were 

also different, as the highly motile cells of P. putida G7 were 2-time bigger than those other 

bacterial cells (Table 7). 

 

 
Table 7 Motility and cell size determinations of PAH-degrading bacteria 

PAH-degrading 

bacteria 

Age 

(h) 
Cell motilitya 

Cell characteristicsb 

Length (μm) Breadth (μm) L/B ratio 

M. gilvum VM552 96 Non-motile 1.52 ± 0.46 1.03 ± 0.11 
1.48 ± 0.45 

(N = 51) 

P. putida G7 

96 

Slightly motile                 

(global speed = 40.82 μm s-1, 

SE = 2.42, N = 85) 

1.73 ± 0.40 1.02 ± 0.10 
1.70 ± 0.36 

(N = 50) 

12 

Highly motile               

(global speed = 82.81 μm s-1, 

SE = 2.80, N = 91) 

3.36 ± 0.83* 1.09 ± 0.11 
3.12 ± 0.82* 

(N = 50) 

aMotility of bacterial cells suspended in sterilized lake water was determined into three levels, while the 
global speeds of motile bacterial cells were computed with the CellTrak program (see also CHAPTER 
III). SE is standard error and N is population number of measured cells. bLength, breadth and L/B ratio 
are shown with mean ± SD. Asterisks represent significant difference of means among lengths (F(2, 148) 
= 144.130, P = 0.001) or L/B ratios (F(2, 148) = 119.221, P = 0.001), while without asterisk of breadth is 
not different significantly (F(2, 148) = 6.484, P = 0.001). 
 

 

The mobilization of bacterial cells by zoospore chemotaxis was tested using the modified 

capillary assay as described previously. In the presence of zoospores, the number of M. 

gilvum VM552 cells (Fig. 44a) entering into the capillary tubes filled with zoospore 

attractant was significantly highest (F(3, 10) = 37.492, P = 0.001), revealing that the bacterial 

mobilization was enhanced by zoospore chemotaxis. This chemotactic response of zoospores 

was confirmed by a significant higher number of encysted zoospores in the capillary tubes 

filled with zoospore attractant (F(5, 17) = 34.861, P = 0.001) (Fig. 44b, d and f). A similar 

trend of results was also observed with slightly motile cells of P. putida G7 (F(3, 10) = 139.456, 

P = 0.001) (Fig. 44c). However, the enhanced biomobilization was not observed when highly 

motile cells of P. putida G7 were applied (F(3, 16) = 2.210, P = 0.001) (Fig. 44e), although the 

chemotactic response of zoospores remained unchanged as compared with other conditions 

tested (Fig. 44b, d and f). 
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Figure 44 Mobilization of PAH-degrading bacteria by zoospore chemotaxis. M. gilvum VM552 cells 
(a) and slightly (c) or highly (e) motile cells of P. putida G7 were used for this investigation, which was 
evaluated by modified chemical-in-capillary method (Fig. 19). Bacterial suspension (without 
zoospores) or a microbial mixture of bacterial cells and zoospores (with zoospores) was filled in the 
chamber. Sterilized lake water (control, empty bars) or zoospore attractant (5% (v/v) ethanol, filled 
bars) was filled in the capillary tubes, which was further inserted into the prepared chamber. The 
chemotactic response of zoospores in each assay was confirmed by counting the number of zoospores 
encysted inside the capillary tubes either absence (empty bars) or presence (filled bars) of their 
attractant (b, d and f). The results are means of at least triplicate experiment, where the error bars 
represent the SD. Asterisks refer to a significant difference of means compared within a, c and e, while 
double daggers refer to a significant difference across b, d and f. 
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4.3.2 Possible mechanisms of bacterial mobilization by zoospore chemotaxis 
 

Based on the motion records of the biomobilization assays and the microscopic observations 

of the microbial mixture, we could not observe any direct association between bacterial cells 

and zoospores. The absence of these direct associations was confirmed by unchanged L/B 

ratios of zoospores either in the presence or absence of bacterial cells (Table 8 and Fig. 45). 

Moreover, there was no bacterial chemotaxis towards encysted zoospores (Fig. 43). 

Therefore, the bacterial mobilization could happen through other mechanisms caused mainly 

by chemotactic response of zoospores. We hypothesized that a key mechanism was a change 

in fluid dynamics due to the chemotactic responses and/or swimming behaviour of zoospores.  

 

 
Table 8 Influence of bacterial cells on zoospore sizes 

PAH-degrading bacteria 
Zoospores characteristicsa 

Length (μm) Breadth (μm) L/B ratio  

None 20.16 ± 1.75*** 14.16 ± 2.32*** 1.45 ± 0.20 (N = 50) 

M. gilvum VM552 17.27 ± 1.70** 12.64 ± 1.83** 1.39 ± 0.19 (N = 33) 

P. putida G7 (stationary) 19.47 ± 1.84*** 13.36 ± 1.98***, ** 1.48 ± 0.18 (N = 55) 

P. putida G7 (exponential) 14.24 ± 1.17* 10.35 ± 0.91* 1.38 ± 0.13 (N = 55) 

aLength, breadth and L/B ratio are shown with mean ± SD. Sizes of zoospores swimming in sterilized 
lake water with the absence (none) or presence of bacterial cells, were measured, while the number of 
measured zoospores (N) is indicated. Initial density of bacterial cells was prepared at OD600 nm = 1.5 
(see also CHAPTER III). Asterisks represent significant difference of means among lengths (F(3, 189) = 
143.204, P = 0.001) or breadths (F(3, 189) = 43.471, P = 0.001), while no asterisk indicated among L/B 
ratios was no significant difference (F(3, 189) = 3.383, P = 0.001). 
 

 

A difference in biomass flow velocities of bacteria in the absence and presence of zoospores 

was an influencing factor proposed here for describing the mobilizing mechanism caused by 

zoospores. In the absence of zoospores but presence of their attractant, M. gilvum VM552 

cells was mobilized spontaneously by the fluid flow through the capillary tubes due to the 

capillary force and aqueous evaporation (Fig. 44 and Vid. 5(4.3), this video and the others 

that support section 4.3 are available at http://digital.csic.es/handle/10261/96015). Under the 

same condition, either slightly (Fig. 44c) or highly (Fig. 44e) motile cells of P. putida G7 

could swim either inwards or outwards the capillary tubes (Vid. 6(4.3)). 

http://digital.csic.es/handle/10261/96015
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Figure 45 Morphology of swimming zoospores either in the absence or presence of bacterial cells. 
Initial cell density of bacterial suspensions was prepared at OD600 nm = 1.5 (see also CHAPTER III). 
The micrographs of zoospores were taken during their freely swimming in sterilized lake water (a) or in 
bacterial suspension of M. gilvum VM552 cells (b) or slightly (c) and highly (d) motile cells of P. 
putida G7, where the bars = 20 µm.  
 

 

The flow velocities of M. gilvum VM552 cells flowing through the chemotactic capillary 

tubes in the absence of zoospores were determined with the CellTrak program at different 

time periods. A linear correlation, y = 0.0003x + 19.51 between the flow velocities and time 

periods was computed (Fig. 46 and Vid. 5(4.3)). The slope of the linear correlation was 

nearly zero, what suggests that the flow velocity was not changed according to the time 

frame as described with equation (v). This demonstrated that the flow velocities of M. gilvum 

VM552 cells were due to the spontaneous flow velocity (u0) of the fluid body, which was a 

constant derived from the linear correlation that was steady at 19.51 μm s-1. When we 

compared different bacterial cells mobilized at this u0 (Fig. 44a, c and e), the bacterial cell 

densities mobilized in most conditions except in the presence of zoospores and their 

attractant were diminished according to the motility of bacterial cells. This suggested that 

slightly and highly motile cells of P. putida G7 were free to swim either inwards or outwards 

the capillary tubes (Vid. 6(4.3)), which was supported by relative higher speeds of cell 
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motility (Table 7) than u0. Interestingly, the mobilizing rate calculated by equation (vi) of M. 

gilvum VM552 cells caused by zoospore chemotaxis (Fig. 44a) was equal to 22 cells μL-1 s-1, 

indicating that a zoospore could mobilize 22 cells of non-motile bacteria per second. The 

calculation was likely the same with slightly motile cells of P. putida G7 (Fig. 44c), which 

gave a rate of 24 cells μL-1 s-1, while both mobilization rates were approximately seven-eight 

times higher than the case of highly motile cells with a rate of 3 cells μL-1 s-1 (Fig. 44e). 

Although non- and slightly motile cells possessed similar mobilizing rates of 22-24 cells μL-1 

s-1, their mass flow velocities in the presence of zoospores were different. Zoospore 

chemotaxis increased mass flow velocities of bacterial cells, calculated by equation (vii) and 

substracted with u0. This increase was higher with slightly motile cells of P. putida G7 

(68.38 μm s-1) than with M. gilvum VM552 cells (25.85 μm s-1), and much greater than 

highly motile cells of P. putida G7 (14.82 μm s-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 46 Flow velocity (u) of fluid flowing through capillary tube filled with zoospore attractant (5% 
(v/v) ethanol). M. gilvum VM552 cells were used as detecting particles for computing the flow velocity 
by the CellTrak program (see also CHAPTER III). A study model shows the detecting locations of 
bacterial cells inside a capillary tube with 32 mm of a total length (a). The flow velocities of bacterial 
cells were computed and graphed (b). The results were plotted with means of ten speeds derived from 
ten bacterial cells detected at the same time, while the error bars represent the SD. A linear correlation 
between the flow velocity and detecting time was computed. 
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We also observed that the chemotactic response of zoospores towards their attractant was 

often found to create advection flows (Vid. 7(4.3)). Zoospores performed circular or helical 

movements inside the chemotactic capillary tubes, which could create vortical flows of fluid 

(Fig. 47 and Vid. 7(4.3)). These advection and vortical flows could either enhance or induce 

short-path movements for bacterial translocation, forwarding cells into the capillary tubes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 47 Influence of circular movement of zoospores on mobilization of M. gilvum VM552 cells. 
The images at different time frames (from 0 to 15 s) were tracked from the motion records of 
biomobilization assay (in the presence of zoospores and their attractant) using the CellTrak program 
(see also CHAPTER III). The arrows with different lengths shown in frames 0 to 9 s refer to the 
spontaneous flows of bacterial cells moving into the capillary tube, while the dash arrows in frames 12 
to15 s show the vortical flows of bacterial cells due to the circular movement of zoospore (see also Vid. 
7(4.3)). The position of a zoospore performing the circular movement in each image was indicated with 
grey circle with two flagella, while the scale bars are 20 μm. 
 

 

4.3.3 Swimming behaviour and interactive motility of zoospores and bacteria 
Besides the change of fluid dynamics by zoospore chemotaxis, the swimming behaviour of 

zoospores and their interactive motility with different bacterial cells were also likely a key 
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factor influencing effectiveness of biomobilization. The spontaneous behaviour of zoospores 

swimming in sterilized lake water was investigated by the CellTrak program. The swimming 

behaviour of zoospores was categorized into four typical patterns including (I) linear, (II) 

circular, (III) sine wave and (IV) freestyle (Fig. 48). The ratios of these swimming patterns is 

shown in Fig. 49a (control, N = 59). There was no significant difference among the average 

speeds of every swimming patterns in Fig. 48 (F(3, 55) = 11.277, P = 0.001), where the global 

speed (82.59 µm s-1, SE = 2.46, N = 59) of all zoospores was computed (Fig. 49a, control). 

In contrary, RCDIs derived from individual swimming patterns in Fig. 48 were significantly 

different (F(3, 55) = 10.067, P = 0.001), where pattern III (Fig. 48k) was more similar to 

pattern I (Fig. 48i). These two patterns were more different to pattern II (Fig. 48j) that was 

more similar to pattern IV (Fig. 48l). The global RCDI (772.90 deg s-1, SE = 41.73, N = 59) 

of all zoospores was computed (Fig. 49c, control). Based on the motion records, we observed 

that most zoospores often performed the circular swimming pattern (II) at the initial period 

before releasing their flagella for encystment (Vid. 8(4.3)).  

 

The swimming behaviour of zoospores in the presence of bacterial cells is summed up in Fig. 

49. Cells of M. gilvum VM552 exerted an obvious influence on the swimming patterns of 

zoospores (Fig. 49a), by increasing the circular swimming pattern (II) from 15.25% (in the 

control) to 47.46%. Moreover, only three swimming patterns (I, II and IV) of zoospores were 

observed in this condition. Both slightly and highly motile cells of P. putida G7 had less 

influence on the swimming pattern of zoospores, but only highly motile cells increased the 

sine wave swimming pattern (III) approximately two times higher than the control and in the 

presence of slightly motile cells. Randomly selected swimming trajectories (10 trajectories) 

derived from each pattern shown in Fig. 49a, are displayed in Fig. 50. The statistical 

comparison of global speeds of zoospores in either absence or presence of bacterial cells (Fig. 

49b), indicated that only highly motile cells of P. putida G7 reduced significantly the global 

speed of zoospores (74.06 µm s-1, SE = 2.08 N = 79) (F(3, 249) = 9.926, P = 0.05). However, 

the presence of bacterial cells reduced significantly the global RCDIs of zoospores (Fig. 49c). 

The greatest reduction was caused by highly motile cells of P. putida G7 (256.28 deg s-1, SE 

= 12.55, N = 79), followed by M. gilvum VM552 cells (464.62 deg s-1, SE = 34.21, N = 59) 

and slightly motile cells of P. putida G7 (634.06 deg s-1, SE = 33.18, N = 54), respectively 

(F(2, 249) = 60.243, P = 0.05). 
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Figure 49 Influence of bacterial cells on swimming behaviour of zoospores. Bacterial cells with 
different motility levels of M. gilvum VM552 and P. putida G7 (indicated with the culture ages in the 
parentheses) were used for evaluation of their influence on swimming behaviour of zoospores, 
analyzed by the CellTrak program (see also Table 7 and CHAPTER III). The swimming patterns (a), 
global speeds (b) and global RCDIs (c) were summed up, while the population number (N) of 
zoospores analyzed in the absence (control) and presence (+) of bacterial cells were indicated in (a). 
The percent observation of each swimming pattern derived from zoospores analyzed within the same 
condition was accounted (a). The results of global speeds (b) and global RCDIs (c) were plotted by the 
average of means derived from zoospores analyzed within the same condition, while the error bars 
represent the SD. Asterisks and their number refer to a significant difference of means within (b) or (c). 
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Figure 50 Swimming trajectory of zoospores in the absence and presence of bacterial cells. The 
trajectories of ten representative swimming zoospores either in sterilized lake water (a) or in the 
presence of M. gilvum VM552 (b), and slightly (c) or highly (d) motile cells of P. putida G7 were 
randomly selected and graphed (see also Table 7 and CHAPTER III). 
 

 

On the other hand, the influence of zoospores on the swimming behaviour of bacterial cells 

was also evaluated and summed up in Fig. 51. The criteria used for evaluating the swimming 

behaviour of zoospores were also applied for studying bacterial swimming behaviour. 

Obviously, only cells from the motile bacterium (P. putida G7) were included in this study. 

Zoospores exhibited an obvious influence on swimming patterns of either slightly (96 h) or 

highly (12 h) motile cells of P. putida G7 (Fig. 51a) by increasing the freestyle swimming 

pattern (IV) from 35.30-37.40% in control to 85.30-97.60%, respectively. Moreover, the sine 

wave swimming pattern (III) of its slightly motile cells was vanished by zoospores, while 

both linear (I) and sine wave swimming patterns (III) of its highly motile cells were vanished. 

Bacterial cells themselves also showed different ratios of swimming patterns in the absence 

of zoospores (control). Highly motile cells preferred to swim with the circular pattern (II) 

(40.60%), while slightly motile cells preferred to swim with linear pattern (I).  
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Figure 51 Influence of zoospores on swimming behaviours of P. putida G7 cells. The swimming 
behaviours of slightly (96 h) and highly (12 h) motile cells of P. putida G7 (see also Table 7) were 
observed either in the absence (control) or presence (+) of zoospores. The swimming patterns (a), 
global speeds (b) and global RCDIs (c) of bacterial cells were analyzed by the CellTrak program (see 
also CHAPTER III) and summed up, while the population number (N) of bacterial cells analyzed 
within the same condition were indicated in (a). The percent observation of each swimming pattern 
derived from all bacterial cells detected in each condition was accounted (a). The percent observation 
of each swimming pattern derived from bacterial cells analyzed within the same condition was 
accounted (a). The results of global speeds (b) and global RCDIs (c) were plotted by the average of 
means derived from bacterial cells analyzed within the same condition, while the error bars represent 
the SD. Asterisks and their number refer to a significant difference of means within (b) or (c). 
 
 

Randomly selected swimming trajectories (10 trajectories) derived from each pattern shown 

in Fig. 51a, are displayed in Fig. 52. When the statistical comparison of the global speeds of 
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bacterial cells either in the absence or presence of zoospores was performed (Fig. 51b), we 

determined that zoospores increased significantly only the global speed of slightly motile 

cells of P. putida G7 up to 56.37 µm s-1 (SE = 2.09 N = 75) (F(3, 330) = 68.597, P = 0.001). 

However, zoospores did significantly increase only the global RCDIs (Fig. 7C) of its highly 

motile cells up to 586.41 deg s-1 (SE = 19.84, N = 83) (F(3, 330) = 43.511, P = 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52 Swimming trajectory of P. putida G7 in the absence and presence of zoospores. The 
trajectories of ten representative bacterial cells swimming either in sterilized lake water (a,b) or in the 
presence of zoospores (c,d) were randomly selected and graphed (see also Table 7 and CHAPTER 
III). 
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CHAPTER V: DISCUSSION 
 

 

5.1 Ecological interaction between eukaryotic zoospores and PAH-

degrading bacteria  
 

Recent studies revealed that mycelia of zoospore-producing oomycetes could mobilize PAH-

degrading bacteria and/or PAHs, what later promoted biodegradation of these pollutants 

(Furuno et al., 2010; 2012; Wick et al., 2007a). The mobilization of motile cells of P. putida 

G7 through the mycelial surfaces of Py. aphanidermatum and Py. oligandrum was observed 

in the antagonism tests carried out in this study. These mobilizing phenomena were observed 

only on a rich medium (TSA, 2% (w/v) of total carbon and energy source), what suggests 

that the bacterium might have been mobilized effectively by the oomycete as a result of its 

chemotaxis and growth on nutrients mobilized along the mycelia. Moreover, the dense 

mycelial growth of the oomycete was found only on the biomass of M. gilvum VM552 

grown on limited medium (DV8 agar, 0.2% (w/v) of total carbon and energy source). Thus, 

the nutrient exchange between bacterial cells and oomycetes could occur selectively, 

depending on either bacterial species or carbon and energy source. Given the lack of 

knowledge on how eukaryotic zoospores live and respond within polluted environments, we 

first examined here the development of these zoospores in different exposure regimes of 

PAHs and expanded the idea on how these zoospores could interact with PAH-degrading 

bacteria. 

 

For the assessment of the potential of eukaryotic zoospores in biodegradation and 

bioremediation of PAHs, a fundamental understanding of zoospore formation in the presence 

of PAHs is needed. It was conceived that the toxic influence of PAHs on zoospore formation 

was dependent on either Cexp that exhibited a strong connection with the aqueous solubility 

of PAHs or on the unique chemical structure of each PAH. It is already known that PAHs 

possessing bay or fjord regions in their chemical structures are the most potent carcinogens 

to eukaryotic cells than those lacking these regions (Sundberg et al., 1997). Therefore, the 

strong toxic influence of low-water-solubility PAHs, such as phenanthrene and fluoranthene, 

may concern to the bay region within their chemical structures, while phenanthrene showed a 

higher influence as its Cexp was 3-time higher than fluoranthene. Also, with the rest PAHs 
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that have no either bay or fjord regions, the toxic influences could be described in 

accordance to their Cexp, where naphthalene and fluorene, possessing higher Cexp, showed a 

greater toxic influence than those others with a lower Cexp. Interestingly, PAH-degrading 

bacteria suppressed the toxic influence of most PAHs tested, as evidenced by a significant 

enhancement of zoospore formation. The detoxification mechanisms of PAHs were 

somewhat species-dependent and might be connected with either sorption of PAHs to 

bacterial biomass (Stringfellow and Alvarez-Cohen, 1999) or to the removal of the existing 

PAHs through bacterial metabolism. Some studies have evidenced that microbial degradation 

of PAHs could reduce their toxicity (Gandolfi et al., 2010; Pagnout et al., 2006). This is in 

agreement with our results, which show that the naphthalene-degrading bacterium P. putida 

G7 detoxified naphthalene more efficiently than M. gilvum VM552, while the latter could 

better detoxify phenanthrene than naphthalene.  

 

In this thesis, we explored how eukaryotic zoospores reacted to diverse chemical effectors 

typically found in PAH-polluted scenarios. Zoospores possess at least a flagellum for 

translocation purposes. The swimming period and travelling distance of zoospores vary 

dependent on each species and the surrounding microenvironment (Blanco and Judelson, 

2005; Fan et al., 2002; Gleason and Lilje, 2009; Heungens and Perke, 2000). Swimming can 

be maintained up to 2 days in some fungal zoospores (Gleason and Lilje, 2009). The 

swimming capacity of zoospores constitutes an efficient dispersal tool for their homing, 

settlement and colonization on target locations, and it is mainly regulated through 

chemotactic mechanisms. Chemotaxis of rhizosphere zoospores, known so far, occurs 

towards a set of attractants excreted from plant roots. We first found here that Festuca root 

exudates are a potent attractant for Py. aphanidermatum zoospores, while the chemotactic 

response of the zoospores towards this attractant was not interrupted by PAHs or PAH-

degrading bacteria. Some organic solvents like alcohols are known also as an attractant of 

diverse zoospores (Cameron and Carlile, 1978; Fan et al., 2002). Here we also found that 

acetone is one of these attracting solvents for Py. aphanidermatum zoospores. It is 

conceivable that exposure to PAHs at a maximum Cexp, (i.e., dissolved in the solvents) 

diminished zoospore chemotaxis due to toxicity. However, zoospore chemotaxis towards 

Helianthus root exudates was enhanced when they were co-exposed with PAHs. The exact 

reason for this enhancement remains uncertain, but it may be related to possible 

chemoattraction to DOC-associated PAHs. Interestingly, P. putida G7 cells also caused an 

enhancement of zoospore chemotaxis towards Helianthus root exudates, and this 
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enhancement was not affected by PAHs. This bacterium-mediated enhancement can be 

understood by postulating toxic suppression mechanisms (biosorption or biodegradation) for 

specific components in root exudates driven by bacterial biomass. It is also possible that fluid 

advection during interactive motility of both zoospores and bacterial cells promoted zoospore 

mobilization towards such root exudates. 

 

The settlement behaviour was evaluated as an interesting lifestyle in zoospore development 

that could be relevant in PAH-polluted scenarios. PAHs are often found in the environment 

associated to hydrophobic materials, such as liquid hydrocarbons, which causes a low 

bioavailability for microbial degradation and further limits the efficiency of bioremediation. 

The development of interface microbial communities with PAH-degrading capabilities is 

often required for effective biodegradation (García-Junco et al., 2001; Ortega-Calvo and 

Alexander, 1994; Tejeda-Agredano et al., 2011). However, the formation of these 

communities has been found to be limited by diverse factors, such as limited bacterial 

dispersion in subsurface environments and nutrient limitations at interfaces. Based on the 

settlement behaviour of zoospores in our pollutant-water interface model, we observed that 

zoospores settled at the HD-water interface. This settlement was not influenced by PAHs and 

PAH-degrading bacteria but it seemed to occur through selective sensing toward HD, 

because the methyl-branched chemical HMN was not recognized by Py. aphanidermatum 

zoospores. In addition, neither HD nor HMN was a carbon and/or energy source for growth 

of this zoospore-producing oomycete (Fig. 27). Thus, substratum sensing was probably 

related to the population community of the zoospores themselves and the surface topography 

of such substratum. This observation agrees with a set of studies on the selective settlement 

behaviour of marine fouling zoospores (Greer et al., 2003; Heydt et al., 2012; Schumacher et 

al., 2007). Moreover, a recent study evidenced that the spontanous settlement of oomycete 

zoospores, known as auto-aggregation behaviour, was regulated through chemotaxis and 

bioconvection mechanisms (Savory et al., 2014). After settlement, zoospores could 

germinate their germ tubes into the hydrophobic layer of HD. This may cause an increase of 

pollutant-water interfacial area and an enhancement of chemical partitioning from the 

substratum into the aqueous phase, which may subsequently increase bioavailability of the 

pollutants for bacterial degradation. We also found, at the settlement areas, the co-existence 

with numerous cells of PAH-degrading bacteria which could well be a starting point of 

biofilm formation at the HD-water interface. The potential of biofilm as a promoting strategy 

in bioremediation of diverse pollutants is well documented (Singh et al., 2006). A number of 
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studies have revealed that algal zoospores react chemotactically towards quorum sensing 

compounds produced by bacterial biofilms, what lead to complex eukaryote-prokaryote 

communities on wet solid surfaces within marine environments (Joint et al., 2002; Patel et 

al., 2003). 

 

 

5.2 Roles of oomycetes/bacteria interaction in biodegradation of PAHs 
 

With the aim to evaluate the influence of oomycetes on the biodegradation activity of M. 

gilvum VM552, we confirmed that mineralization of phenanthrene by oomycetes was 

negligible either under aerated or static conditions. Under aerated conditions and absence of 

any supplements (oomycetes and/or DV8 agar), bacterial mineralization of phenanthrene was 

linear during the entire experimental period. This linear kinetics of mineralization activity of 

phenanthrene associated with the same NAPL (fuel/HMN) and under the same aerated 

conditions also occurred in a previous study from our group, and it was consistent with 

bioavailability-limited biodegradation (Tejeda-Agredano et al., 2011). In addition, the 

different element composition found in the medium solutions (lake water (Fig. 14) for this 

work and mineral salt medium (Tejeda-Agredano et al., 2011) for the previous study) used in 

the biometric system did not influence such linear kinetics. Other physicochemical properties 

of lake water with a little amount of DOC (9.00 ± 0.12 mg L-1) and slightly basic pH (7.8 ± 

0.14) (Table 2) are also different to the ones of the mineral salt medium (without DOC and 

acidic pH (5.4)). These observations suggested that M. gilvum VM552 can metabolize 

NAPL-associated phenanthrene with a constant rate (0.29 ± 0.04 ng mL-1 h-1) under aerated 

conditions, although it was introduced in different ecological niches. This constant rate was 

not different significantly to the previous work at 0.11 ng mL-1 h-1, but it was slightly higher 

than the partitioning rate (0.18 ng mL-1 h-1) of phenantrene derived from NAPL into the 

aqueous phase (Tejeda-Agredano et al., 2011). It seemed that a low concentration of DOC in 

lake water could enhance bacterial mineralization by increasing 3-time higher in 

mineralization rate than the use of mineral salt medium. This was in agreement with a recent 

study, revealing that in the presence of humic acid as a common dissolved organic matter 

could enhance bacterial uptake of PAHs (Tejeda-Agredano et al., 2014). Surprisingly, we 

first found that M. gilvum VM552 exhibited an exponential mineralization (logistic kinetics 

with S-shaped curve) in the absence of any supplements under static conditions. It was 

supported by the percent mineralization of phenanthrene compared at the same experimental 
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period, where the extent of phenanthrene mineralization was 50% under static conditions, 

while under aerated conditions it was 25%. This would be a breakthrough of the commonly 

assumed concept that physical aeration often promotes bacterial mineralization.  

 

It was conceived that oomycetes and/or DV8 agar could enhance bacterial mineralization 

either under aerated or static conditions. The difference between these two conditions 

resulted in dissimilar mineralization kinetics, where the aerated conditions could reach to the 

stationary phases with shorter time from zero-order compared to the static conditions. We 

assumed initially that the availability of nutrients in the aqueous phase of mineralization 

experiments, enhanced by either oomycete growth or physical aeration, was a primary reason 

influencing bacterial mineralization. However, the access amount of nutrients was not a 

major factor enhancing bacterial mineralization, as in the presence of oomycete mycelia as 

the only supplement, the logistic kinetics, with maximum mineralization rates still above the 

predictions from partitioning rate, was still observed. Such observation was supported by the 

significant different concentrations of DOC quantified during the mineralization experiments, 

where the lowest concentrations of DOC were found in the treatments supplemented solely 

with oomycete mycelia (Fig. 40). The role of DO exhibited also a slight effect on bacterial 

mineralization because the variations of DO were observed only during the initial 200 h (Fig. 

39), a period in which phenanthrene mineralization was still in the lag phase. Therefore, we 

propose that the major factor in the enhancement of bacterial mineralization is the 

improvement of conditions for promoting microbial life at the interface between NAPL and 

water. It was found that the treatments implemented with oomycetes grown on DV8 caused 

the highest rates of mineralization, even when the mineralization experiments were 

performed under aerated or static conditions. The reason of such results could be explained 

by the mutual subsistence of oomycetes within the aqueous phase of the biometric systems, 

where they might provide nutrients, initially bound in the solid phase but dissolved passively 

into the aqueous phase, and/or reduce the shear force of the aqueous microenvironment 

caused by aeration. An evidence of oomycete development in the formation of zoospores 

was also revealed, while this developmental stage was species-dependent but independent 

from any treatments and experimental conditions (Fig. 32). The proposed effects by 

oomycetes and/or DV8 agar would promote bacterial colonization at the NAPL-water 

interface, which subsequently enhance onsite biodegradation activity of bacteria. Diverse 

studies of bacterial mineralization of organic chemicals dissolved either in single- or 

multiple-component NAPLs revealed that logistic kinetics has been commonly observed in 
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relevant to the attribution of attached bacteria at the NAPL-water interface (Garcia-Junco et 

al., 2003; Ortega-Calvo and Alexander, 1994; Tejeda-Agredano et al., 2011). However, the 

exact mechanisms and influencing factors of such bacterial attachment is still unknown.  

 

Within this study, we observed an interesting correlation between the microbial settlement at 

the NAPL-water interface and the evolution of NAPL surface topography, in connection with 

bacterial mineralization of phenanthrene.  It was observed that the shape of the NAPL 

surface in contact with the water phase changed along the entire period of the mineralization 

experiments, but it experienced a more rapid change in the presence of M. gilvum VM552. 

This may relates to the surface wettability of the NAPL drop in contact with the water phase. 

Therefore, the bacterium seemed to enhance the wettability after it attached at the surface of 

NAPL. The study by Grate et al. (2012) revealed that the oil-water contact angle increased in 

accordance to the surface wettability of the oil drop, which at an intermediate wet stage had a 

range of contact angles between 80-120°, but it could reach up to a range of 120-160° at the 

full wet conditions. Our observations were in agreement with this study, and suggested that 

the activity of M. gilvum VM552 cells and their settlement at the NAPL-water interface 

caused a faster change of the NAPL-water contact angle than it happened spontaneously in 

the absence of bacteria. This change may also involve the simultaneous biodegradation of 

substrates present in fuel (PAHs, their alkyl derivatives, and alkanes) by the attached bacteria. 

Moreover, the interface colonization by bacteria may not only increase the evolution of such 

surface topography, but may also reduce the viscosity of the NAPL. We observed a clear 

change of colour in the aqueous phase in the presence of M. gilvum VM552, turning from 

clear transparent at the starting day to yellowish solutions at the end of experiments. The 

correlation of NAPL viscosity and chemical partitioning from it into aqueous phase has been 

well documented (Chen et al., 1994). However, this colour might also have been caused by 

the release of PAH metabolites into the aqueous medium. We also observed that the 

evolution of NAPL-water contact angle showed a strong connection with biofilm formation 

at the NAPL-water interface. The impacts of biofilms in bioremediation technology have 

been well documented (Singh et al., 2006). Although dense biofilms were observed in all 

treatments inoculated with M. gilvum VM552, it was interesting that only the biofilms 

formed in the presence of Py. aphanidermatum grown on DV8 agar under static conditions, 

had oomycete mycelia as a component in the biofilm structure.  With these findings, we 

concluded that the biofilms could be initiated spontaneously through bacterial colonization, 

but further biofilm development was mediated through an ecological interaction with 
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oomycetes. The mechanisms on how oomycetes behaved in the biofilm structure are still 

unknown, but we postulate that the formation of zoospores could play a role. Therefore, the 

static conditions caused greater enhancements of bacterial colonization on the NAPL-water 

interface and zoospore formation by the oomycete, and they can be proposed as an optimal 

system for integrating the positive oomycete traits in an enhanced pollutant biodegradation 

of Mycobacterium spp. in low bioavailability regimes. Moreover, the coexistence, within the 

biofilm structure, of bacterial cells and oomycete zoospores, may allow cross-kingdom 

interactions, where the metabolites released by bacterial biofilms settled initially at the 

NAPL-water interface may act as attractive compounds inducing zoospore chemotaxis 

towards such bacterial biofilm. There are some studies revealed that eukaryotic zoospores of 

marine algae showed a chemotactic response toward signalling molecules produced by 

bacterial populations, which leads to complex biofilm formation of this eukaryote-prokaryote 

consortium (Joint et al., 2002; Patel et al., 2003; Twigg et al., 2014). The coexistence of 

bacteria and oomycetes in the biofilm structure could allow functional interactions at the 

community level, which may further expand the interface exchange of chemicals (enhanced 

pollutant bioavailability) and/or the bacterial mineralization activity (enhanced 

biodegradation). The determination of the roles of oomycetes on the synergistic formation of 

microbial biofilm at the pollutant-water interfaces and the mechanical interaction between 

these two microbes within aqueous microenvironments are essential in order to sustain the 

microbial degrading activity in development of bioremediation.  

 

 

5.3 Biomobilization of pollutant-degrading bacteria by chemotaxis of 

eukaryotic zoospores 

 

Ecological interactions between zoospores and other microorganisms have been studied 

mostly in connection with the biological control of zoospore invasion and pathogenicity 

(Heungens and Parke 2000; Timmusk et al., 2009). A set of studies evidenced that some 

algal zoospores performed a mutual lifestyle with bacterial biofilm dwelling at the solid 

surfaces in marine environment (Joint et al., 2002; Tait et al., 2005; 2009; Twigg et al., 

2014). The key mechanism through which zoospores interact with their targets is chemotaxis 

and electrotaxis (Hosseini et al., 2014; van West et al., 2002). Here, we aim to employ the 

swimming activity of zoospore chemotaxis for mobilization of pollutant-degrading bacteria. 

A set of organic solvents like alcohols is known so far to be attractant for chemotaxis of 
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oomycete zoospores (Allen and Newhook, 1973; Cameron and Carlile, 1978). The 

chemotactic reaction of Phytophthora zoospores towards a set of alcohols within water-

saturated soil pores has been proposed as an infection mechanism of these zoospores towards 

their host plants (Allen and Newhook 1973). This reaction correlated with the concentration 

of alcohols, although the different concentrations of alcohols tested did not influence the 

speed and RCDI of the zoospores. We observed in our study that zoospores of Py. 

aphanidermatum could respond chemotactically towards a wide range (5-100%) of ethanol 

concentrations. The lowest concentration of this zoospore attractant was selected to assess 

bacterial mobilization. 

 

We first evidenced here that eukaryotic zoospores caused the mobilization of PAH-degrading 

bacteria through chemotaxis. The effectiveness of this mobilization was highly dependent on 

the motility and the physiology of bacterial cells. It was conceived that non-flagellated or 

slightly motile and smaller cells of bacteria were more effectively mobilized by zoospores. 

This might be related to the changes of fluid dynamics caused by the swimming behaviour 

and chemotaxis of zoospores, what would have a higher influence on the translocation of 

immotile particles suspended in their swimming trajectories. Some evidences revealed that 

micro-swimmers (motile bacteria and green algae) could reduce the viscosity of suspensions, 

and this reduction was dependent on cell density and swimming speed (Gyrya et al., 2011; 

Sokolov and Aranson, 2009). It was probably due to the reduced viscosity of bacterial 

suspension caused by swimming zoospores, which further promoted bacterial mobilization. 

In addition, a recent study on auto-aggregation of oomycete zoospores revealed that this 

zoospore behaviour can occur only through a combination of chemotaxis and bioconvection 

mechanisms (Savory et al., 2014). Interestingly, the authors evidenced that such swimming 

phenomenon causes dramatic changes in the fluid dynamics of aqueous microenvironments. 

On the basis of our study, we observed two possible mechanisms, including bioadvection and 

microbial vortex, appeared when zoospores performed chemotactically towards their 

attractant. The bioadvection could be observed when zoospores entering into the capillary 

tubes, which further created advection flows as a hydraulic force moving bacterial cells at a 

short-path translocation, along their swimming trajectories. There are some studies revealed 

that bioadvection caused by diverse benthos can create a fluid flow through capillary pores in 

sediments, where the nutrient and oxygen exchange has been proposed to take place (Matsui 

et al., 2011; Volkenborn et al., 2010). The microbial vortex caused by circular movement of 

zoospores was proposed first here to be a biological factor influencing the hydraulic activity 
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of their microhabitat. This mechanism was observed as an effective tool in mobilization of 

bacterial cells. Some studies evidenced that vortical flows within aqueous 

microenvironments could affect microbial motility, aggregation and biofilm formation 

(Marcos and Stocker, 2006; Yazdi and Ardekani, 2012). The two mechanisms proposed here 

were strongly connected with the swimming behaviour and chemotactic response of 

zoospores, because we found that zoospores spontaneously performed circular movement 

either during their swimming periods or before their encystment. Hence, the mobilizing 

efficiency may be reflected by either a unique swimming behaviour of zoospores or their 

interactive motility in the presence of PAH-degrading bacteria.  

 

Four swimming patterns of zoospores were reported here. The freestyle swimming pattern 

was found abundantly in either absence or presence of PAH-degrading bacteria. This 

observation differs from a previous report, where the sine wave swimming pattern was found 

typically in Py. aphanidermatum zoospores (Appiah et al., 2005). It might be due to 

undetermined differences in the zoospore-producing conditions used. The global speed of 

zoospores detected in this work (82.59 μm s-1, SE = 2.46, N = 59) was more constant across 

different swimming patterns, but it was much faster (180-210 μm s-1, N = 30) when a 2 mM 

sodium phosphate buffer (Appiah et al., 2005) was used instead of sterilized lake water (our 

study). It was clear that RCDI is a parameter used for categorizing the swimming pattern of 

zoospores, because it changed across the different swimming patterns. Interestingly, the 

swimming behaviour of zoospores was influenced by the presence of PAH-degrading 

bacteria. For example, M. gilvum VM552 cells reduced the RCDIs and induced a circular 

movement in the zoospores. On the other hand, zoospores themselves influenced clearly the 

motility of P. putida G7 (both slightly and highly motile cells). The speeds of highly motile 

cells were constant either in absence or presence of zoospores, which were most likely the 

same as a previous report of this bacterium swimming in the presence of glucose, where the 

speed above 60 μm s-1 was defined as an active motility (Jimenez-Sanchez et al., 2012). 

However, the RCDI of highly motile cells of P. putida G7 was increased in the presence of 

zoospores, what caused a shift in their swimming patterns, in a similar way as the zoospore 

RCDIs. This influence by zoospores on bacterial swimming might be part of an interactive 

motility between these two microorganisms. These observations extend previous findings 

that the swimming behaviour of P. putida G7 can be modified by chemical effectors present 

within its aqueous microhabitats, like carbon and energy sources such as glucose (Jimenez-

Sanchez et al., 2012) or repellents like silver nanoparticles (Jimenez-Sanchez et al., 2012; 
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Ortega-Calvo et al., 2011). Besides, we suppose that nutrient scarcity in this aquatic 

microenvironment would be a reason for competition, which could further influence the 

swimming physiology of both microorganisms. 
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CHAPTER VI: CONCLUSIONS 
 

 

The most relevant conclusions from this PhD thesis are: 

 

1. Oomycetes provide a set of potential benefits for bioremediation of PAHs based on 

their ecological lifestyles, both in the filamentous and mobile modes of their life 

cycle. Mycelial growth at interfaces and zoospore development (production, chemotaxis 

and settlement) could further increase the efficiency of PAH-degrading bacteria during 

bioremediation.  

 

2. There was no antagonism between oomycetes and PAH-degrading bacteria. 

Although an abundant cell density of PAH-degrading bacteria diminished zoospore 

formation, this cell density is much higher than the density of bacterial populations 

typically found in natural and polluted soils. 

 

3. Zoospore development within PAH-polluted scenarios was sensitive to pollutant 

bioavailability and bacterial activity. The toxic effects of contaminants towards 

zoospores were diminished by PAH-degrading bacteria through biodegradation and 

biosorption. Furthermore, PAH-degrading bacteria enhanced the positive chemotactic 

reaction of zoospores to specific chemicals simulating PAH-polluted scenarios, such as 

plant root exudates. Zoospore settlement on NAPLs provided a facility for localization 

of bacteria at the interface. 

 

4. Oomycete mycelia enhanced bacterial biodegradation of PAHs under 

bioavailability restrictions. Within PAH-polluted scenarios, sparingly available PAHs 

were transformed faster by specialized bacteria in the presence of oomycetes. Oomycetes 

could support the exchange of nutrients and sustain biofilm formation at the pollutant-

water interface, therefore supporting the mineralization activity of PAH-degrading 

bacteria at these specific niches. Moreover, the coexistence of oomycetes in this scenario 

could also reduce the shear interferences caused by aeration, and further facilitated 

bacterial biofilm formation. This bacterial biofilm was found to be a key factor 

influencing the biodegrading capacity of bacteria and phase-partitioning of PAHs, 

because the mineralization rate of phenanthrene was higher than the partitioning rate of 
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the chemical into the aqueous phase. Zoospore development within this scenario was 

observed, which further proposed as a mobile tool for dispersion of bacteria toward the 

pollutant-water interface, where a complex microbial community could take place and 

expand onsite biodegradation of active bacteria. 

 

5. Oomycete zoospores mobilized directionally PAH-degrading bacteria through their 

chemotactic behaviour. This behaviour together with their intrinsic mode of swimming 

influenced the hydraulic activity of aqueous microenvironments, which later created a 

fluid flow that enhanced bacterial mobilization. Two possible mechanisms caused by the 

chemotactic reaction of zoospores, advection and vortical flows, were identified. 

However, the mobilization through these mechanisms was depended on bacterial cell 

size and motility. In addition, we observed an interactive swimming between zoospores 

and PAH-degrading bacteria that may facilitate bacterial mobilization. 
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CHAPTER VII: CONCLUSIONES (Conclusions in Spanish) 
 

 

Las conclusiones más importantes de esta tesis doctoral son: 

 

1. Los oomicetos proporcionan una serie de beneficios potenciales para la 

biorremediación de HAPs basados en sus estilos ecológicos de vida, tanto en el 

modo filamentoso como en el modo móvil de su ciclo de vida. El crecimiento micelial 

en las interfases y el desarrollo de zoosporas (producción, quimiotaxis y asentamiento) 

podrían incrementar la eficiencia de las bacterias degradadoras de HAPs durante la 

biorremediación. 

 

2. No hubo antagonismo entre las bacterias degradadoras de HAPs y los oomicetos. 

Aunque una alta densidad de células bacterianas podría disminuir la formación de 

zoosporas, esta densidad celular es mucho mayor que la densidad típica de las 

poblaciones bacterianas que se encuentran en suelos naturales y contaminados. 

 

3. El desarrollo de las zoosporas en escenarios de contaminación por HAPs fue 

sensible a la biodisponibilidad de los contaminantes y a la actividad bacteriana. Las 

bacterias degradadoras de HAPs disminuyeron los efectos tóxicos de los contaminantes a 

través de biodegradación y bioadsorción. Además, las bacterias aumentaron la reacción 

quimiotáctica positiva de las zoosporas frente a compuestos específicos que simulaban 

escenarios contaminados por HAPs, tales como exudados de raíces de plantas. El 

asentamiento de las zoosporas sobre el NAPL proporcionó sitios para la colonización 

bacteriana de la interfase. 

 

4. Los micelios de los oomicetos causaron un aumento de la biodegradación 

bacteriana de HAPs bajo restricciones de biodisponibilidad. En escenarios de 

contaminación por HAPs, los contaminantes fueron transformados más rápidamente por 

bacterias especializadas en presencia de los oomicetos. Los oomicetos pudieron 

promover el intercambio de nutrientes y mantener la formación de biofilms en la 

interfase entre el contaminante y el agua, por tanto promoviendo la mineralización de los 

contaminantes por parte las bacterias degradadoras de HAPs en estos nichos específicos. 

Además, la coexistencia con los oomicetos en este escenario podría también reducir las 
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interferencias de cizalla causadas por la aeración, facilitando así la formación de 

biofilms por las bacterias. Estos biofilms bacterianos se identificaron como un factor 

clave en la capacidad degradadora de las bacterias y en el reparto de los HAPs, dado que 

la tasa de mineralización de fenantreno fue mucho mayor que la tasa de reparto del 

compuesto hacia la fase acuosa. Se observó en este escenario el desarrollo de las 

zoosporas, por lo que se propone que las mismas suponen una herramienta móvil para la 

dispersión de las bacterias hacia la interfase entre el contaminante y la fase acuosa, 

donde se podría desarrollar una comunidad microbiana compleja, y expandir la 

biodegradación por parte de las bacterias activas. 

 

5. Las zoosporas de los oomicetos mobilizaron direccionalmente a las bacterias 

degradadoras de HAPs a través de su comportamiento quimiotáctico. Este 

comportamiento junto a su modo intrínseco de natación influyeron sobre la actividad 

hidráulica de los microambientes acuosos, lo que subsecuentemente creó un flujo de 

fluido que promovió la movilización bacteriana. Se identificaron dos mecanismos 

posibles causados por la reacción quimiotáctica de las zoosporas,  a través de los flujos 

por advección y por vórtice. No obstante, la movilización a través de estos mecanismos 

fue dependiente del tamaño celular y de la movilidad de las bacterias. Además, 

observamos la natación interactiva entre zoosporas y bacterias, lo cual puede facilitar la 

movilización bacteriana. 
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