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Abstract.-  

The potential use of carbon fibre laminate composites is limited by the weak out-of-

plane properties, especially delamination resistance. The effect of incorporating 

titanium carbide to the mesophase pitch matrix precursor of carbon fibre laminate 

composites on interlaminar shear strength is studied both on carbonised and graphitised 

composites. The presence of titanium carbide modifies the optical texture of the matrix 

from domains to mosaics in those parts with higher concentrations and it contributes to 

an increase of fibre/matrix bonding. This fact produces an increase of the interlaminar 

shear strength of the material and changes the fracture mode. 
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Different applications have been identified for carbon-based materials in fusion devices, 

aircraft braking systems, high temperature lubricants or air breathing propulsion 

systems. A common aspect in the material specifications for these applications is the 

need for very high thermal conductivity, thermal shock resistance and high excellent 

mechanical properties [1]. Carbon fibre reinforced composites (CC) achieve these 

requirements. However, the interlaminar shear strength (ILSS) is usually a limiting 

design characteristic of laminate composites. The fabrication process usually involves 

densification, carbonisation and high thermal treatment (graphitisation) [1]. During the 

processing, interlaminar cracks are formed mainly caused by the pressure of volatiles 

release during carbonisation and thermal stresses [1]. The failure between the different 

planes of the reinforcement layers (delamination) is the most critical failure mechanism 

of laminates. Therefore, the improvement of this property has been a relevant objective 

in this field of materials science. Some proposed alternatives are weaving fibres in the 

thickness direction (3D textiles) [2-4] and, more recently, the incorporation of carbon 

nanotubes in the woven [5-8]. Since the behaviour of the composites strongly depends 

on the fibre/matrix interfacial properties, several methods have been investigated in 

order to improve the degree of adhesion between them. Concerning fibres, a wide 

variety of surface modification [9,10] and coating methods [11] are often applied. 

Studies related to the modification of carbon matrix mainly focus on the combination of 

different types of matrix and microstructures [12,13] and only a few of them study the 

incorporation of fillers such as carbon black [14]. Meanwhile, there are many studies of  

methods to modify polymeric matrix composites, such as the incorporation of carbon 
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nanotubes [5,15] or the addition of nanoparticles to the matrix [16,17]. These methods, 

in principle, could also be valid for CC composites. 

The measurement of the ILSS of a material requires a pattern of pure shear 

stress to be generated between laminates to induce an interlaminar shear failure. Some 

of the most common tests used for this propose are the Compression Shear Test (CST) 

[18], the Iosipescu test [19], the double-notch shear test (compression) [20], the four 

point flexural test [21] and the short beam shear test (SBS) [22,23]. SBS test is based on 

a transverse shear failure through three-point bending and is used as standard method 

for determining the interlaminar shear strength of fibre reinforced composites because 

of its simplicity [24,25]. The main drawback is that not all specimens fail in transverse 

shear and different failure modes can take place during fracture [22]. In spite of that, 

SBS is a good method for determining the apparent interlaminar shear strength and to 

compare the behaviour between materials with the same nature [24]. 

In a previous paper [26], the authors studied the influence of the addition of TiC 

nanoparticles on the thermal conductivity of CC laminates. The results obtained showed 

that the addition of a small proportion of these particles to the matrix precursor resulted 

in a significant increase of the thermal conductivity of the graphitised material.  During 

graphitization mesophase-based carbon matrix achieves a high degree of order. This 

order is further developed with the addition of TiC due to its catalytic effect on carbon 

graphitization [27] and is responsible for the increae in the thermal conductivity 

observed. However there are no studies up to date regarding the influence of these 

nanoparticles on the mechanical properties on CC composites. Therefore, the aim of the 

present study is to evaluate the influence of TiC on the interlaminar shear strength of 
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these materials. The fracture behavior was evaluated on carbonized and graphitized 

composites attending to the number of densification cycles applied.  

 
 

2. EXPERIMENTAL 

Undoped and Ti-doped CC composites were prepared by liquid impregnation of 

2D twill weave PAN-based carbon fibre preforms (60 % vol. fibres) using a commercial 

naphthalene derived mesophase pitch (AR) as matrix precursor. The Ti-doped matrix 

precursor was obtained by mixing 10 wt. % TiC nanoparticles (130 nm) with AR [28]. 

The experimental details used in the densification process have been previously 

described [29]. The composites were carbonised at 1000°C and the resultant materials 

were labeled as CCAR-C and CCTi-C, respectively for the undoped and titanium doped 

composites. Up to three densification-carbonisation cycles were applied in order to 

reduce the porosity. Finally, the materials were graphitised at 2700°C and 

correspondingly labeled as CCAR-G and CCTi-G. Characterization was performed both 

for the undoped and Ti-doped materials, for each densification cycle. 

 

2.1 Characterization of CC composites 

The open and close porosity of the materials were measured by Archimedes 

principle and helium pycnometry, respectively. The microstructure of the material and 

dopant distribution was studied by optical microscopy and scanning electron 

microscopy (SEM). The analysis of the chemical composition on specific areas of the 

Ti-doped materials was performed using an X-ray energy dispersive analyser (EDX). 

The interlaminar shear strength of the materials was determined using the short beam 

shear test method (SBS) following the ASTM standard D2344-00. The load was applied 
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perpendicular to the plane of the laminates on specimens with 30 mm length and 5 mm 

thickness. A loading roller of 7 mm and supporting roller of 4 mm were used. The 

machine cross-head speed was 1.3 mm min-1. SEM analysis was used to study the 

fracture surfaces. 

 

3. RESULTS AND DISCUSSION 

The open porosity decreased after three densification cycles from 40 vol. %, 

which corresponds to the initial preform, to ~9 vol. % in carbonised materials (Table 1). 

Meanwhile, the close porosity increases with the densification cycles. This increase is 

attributed to volatiles released from the matrix during carbonisation and also to the 

difficultness for their release depending on the type of weaving, as pointed out by 

Manocha et al. [30]. Graphitised materials showed a slightly increase in their porosity 

(Table 1) as a result of the aperture of close porosity, related to the contractions that 

take place during graphitisation. 

Ti content in CCTi-G with 3 densification cycles is 2.3 wt % with respect to the 

whole material, which is around 13 wt. % with respect to the matrix. The optical texture 

of the undoped matrix shows flow domains (Figure 1a), while that corresponding to the 

doped material is also composed by domains, where TiC is well distributed (position A 

in Figure 1b and Figure 1c) and by mosaics, features of smaller size, in those areas with 

higher amount of dopant, specially close to the intersections between bundles of fibres 

(position B in Figure 1b and Figure 1c). The microstructure of the materials and the 

dopant distribution was studied by SEM. The analysis showed a good dispersion of the 

dopant throughout the material (Figure 2a). The good bonding between matrix and 

fibres, both for the undoped and the Ti-doped carbonised materials, was maintained 
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after graphitization (Figure 2b). In Ti-doped carbonised materials, the carbide is fairly 

well distributed in the matrix with sub-micrometric size particles although occasionally 

also some larger agglomerates (~2µm) are observed (Figure 2c). After graphitisation, 

agglomerates of larger size (~5µm) were formed (Figure 2d) due to the movement of 

TiC in the carbonaceous matrix [27].  

 As could be expected, the interlaminar shear strength increases, both in the 

carbonized and graphitized materials, with the number of densification cycles applied 

due to the reduction of porosity and the presence of higher amount of matrix in the 

material (Table 1). The interlaminar shear strength of CCTi-C is ~20 % higher than that 

of the corresponding to undoped material (Table 1). The smaller microstructures 

developed in the doped matrix can play an important role in the improvement of the 

mechanical properties [31]. The fracture behaviour was also different due to the 

presence of the dopant. While a clear failure by delamination occurs for undoped 

materials with 2 densification cycles, a mixed mechanism flexure/shear takes place in 

the fracture of the doped materials. In doped materials, the permanent retention of the 

deformation leads to the onset of compression [24] and causes the contribution of 

flexure in the failure of the specimen, showing their higher interlaminar shear strength. 

SEM analysis of fracture surfaces also showed significant differences between both 

carbonized materials (Figure 3). In the undoped materials, the fracture surface of the 

laminate, where the failure occurred by shear (XY plane), showed a higher amount of 

fibres and matrix released from the surface (Figure 3a). Meanwhile, the doped materials 

showed less detachment of fibre from matrix (Figure 3b), demonstrating the better 

adherence between fibre and matrix due to the presence of the carbide. 
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 In general, after graphitisation the strength values decreased with regard those 

obtained in carbonized materials (Table 1). This decrease is related to the increase of 

porosity and, therefore, to the presence of lower amount of matrix in the material that 

can not distribute so efficiently the load to the fibres. The presence of the dopant 

showed an improvement in the strength resistance. CCTi-G with 2 cycles showed an 

apparent interlaminar shear strength of 18 MPa, significantly higher than that obtained 

in CCAR-G (8 MPa). However, there was no clear effect of the dopant for those values 

obtained for the materials with 3 densification cycles. This is explained when the 

fracture behaviour of these materials is studied in detail. The trend of the 

load/displacement curves showed a radical change due to the presence of the dopant 

(Figure 4). While a gradual loss of the load after the maximum value is obtained for 

CCAR-G, typical of a pseudo-plastic behaviour as it was observed in all carbonised 

materials, a sudden drop of the load occurs in CCTi-G, exhibiting a brittle fracture. This 

behaviour seems to be related to the stronger bonding between fibre and matrix of the 

doped materials. The fracture behaviour of the specimens changed also rather 

significantly. The failure of CCTi-G with 3 densification cycles showed a flexure 

fracture, as can be observed in the specimen shown in Figure 4. In these materials the 

resistance between layers is so high that prevents the rupture by shear. Therefore, the 

value obtained for CCTi-G with 3 densification cycles (28 MPa) corresponds to the 

shear resistance of the entire laminate, while the value of interlaminar shear strength 

might be higher. This fact justifies that the values obtained for CCTi-G and CCAR-G 

with 3 cycles are not directly comparable, as the fracture mode is different. Meanwhile, 

in the undoped materials two phenomena occur. The first one is the separation between 

layers, which implies a failure by interlaminar shear (mode II) and, afterwards, the 
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layers fail independently (see specimen in Figure 4). SEM images of the surfaces 

fractured by shear (YZ plane) are shown in Figures 5a and b, corresponding to undoped 

and Ti-doped composites respectively. Remarkable differences between both materials 

can be observed. While in the undoped materials an easy debonding between matrix and 

fibre occurs (Figure 5a), this debonding is not observed in the doped materials as result 

of the stronger bonding between fibre and matrix (Figure 5b). The same trend was 

observed for the surface provoked by flexure (XZ plane) (Figure 6). The undoped 

materials showed a strong pull-out on the fracture surface (Figure 6a), indicating a weak 

bonding between fibre and matrix. Figure 6c shows a detail of the holes formed by 

matrix due to the pull-out of fibres. Meanwhile, the fracture surface of the doped 

materials showed a joint failure of fibre and matrix (Figure 6b), demonstrating the 

strong bonding between them. Figure 6d shows a greater detail of the joint failure 

fibre/matrix evidencing the strong bonding in Ti-doped materials.  

 

4.- CONCLUSIONS  

The presence of titanium carbide modifies the optical texture of the matrix from 

domains to mosaic in those areas with higher concentration and causes the improvement 

of the interlaminar shear strength of both the carbonised and graphitised materials. 

Interlaminar delamination was usually the dominant failure in the undoped materials. 

Meanwhile, Ti-doped materials showed a combination of flexure/shear in the failure 

mechanism due to their higher shear resistance. As result, the value obtained for CCTi-

G with 3 densification cycles corresponds to the shear resistance of the entire laminate, 

while the value of interlaminar shear strength would be higher. As observed in the load-

displacement curves corresponding to the graphitised materials, the Ti-doped material 
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failed catastrophically as a result of the stronger fibre/matrix bonding, clearly observed 

by SEM images of fracture surfaces, where doped materials showed a joint failure 

fibre/matrix unlike undoped materials which showed a strong pull-out. 
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Table Captions 

 

Table 1.- Properties of materials. 
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Figure Captions 

 

Figure 1.- Optical micrographs corresponding to carbonised materials with 3 

densification cycles : (a) undoped matrix; (b) CCTi-C (positions A and B 

correspond to domains and mosaic texture of the matrix respectively); (c) distribution of 

TiC  in doped matrix and (d) mosaic texture of doped matrix due to TiC agglomeration. 

Figure 2.- SEM micrographs of Ti-doped composites with 3 densification cycles: (a) 

and (b) CCTi-G; (c) Ti-doped carbonised matrix and (d) Ti-doped graphitised matrix 

Figure 3.- SEM micrographs of fracture surfaces by shear (XY plane) of materials with 

2 densification cycles: (a) CCAR-C and (b) CCTi-C. 

Figure 4.- Load-displacement curves of CCAR-G and CCTi-G with 3 densification 

cycles and corresponding specimens after testing. 

Figure 5.- SEM micrographs of fracture surfaces by shear (YZ plane) of materials with 

2 densification cycles: (a) CCAR-G and (b) CCTi-G 

Figure 6.- SEM micrographs of fracture surfaces by flexure (XZ plane): (a) CCAR-G 

and (b) CCTi-G. 
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Table 1.-  

 

Material n Po 
 

Pc 
 

d 
 

Matrix 
content 

ILSS 
 

1 23 1 1.37 16 21 

2 15 3 1.49 22 56 

CCAR-C 

3 9 4 1.59 27 61 

1 21 3 1.42 16 27 

2 15 4 1.53 21 67 

CCTi-C 

3 8 6 1.61 26 70 

1 26 0 1.40 14 - 

2 19 1 1.50 20 8 

CCAR-G 

3 14 1 1.62 26 27 

1 26 1 1.37 13 - 

2 21 1 1.56 18 18 

CCTi-G 

3 15 2 1.65 23 28 

 

n, number of densification cycles applied 
Po, open porosity (% vol.) 
Pc, close porosity (% vol.) 
d, bulk density (g/cm3) 
M, matrix content in the composite (% vol.) 
ILSS, interlaminar shear strength (MPa) 
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