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ABSTRACT

Aim Our aim was to produce a dated phylogeny of Typhlatya, a stygobiont shrimp genus 

with an extremely disjunct localized distribution across the Mediterranean, Central Atlantic 

and Eastern Pacific. Using phylogenetic analyses, we examine the role of dispersal and 

plate tectonics in determining its distribution.

Location Western Mediterranean, Ascension Island, Bermuda, Bahamas, Yucatán, 

Caribbean, Galápagos, Western Australia.

Methods Thirteen of the 17 species of Typhlatya were analysed, using Stygiocaris, 

Halocaridina and Antecaridina as outgroups. Fragments of three mitochondrial and three 

nuclear genes were combined into a data set of 2449 mitochondrial bp and 1374 nuclear 

bp.

Results Phylogenetic trees clearly showed Typhlatya to be paraphyletic, with the 

Galápagos species clustering with Antecaridina. Only the phylogenetic position of 

T. monae (Hispaniola and Puerto Rico) showed some uncertainty, appearing as the sister 

group to the Australian genus Stygiocaris on the most likely topology. We estimated an 

average age of 45 Myr (30.6–61.1 Myr) for the most recent common ancestor of Typhlatya 

+ Stygiocaris + Antecaridina + Halocaridina. All Typhlatya (except T. galapagensis) + 

Stygiocaris derived from a node dated to 35.7 Ma (25.7–47.0 Ma), whereas the ancestor of 

all Typhlatya species (excluding T. monae and T. galapagensis) lived 30.7 Ma (21.9–

40.4 Ma).
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Main conclusions Typhlatya is paraphyletic and apparently absent from the eastern 

Pacific, with T. galapagensis clustering with Antecaridina. The remaining Typhlatya 

species form a robust monophyletic group with Stygiocaris, and both molecular and 

morphological evidence support the recognition of three sublineages: (1) Typhlatya s. str., 

Atlantic–Mediterranean, embracing all Typhlatya species minus T. monae; (2) Stygiocaris, 

limited to north-western Australia; and (3) T. monae (Caribbean), for which a new genus 

could be erected. No congruence was found between temporal and geographical 

projections of cladogenetic events within Typhlatya/Stygiocaris and the major plate 

tectonic events underlying Tethyan history.

Keywords

COI, cyt b, histone H3A, molecular clock, stygofauna, Tethyan relicts, 16S rRNA, 18S 

rRNA, 28S rRNA.
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INTRODUCTION

Many aquatic subterranean crustaceans (stygobionts) exhibit broad transoceanic disjunct 

distributions throughout tropical and subtropical latitudes, so that different congeneric 

species may be isolated on continents or islands half the world apart (Stock, 1993). This 

pattern is repeated in a diverse set of taxonomic groups including the remipedes, 

thermosbaenaceans, amphipods, isopods, decapods, copepods and ostracods, and it has 

been explained by the fragmentation of the continuous ranges of their ancestors by a series 

of shared isolation events (Stock, 1993; Wagner, 1994). These so-called ‘Tethyan’ 

distribution patterns are best explained in terms of the vicariant isolation of the ancestral 

lineages coincident with the fragmentation in the late Mesozoic and Tertiary of the Tethys 

Sea, a predominantly shallow-water circumtropical ocean that existed from the Middle 

Jurassic until 20 million years ago (Ma) (Sterrer, 1973; Stock, 1993). The progressive 

breakup of this east–west palaeo-seaway with the collision of continental landmasses and 

the formation of broad, deep oceanic basins could have resulted in the allopatric 

diversification of the ancestors of present species, which subsequently became stranded in 

inland aquifers. It follows, therefore, that genera displaying such distributions should have 

an age that at least precedes the establishment of deep-water conditions in the north-central 

Atlantic Ocean. They must also have persisted since then in a state of morphological stasis, 

or alternatively, converged morphologically under the shared selection pressures posed by 

the subterranean habitat (Barr & Holsinger, 1985; Hart & Manning, 1986).

The major drawback to the hypothesized Tethyan origin for these taxa and their 

vicariance by plate tectonics is their frequent occurrence on relatively young oceanic 

islands that have never been connected to continental shelves. Hart et al. (1985) proposed 

that representatives of these lineages on Atlantic islands might be survivors from the time 
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when the Atlantic Ocean was very narrow, and that the forerunners of these islands were in 

contact with or close to both shores of the ocean. Deep-sea dispersal along the crevicular 

medium associated with the circumglobal system of spreading zones also represents a 

feasible alternative explanation of the presence of some of these taxa on geologically 

young oceanic islands (Boxshall, 1989).

Typhlatya Creaser, 1936 is a stygobiont genus of atyid shrimp with a punctuated 

distribution throughout coastal continental and insular ground-waters of the Mediterranean, 

north central Atlantic and east Pacific (Fig. 1). This taxon, which has never been reported 

in open marine habitats but with most of the species inhabiting anchialine waters, has an 

uncertain biogeographical history (see, for example, Croizat et al., 1974; Monod, 1975; 

Rosen, 1975; Buden & Felder, 1977; Iliffe et al., 1983; Hart et al., 1985; Manning et al., 

1986; Stock, 1993; Sanz & Platvoet, 1995, for proposals based on vicariance; and Chace & 

Hobbs, 1969; Monod & Cals, 1970; Chace & Manning, 1972; Peck, 1974; Iliffe, 1986; 

Stock, 1986; Banarescu, 1990, for alternative dispersalist explanations). The broad 

distribution of Typhlatya has been described elsewhere as the result of Tethys 

fragmentation (Buden & Felder, 1977; Stock, 1993). However, the ability of some 

members of the (typically freshwater) family Atyidae to undertake part of their life cycle in 

the marine environment (diadromy) and the presence of members of Typhlatya and other 

closely related genera on young oceanic islands also support explanations based on marine 

dispersal (Smith & Williams, 1981; Russ et al., 2010). Recently, divergent 

phylogeographical patterns among anchialine shrimp have been related to differences in 

the duration of their respective planktonic larval (dispersive) phases (Santos, 2006; Craft et  

al., 2008; Russ et al., 2010).
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Several molecular phylogenetic analyses have dealt with Typhlatya species, but none 

has addressed the phylogeny and biogeography of the genus as a whole. Thus, Hunter et al. 

(2008) investigated the phylogeography of three species from Yucatán, the Caicos Islands 

and Bermuda. Zakšek et al. (2007) analysed the molecular phylogeny of the stygobiont 

genus Troglocaris Dormitzer, 1853, using species of Typhlatya from Spain and Yucatán as 

outgroups. Page et al. (2008) found that T. pearsei (Yucatán) – the only Typhlatya included 

in their analysis – was recovered as the closest relative of the endemic Western Australian 

subterranean genus Stygiocaris, and suggested that they may have descended from a 

common ancestor that lived in the coastal marine habitat of the ancient Tethys Sea, and 

were subsequently separated by tectonic plate movements. Five Typhlatya species were 

also included in a recent molecular phylogeny of the family Atyidae (von Rintelen et al., 

2012). Using a relaxed molecular clock and different calibration priors, these authors 

estimated an age range from early Cretaceous to Palaeogene for what they defined 

informally as the ‘Typhlatya group’ (Antecaridina, Halocaridina, Halocaridinides, 

Stygiocaris and Typhlatya).

Here, we present the first genetic survey undertaken to reconstruct the phylogeny of 

Typhlatya, based on 4 kb of nuclear and mitochondrial sequences and a geographically 

representative sample. Our aim was to use phylogenetic analyses to test the roles of 

dispersal and of plate tectonics in generating the distribution of Typhlatya. With 

transoceanic dispersal, we would expect disparate estimates for divergence times, 

inconsistent with those of Tethys fragmentation. In contrast, large divergences, preceding 

the establishment of deep-water conditions in the Atlantic Ocean, would be anticipated if 

the distribution pattern of Typhlatya was better explained by ancient vicariance.
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MATERIALS AND METHODS

Material examined

The 17 species of Typhlatya currently recognized are found on eastern Pacific and mid-

Atlantic islands, the coasts of the Caribbean, the Antillean Arch, the Bahamas and the 

western Mediterranean (Fig. 1, Table 1); thirteen were included in the analysis. A single 

population of each species was analysed, except for T. galapagensis, T. consobrina, 

T. miravetensis and T. monae (see Table 2). 

The two species of Stygiocaris Holthuis, 1960, plus Halocaridina rubra and 

Antecaridina lauensis, were included in the data set because of their demonstrated 

relationship to Typhlatya (Monod & Cals, 1970; Page et al., 2008). Other analyses using 

only 16S rRNA [rrnL], 28S rRNA [LSU] and histone H3A sequences were performed in 

conjunction with GenBank sequences from the closest relatives of the Typhlatya / 

Stygiocaris cluster (von Rintelen et al., 2012).

Sequences and alignments

Genomic DNA was isolated from whole specimens using the DNeasy Tissue Kit (Qiagen, 

Hilden, Germany). Polymerase chain reaction (PCR) was used to amplify fragments of the 

mitochondrial cytochrome c oxidase subunit I (COI; two non-overlapping fragments), 

cytochrome b (cyt b), and rrnL genes using the primers shown in Table 3. Fragments of 

three other nuclear genes were also amplified: histone H3A, SSU, and 28S rRNA (LSU) 

(Table 3). The combined data set consisted of 3823 bp (2449 bp of the mitochondrial and 

1374 bp of the nuclear genome).

PCR was performed in a reaction containing (1) NH4 buffer, 3.5–5.0 mM MgCl2, 

0.2 mM of each dNTP, 0.2–0.4 M each primer, 0.5 U of Taq DNA polymerase and 1–5 L 
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of DNA template, in a final volume of 25 L. The amplification conditions consisted of 

one cycle of 94 °C for 2 min and 35 cycles of 94 °C for 30 s, 47–55 °C for 30 s, and 72 °C 

for 1 min, followed by a final extension step at 72 °C for 10 min. The amplified fragments 

were sequenced in both directions using the ABI Prism BigDye Reaction Kit v. 2.0 and an 

ABI 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Nucleotide 

sequences were aligned using MAFFT 4.0 software, taking into account the RNA secondary 

structure of ribosomal genes (Katoh et al., 2005).

Phylogenetic analyses

The program JMODELTEST (Posada, 2008) was used to select the best evolutionary model 

for each partition, according to the Bayesian information criterion (BIC). The best model 

was HKY+, except for the SSU+LSU partition, for which GTR+ was the best. 

Incongruence length difference (ILD) tests (Farris et al., 1995) were performed with PAUP* 

4.0b10 (Swofford, 2002) to check for incongruence among genes. We implemented 

different evolutionary models, data partitioning strategies, tree construction methods and 

clock estimation methods to assess their effect on tree topologies, branch lengths, and 

evolutionary rates (Phillips, 2009). We explored five different partitioning strategies: (1) 

seven partitions: considering first, second and third codon positions of mtDNA as three 

different partitions, plus rrnL, histone H3A, SSU and LSU as individual partitions; (2) six 

partitions: as above, but combining the first and second mtDNA positions into a single 

partition; (3) five partitions: as in (2), but with the nuclear ribosomal genes merged into a 

single partition; (4) each gene as an independent partition (six partitions); and (5) the 

mitochondrial and nuclear sequences treated as two different partitions. The competing 

partition strategies were compared using Bayes factors (Brown & Lemmon, 2007). 
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Marginal likelihoods and harmonic means were estimated using TRACER 1.4 (Rambaut & 

Drummond, 2007). The best partition scheme among the five tested was option 3.

Bayesian phylogenetic analyses were conducted in the parallel version of MRBAYES 

3.1.2 (Huelsenbeck & Ronquist, 2001). In each Bayesian search, two independent runs 

were performed, starting with the default prior values, random trees, and three heated and 

one cold Markov chains, which ran for two million generations, sampled at intervals of 

1000 generations. All parameters were unlinked and rate models were allowed to vary 

freely over partitions. The convergence of all parameters of the two independent runs was 

assessed in MRBAYES 3.1.2 and TRACER 1.4, obtaining effective sample sizes > 200 

(Rambaut & Drummond, 2007). After the 10% burn-in samples, the remaining trees from 

the two independent runs were combined into a single majority consensus topology, and 

the frequencies of the nodes in the majority rule tree were taken as the posterior 

probabilities (Huelsenbeck & Ronquist, 2001).

Maximum likelihood (ML) analyses using the partition schemes described above were 

performed using RAXML 7.0.4 (Stamatakis et al., 2005). Bootstrap support values were 

estimated using the fast bootstrapping method, with 500 replicates.

Molecular clock analyses

We estimated node ages using BEAST 1.6.0 (Drummond & Rambaut, 2007), enforcing a 

relaxed molecular clock with an uncorrelated lognormal distribution and a Yule speciation 

model. For tree calibration, we used the known age ranges of three major events affecting 

the diversification of particular lineages as flat priors: (1) the isolation of the populations of 

T. galapagensis from Santa Cruz and Isabela islands in the Galápagos, which cannot be 

older than the age of the Cocos Ridge and associated seamounts. These now-submerged 
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structures probably formed when the oceanic crust moved over the Galápagos hotspot, and 

it is probable that an archipelago has existed continuously above the current Galápagos 

area for the past 14.5 Myr (see Werner et al., 1999, and references therein), so the interval 

5–14 Ma has been proposed for the separation of the two populations; (2) the isolation of 

the ancestor of Stygiocaris lancifera and S. stylifera after the emergence of the Cape Range 

anticline in north-western Australia (7–10 Ma; Page et al., 2008; see above); and (3) the 

occlusion of the Havana–Matanzas Channel in Cuba at 5–6 Ma (Iturralde-Vinent et al., 

1996), which could have triggered the isolation of the ancestors of the sister species 

T. consobrina and T. taina.

We assumed three independent substitution rates, implemented as three clocks: a rate 

for the mitochondrial protein-coding genes (COI, cyt b), another for rrnL, and the third for 

the nuclear data set (histone H3A, SSU and LSU). BEAST analyses were run for fifty million 

generations, sampling every 1000 generations. The outputs were analysed with TRACER 1.4 

and TREEANNOTATOR 1.6.0 (Drummond & Rambaut, 2007), after the first five million 

generations had been discarded.

RESULTS

Data regarding the species, populations, collection sites, and corresponding EMBL 

accession numbers of the DNA sequences used in this study are shown in Table 2. Note 

that it was not possible to recover the entire sequences of some gene fragments for some 

populations.

Intraspecific divergences

10

28
29

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

30



Typhlatya galapagensis from Santa Cruz and Isabela islands showed a considerably higher 

pairwise COI genetic distance (8%) than those found among populations of T. monae or 

T. miravetensis, or between T. garciai and T. kakuki (see Appendix S1 in Supporting 

Information). This suggests that these two island populations are differentiated at the 

species level.

The three different T. monae populations from Hispaniola, located at opposite corners 

of the Dominican Republic, and the population from Bosque Guánica in Puerto Rico 

showed very low genetic divergences (< 0.5% for COI). Moreover, a comparison of 

T. monae from Playa Frontón (Samaná Peninsula, northern Dominican Republic) and 

T. utilaensis from the single locality known thus far showed that two of the four diagnostic 

morphological characters considered for the latter species (Alvarez et al., 2005) are similar 

in both taxa. Unfortunately, the single T. utilaensis specimen available proved to be useless 

for molecular analysis. Sequencing further samples could confirm the conspecific status of 

these two taxa in the future.

Typhlatya garciai from Providenciales (Caicos Islands) and T. kakuki from Acklins 

Island (Bahamas; see Table 2) showed identical histone H3A sequences and low 

divergences for COI and rrnL (< 0.6%). We consider here that T. kakuki is only a 

population of T. garciai that has a completely regressed cornea.

Three populations of T. miravetensis, separated by up to 40 km in eastern Spain, 

showed a divergence in the mitochondrial markers of 1–3%, but their nuclear sequences 

were identical. The two Cuban populations of T. consobrina included here showed 

significant divergences in rrnL (2.3%), cyt b (6.1%) and COI (4.7%).

Phylogenetic analyses
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A preliminary Bayesian analysis including our species data set plus a selection of the taxa 

considered by von Rintelen et al. (2012), and using the same three gene markers as those 

authors, showed that the cluster Antecaridina–Halocaridina–T. galapagensis is the 

monophyletic sister group of the remaining Typhlatya/Stygiocaris species (Fig. 2). ILD 

tests of our complete data set indicated that the six partitions were not incongruent (P 

> 0.13). Total evidence derived from the Bayesian and maximum likelihood phylogenetic 

trees corroborated the paraphyly of the genus Typhlatya because the Galápagos species 

clustered with A. lauensis with a high posterior probability (PP = 1.0; Fig. 3). The 

Australian genus Stygiocaris clustered as nested to Typhlatya, as suggested by Page et al. 

(2008). The only tree node showing weak support involved T. monae, which appeared as 

the sister group to Stygiocaris (PP = 0.93; 56% bootstrap support in the ML analysis). 

However, this species appeared basal to the rest of Typhlatya + Stygiocaris (PP = 0.87) in 

an analysis that included additional outgroup species and a reduced (three genes) data set 

(Fig. 2). Shimodaira–Hasegawa tests revealed no significant differences between the two 

alternative topologies. 

Based on the most probable topology and molecular rates, and using the three 

palaeogeographical events as calibration points, a relaxed molecular clock estimated an age 

of 30.6–61.1 Myr for the most recent common ancestor (MRCA) of Typhlatya + 

Stygiocaris + Antecaridina + Halocaridina (Figs 4 & 5, Appendix S2). This analysis also 

estimated an age of 5.0–7.7 Myr for the ancestor of the divergent populations of 

T. galapagensis from Santa Cruz and Isabela (node ‘f’ in Fig. 4). The age of the MRCA of 

all Typhlatya species (minus T. galapagensis) + Stygiocaris (node ‘b’ in Fig. 4) was 25.7–

47.0 Myr, whereas the ancestor of all Typhlatya species (minus T. monae and 

T. galapagensis) (node ‘e’ in Fig. 4) lived 21.9–40.4 Ma.
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DISCUSSION

Molecular dating using the node age priors separately or in combination produced 

compatible age estimates, particularly for the most recent nodes (< 20 Myr; see Fig. 5 and 

Appendix S2). We found a marked inconsistency between the divergence time estimates in 

our phylogeny and one of the major palaeogeographical events in Tethys history – the 

establishment of deep water between the two shores of the north-central Atlantic Ocean at 

about 110 Ma (Sclater et al., 1977; Jones et al., 1995). Our estimates date the separation 

between the western Atlantic / Caribbean (minus T. monae) and the Mediterranean lineage 

of Typhlatya at 21.9–40.4 Ma (see Fig. 4), which is much later than the disruption of the 

shallow-water connections between the two shores of the Atlantic. Thus, the distribution of 

Typhlatya / Stygiocaris cannot be explained solely by the vicariant isolation that 

accompanied the fragmentation of Tethys Sea. We suggest that this disjunct amphi-Atlantic 

distribution could be the result of the extinction of species from central and eastern Atlantic 

archipelagos, and that new Typhlatya species might even await discovery in the 

Macaronesian islands. There is compelling geological evidence for the presence of 

drowned archipelagos and seamounts in the central East Atlantic Ocean from at least 

60 Ma (Geldmacher et al., 2001, 2005; Fernández-Palacios et al., 2011). These Palaeo-

Macaronesian islands were located much closer to the western Mediterranean than they 

would be today and were affected by the east-to-west warm circumequatorial marine 

Tethys Sea current (Fernández-Palacios et al., 2011). The existence of these vanished 

archipelagos supports the potential presence of Typhlatya in the area and also the relatively 

recent divergence of the Mediterranean and western Atlantic Typhlatya lineages (21.6–

44.4 Ma; see Fig. 4).
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The sister relationship found between Typhlatya and the Australian genus Stygiocaris 

(with the caveat that corroboration is needed from additional molecular evidence) is hardly 

compatible with their presumed vicariant divergence due to the occlusion of the connection 

between the Mediterranean and the Indian Ocean (Page et al., 2008). The time frame 

established for the collision of the Arabian Plate with Anatolia (16–20 Ma; Meulenkamp & 

Sissingh, 2003) not only post-dates our age estimate for the divergence of Typhlatya s. str. 

and Stygiocaris (25.7–47.0 Ma; Fig. 4), but also (and more relevantly) the divergence of 

the sister taxa T. monae and Stygiocaris (22.0–42.3 Ma; Fig. 4).

Paraphyly of Typhlatya

Monod & Cals (1970) assigned a series of juvenile blind atyids from Santa Cruz and 

Isabela in the Galápagos to Typhlatya, although they noted some morphological similarities 

to Antecaridina. In our phylogenetic analyses, Typhlatya galapagensis is placed as the 

sister taxon to Antecaridina lauensis with strong statistical support, rendering the genus 

Typhlatya paraphyletic in its current conception. Our study also suggests a possible 

species-level differentiation between the populations of T. galapagensis from the islands 

Santa Cruz and Isabela. COI genetic distance between these two populations (8%) 

approaches the minimum of 10% found in our study to distinguish different Typhlatya 

species (Appendix S1), but is considerably higher than the maximum interpopulational 

distances we identified for T. monae, T. garciai / kakuki and T. miravetensis. 

Stygiocaris and Typhlatya monae

Stygiocaris and T. monae are morphologically peculiar, even though they cluster with the 

rest of the Typhlatya species in a robust monophyletic group (Fig. 3). The position of 
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T. monae is not fully established on the tree, but occurs either as the sister taxon to the rest 

of Typhlatya or as the sister taxon to Stygiocaris (as shown in Figs 2 & 3, respectively). In 

any event, our analysis confirms the long-independent evolution of these three sublineages 

(i.e., Typhlatya s. str., Stygiocaris and T. monae; see Fig. 3).

Stygiocaris is a stygobiont genus endemic to north-western Australia, composed of 

three species, only two of which have been formally described (Holthuis, 1960; Page et al., 

2008). Page et al. (2008) have already noted the sister relationship between Stygiocaris and 

Typhlatya based on molecular evidence. Using a combined nuclear and mitochondrial 

sequence data set, they found that the Mexican T. pearsei was the sister taxon of 

Stygiocaris, rather than any surface or cave atyids from Australia or the Indo-Pacific 

region.

Typhlatya monae, with an apparently broad distribution in the Caribbean, is unique in 

displaying a uniramous pereiopod (the fifth), whereas the other Typhlatya species display a 

well developed exopod on all pereiopods. The introduction of a new genus to 

accommodate T. monae on the basis of this feature should be considered, and would give 

taxonomic relevance to the broad molecular divergence of the Typhlatya s. str., Stygiocaris 

and T. monae lineages.

Zakšek et al. (2007) and Sket & Zakšek (2009) have, however, recently challenged the 

relevance of features such as the presence of certain spines on the anterior margin of the 

cephalothorax or the absence of exopods on the pereiopods in distinguishing atyid genera. 

These authors, based on molecular markers, have shown that a presumed Typhlatya from 

the Balkans is actually a modified Troglocaris, which displays smooth anterior margins on 

its cephalothorax and uniramous pereiopods. Our own data for Antecaridina lend support 

to this hypothesis, because T. galapagensis (which lacks spines on the anterior margin of 
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the cephalothorax) occurs in our phylogram as a sister group to A. lauensis, a taxon 

displaying both suborbital and pterygostomial spines. Our own observations of the shape of 

the sternal process in Typhlatya s. str. also indicate that it is identical to Stygiocaris, 

supporting the congeneric status of the two taxa.

Dispersal, population structure and divergence of Typhlatya species

The distribution patterns of the Atyidae are dependent on life-history traits, such as their 

dispersal capacities and species-specific tolerance to local conditions (Page & Hughes, 

2007). Typhlatya species are usually very localized, limited in most instances to a single 

island or narrow portion of coast. However, several Typhlatya species display relatively 

broad distributions that, in some instances, include territories separated by stretches of sea. 

Thus, T. monae is known from Mona Island, Puerto Rico and Hispaniola (Greater Antilles), 

the more distant Barbuda (Lesser Antilles), and Curaçao and San Andrés islands, the last 

two at opposite sides of the Caribbean (see Table 1). Our own data for three different 

populations from Hispaniola and one from Puerto Rico suggest the occurrence of panmixia 

(Appendix S1).

Typhlatya garciai / kakuki is known from north-eastern and north-western Cuba, 

Providenciales (Caicos Islands) and Acklins Island (Bahamas; see Table 1). Our own 

observations of the latter two populations, separated by a deep-water sea arm of 173 km, 

indicated very low molecular divergence, which could be explained either by continuous 

gene flow through dispersal over sea or, more likely given the separation of the 

populations, by recent colonization and subsequent isolation.

The high dispersal potential of Typhlatya across subterranean waters has already been 

pointed out by Hunter et al. (2008) on the Yucatán Peninsula, where haplotypes of 
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T. mitchelli are shared between populations separated by up to 235 km. However, we found 

significant isolation among the populations of T. consobrina (sampled from two locations 

in Cuba about 330 km apart) and T. miravetensis (three populations separated by up to 

40 km in eastern Spain) (Appendix S1).

Trans-oceanic dispersal of Typhlatya

Two closely related species, Typhlatya iliffei (Bermuda) and T. rogersi (Ascension), are 

found on mid-oceanic islands in the Atlantic. Bermuda is the cap of a mid-plate rise in a 

sector of the north-western Atlantic with no other seamounts or ridges that could have 

harboured members of Typhlatya in the past. The pillow lavas that formed the original 

Bermuda shield volcano are no older than 47–40 Myr, and at 40–36 Ma, the Bermuda 

platform had already risen to sea level (Vogt & Jung, 2007). Ascension, located about 

7000 km to the southeast of Bermuda, occurs 90 km west of the Mid-Atlantic Ridge on 7-

Myr-old oceanic lithosphere. Its oldest subaerial lava flows have been dated recently at 

2.5 Ma (Minshull et al., 2010).

Iliffe et al. (1983) proposed that T. iliffei and T. rogersi represent an ancient atyid 

stock that survived on submerged and emergent seamounts along or associated with the 

Mid-Atlantic Ridge. Alternatively, Hart et al. (1985) and Manning et al. (1986) proposed 

that the ancestral form of Typhlatya was a deep-sea benthic organism that originally 

entered the cave environment directly from deep water via cracks and fissures on 

submerged seamount slopes during the Mesozoic. Opposing this view is the alleged 

primary freshwater condition of the family Atyidae, which already included limnic 

representatives by the middle Cretaceous (Rabadà y Vives, 1993), and the fact that 

Typhlatya has never been recorded in open marine habitats. Hunter et al. (2008) favoured 
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an alternative scenario, where mid-Atlantic species reached their present distributions by 

transoceanic dispersal of a shallow-water ancestor. These researchers identified a sister 

relationship between T. iliffei from Bermuda and T. garciai from Providenciales (Caicos 

Islands) based on molecular evidence, and suggested that the taxon from Bermuda might 

have derived from a Bahamian ancestor dispersed via the Gulf Stream.

The most common recent ancestor of the Bahamas, Ascension and the Bermudian taxa 

lived 18.6–33.9 Ma (see Fig. 4), which is compatible with the colonization of Bermuda by 

overseas dispersal of a Bahamian ancestor, as proposed by Hunter et al. (2008) (the age of 

Bermuda is 40–36 Myr; see above). Our estimate for the divergence of the Bermuda–

Ascension lineages (1.9–5.3 Ma; see Fig. 4) is also compatible with the age of Ascension 

(2.5 Myr; see above). Although both islands are separated by a huge expanse of ocean and 

the prevailing equatorial currents would make the derivation of one from the other by long-

distance over-sea dispersal untenable, the most likely explanation for their origin is that 

they derived from a diadromous Bahamian lineage which colonized Bermuda first and 

subsequently colonized Ascension Island.

CONCLUSIONS

In this study, we examined the molecular phylogeny of Typhlatya shrimp using nuclear and 

mitochondrial gene sequences and a relaxed molecular clock. These stygobiont atyids show 

an extremely disjunct distribution, which has been suggested to derive from plate-tectonic 

vicariance. Our results confirm the paraphyly of Typhlatya, because T. galapagensis from 

the Galápagos Islands is the sister taxon to Antecaridina. Furthermore, the Greater 

Antillean T. monae probably represents an independent sister lineage to the Australian 

genus Stygiocaris. We have analysed the relaxed molecular clock for Typhlatya using three 
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different calibration points based on three independent palaeogeographical events. We 

show that in Typhlatya / Stygiocaris, the ages of the corresponding subclades postdate the 

establishment of deep water between the north-central Atlantic Ocean shores. In addition, 

the divergence of the T. monae lineage from the rest of the genus Typhlatya preceded the 

cladogenesis of Typhlatya s. str. into a Mediterranean and a Caribbean/Mid-Atlantic clade. 

Therefore, our results are inconsistent with a simple explanation of the origin of the group 

based on plate-tectonic vicariance. 
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Table 1 Typhlatya diversity and distribution. Asterisks denote species retaining pigmented 
eyespots.

Species Distribution References

T. arfeae Jaume & Bréhier, 2005 France Jaume & Bréhier (2005)

T. campechae Hobbs & Hobbs, 
1976

Yucatán Peninsula (Mexico) Hobbs & Hobbs (1976)

T. consobrina Botosaneanu & 
Holthuis, 1970

Cuba Botosaneanu & Holthuis (1970)

T. dzilamensis Alvarez, Iliffe & 
Villalobos, 2005

Yucatán Peninsula (Mexico) Alvarez et al. (2005)

T. elenae Juarrero, 1994 Cuba Juarrero (1994)

T. galapagensis Monod & Cals, 
1970

Santa Cruz and Isabela Islands 
(Galápagos)

Monod & Cals (1970)

T. garciadebrasi Juarrero & Ortiz, 
2000

Cuba Juarrero & Ortiz (2000)

T. garciai Chace, 1942 Cuba; Caicos Islands Botosaneanu & Holthuis (1970); 
Buden & Felder (1977); Chace 
(1942); Holthuis (1977) 

* T. iliffei Hart & Manning, 1981 Bermuda Hart & Manning (1981)

* T. kakuki Alvarez, Iliffe & 
Villalobos, 2005

Acklins (Bahamas) Alvarez et al. (2005)

T. miravetensis Sanz & Platvoet, 
1995

Spain Sanz & Platvoet (1995)

T. mitchelli Hobbs & Hobbs, 1976 Yucatán Peninsula (Mexico) Hobbs & Hobbs (1976)

* T. monae Chace, 1954 Puerto Rico; Dominican Republic; 
Mona Island (Puerto Rico); 
Barbuda (Lesser Antilles); Curaçao 
(Netherlands Antilles); San Andrés 
Island (Colombia)

Chace (1954; 1975); Debrot 
(2003); Sket (1988)

T. pearsei Creaser, 1936 Yucatán Peninsula (Mexico) Cárdenas (1950); Creaser (1936; 
1938); Hobbs & Hobbs (1976)

* T. rogersi Chace & Manning, 
1972

Ascension Island Chace & Manning (1972)

T. taina Estrada & Gómez, 1987 Cuba Estrada & Gómez (1987)

* T. utilaensis Alvarez, Iliffe & 
Villalobos, 2005

Utila Island (Honduras) Alvarez et al. (2005)

Typhlatya sp. Belize T. Iliffe, pers. obs.

Typhlatya sp. Aruba (Netherlands Antilles) L. Botosaneanu, Zoölogisch 
Museum, Amsterdam.  pers, comm.

Typhlatya sp. Bonaire (Netherlands Antilles) L. Botosaneanu, Zoölogisch 
Museum, Amsterdam.  pers, comm.
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Table 2 Collection sites and EMBL accession numbers of Antecaridina, Halocaridina, Stygiocaris and Typhlatya species included in this 
analysis. Accession numbers in bold correspond to sequences obtained from GenBank (Ivey and Santos 2007; Page et al., 2008).

EMBL accession numbers

Species Collection site COI 5′ COI 3′ cyt b
rrnL 
(16S)

Histone 
H3A

SSU 
(18S)

LSU (28S)

Antecaridina lauensis
North East Point, Christmas Island (SE Indian 
Ocean)

HE80089
8

HE80091
9

N/A
EU12385

1
HE80096

5
HE80101

6
N/A

Halocaridina rubra
Kohala District (Hawaii Is.; Hawaii): 
anchialine pool PT (Santos, 2006)

DQ9174
32

DQ9174
32

DQ9174
32

FN99536
8

HE80096
4

HE80101
5

HE801036

Stygiocaris lancifera
Cape Range (W Australia): Tulki well HE80090

1
HE80092

2
HE80094

8
EU12382

7
HE80096

8
HE80101

9
HE801039

Stygiocaris stylifera
Cape Range (W Australia): Kuddamurra well 
(Palms)

N/A
HE80092

3
N/A

EU12383
6

HE80096
9

HE80102
0

HE801040

Typhlatya arfeae
Salses (Perpignan; France): Font Estramar HE80090

6
HE80092

9
HE80095

4
HE80100

0
HE80097

5
HE80102

5
HE801045

Typhlatya consobrina
Bolondrón (Matanzas; Cuba): Cueva 
Chicharrones

HE80091
0

HE80093
3

HE80095
6

HE80100
4

HE80097
9

HE80102
8

HE801048

El Veral (Guanahacabibes Peninsula; W 
Cuba): Cueva del Agua

HE80091
5

HE80094
0

HE80096
2

HE80101
1

HE80098
6

HE80103
4

N/A

Typhlatya dzilamensis
Dzilam de Bravo (Yucatán; Mexico): Cenote 
Cervera

N/A
HE80092

6
HE80095

1
HE80099

7
HE80097

2
N/A N/A

Typhlatya galapagensis
Sta. Cruz Is. (Galápagos) HE80089

9
HE80092

0
HE80094

6
HE80099

1
HE80096

6
HE80101

7
HE801037

Isabela Is. (Galápagos) HE80090
0

HE80092
1

HE80094
7

HE80099
2

HE80096
7

HE80101
8

HE801038

Typhlatya garciai
Providenciales (Caicos) HE80090

9
HE80093

2
HE80095

5
HE80100

3
HE80097

8
N/A N/A

Typhlatya iliffei
Bermuda: Tucker’s Town Cave HE80090

4
HE80092

7
HE80095

2
HE80099

8
HE80097

3
HE80102

3
HE801043

Typhlatya kakuki
Salinas Point (Acklins Is.; Bahamas): Shrimp 
Hole

N/A
HE80094

1
N/A

HE80101
3

HE80098
8

N/A N/A

Typhlatya miravetensis
Pla de Cabanes (Castellón; Spain): Ullal de la 
Rambla de Miravet

HE80090
5

HE80092
8

HE80095
3

HE80099
9

HE80097
4

HE80102
4

HE801044

Well at Peñíscola (Castellón; Spain) HE80091
6

N/A
HE80096

3
HE80101

2
HE80098

7
HE80103

5
N/A

Well at Alcalá de Xivert (Castellón; Spain) HE80091
7

N/A N/A N/A N/A N/A N/A
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Typhlatya mitchelli
Hoctún (Yucatán; Mexico): Cenote de Hoctún HE80090

2
HE80092

4
HE80094

9
HE80099

5
HE80097

0
HE80102

1
HE801041

Typhlatya monae
Well at Juan Dolio (Dominican Rep.) HE80090

7
HE80093

0
N/A

HE80100
1

HE80097
6

HE80102
6

HE801046

Jaragua NP (Oviedo; Pedernales; Dominican 
Rep.): Pozimán Cadena

N/A
HE80093

5
N/A

HE80100
6

HE80098
1

N/A HE801050

Cave at Bosque Guánica (SW Puerto Rico) HE80091
2

HE80093
6

HE80095
8

HE80100
7

HE80098
2

HE80103
0

N/A

Cave at Bosque Guánica (SW Puerto Rico) HE80091
3

HE80093
7

HE80095
9

HE80100
8

HE80098
3

HE80103
1

N/A

Cave at Bosque Guánica (SW Puerto Rico) HE80091
4

HE80093
8

HE80096
0

HE80100
9

HE80098
4

HE80103
2

N/A

Cave at Bosque Guánica (SW Puerto Rico)
N/A

HE80093
9

HE80096
1

HE80101
0

HE80098
5

HE80103
3

N/A

Samaná Peninsula (Dominican Rep.): well at 
Playa del Frontón

N/A
HE80094

2
N/A

HE80101
4

N/A N/A N/A

Well at Juan Dolio (Dominican Rep.)
N/A

HE80094
3

N/A N/A N/A N/A N/A

Well at Juan Dolio (Dominican Rep.)
N/A

HE80094
4

N/A N/A N/A N/A N/A

Typhlatya pearsei
Sacalum (Yucatán; Mexico): Cenote Nohchen HE80090

3
HE80092

5
HE80095

0
HE80099

6
HE80097

1
HE80102

2
HE801042

Typhlatya rogersi
Anchialine pool at Ascension Is.

N/A
HE80093

1
N/A

HE80100
2

HE80097
7

HE80102
7

HE801047

Typhlatya taina
Puerto Escondido (Sta. Cruz del Norte; La 
Habana; Cuba): Cueva de la India

HE80090
8

HE80093
4

HE80095
7

HE80100
5

HE80098
0

HE80102
9

HE801049
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Table 3 Primers used to amplify different mitochondrial and nuclear fragments.

Amplified fragment Primer Primer sequence (5′–3′) Reference

Mitochondrial
COI LCO1490 

HCO2198
NANCY
Pat 
Jerry
COIF1
COIR1
F12
R27

GGTCAACAAATCATAAAGATATTGG
TAAACTTCAGGGTGACCAAAAAATCA
CCYGGTAAAATTAAAATATAAATCTC
TCCAATGCACTAATCTGCCATATTA
CAACATTTATTTTGATTTTTTGG
AAAAAAGAAACMTTYGGYACNYTAGG
TTNARDCCTARGAARTGYTGRGG
GCCTTCCCCCGGATRAAYAAYAT
CGGTCGGTCAGCAGYATNGTRATNGC

Folmer et al. (1994)
Folmer et al. (1994)
Simon et al. (1994)
Simon et al. (1994)
Simon et al. (1994)
This study
This study
This study
This study

cyt b CB1
CB4

TATGTACTACCATGAGGACAAATATC
AAAAGAAARTATCATTCAGGTTGAAT

Barraclough et al. (1999)
Barraclough et al. (1999)

rrnL (16S) M14
M74  

CGCCTCTTTATCAAAAACAT
CTCCGGTTTGAACTCAGATCA  

Xiong & Kocher (1991)
Xiong & Kocher (1991)

Nuclear

Histone H3A H3aF
H3Ar

ATGGCTCGTACCAAGCAGACVGC
ATATCCTTRGGCATRATRGTGAC

Colgan et al. (1998)
Colgan et al. (1998)

SSU (18S rRNA) 18S3′ 
18S2.0

CACCTACGGAAACCTTGTTACGAC
ATGGTTGCAAAGCTGAAAC

Shull et al. (2001)
Shull et al. (2001)

LSU (28S rRNA) Ver28Sf
Ver28S2

CAAGTACCGTGAGGGAAAGTT
GTTCACCATCTTTCGGGTC

Lefébure et al. (2006)
Lefébure et al. (2006)
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Figure captions

Figure 1 Global distributions of Typhlatya and Stygiocaris. The inset shows the 

distribution of Typhlatya in the Caribbean region. See Table 1 for the precise 

distribution of each taxon. Typhlatya mitchelli and T. pearsei are broadly distributed 

throughout the northern Yucatán Peninsula, and are shown schematically.

Figure 2 Bayesian phylogram of Typhlatya / Stygiocaris and related genera based on 

rrnL, LSU and histone H3A sequences. Numbers beside nodes show Bayesian posterior 

probabilities.

Figure 3 Bayesian phylogram showing the relationships among the Typhlatya / 

Stygiocaris species based on rrnL, COI, cyt b, LSU, SSU and histone H3A sequences, 

with Halocaridina rubra and Antecaridina lauensis as the outgroups. The numbers 

above the nodes show the Bayesian posterior probabilities, and those below the nodes 

show the bootstrap support values estimated with maximum likelihood.

Figure 4 Chronogram showing the estimated age ranges (Ma; 95% high posterior density 

limits as confidence intervals) of the cladogenetic events within the Typhlatya–

Stygiocaris–Antecaridina–Halocaridina lineage. Asterisks indicate the nodes used as 

calibration points (see text for details).

Figure 5 Plot showing the mean age estimates (Myr) for the nodes shown in Fig. 4, 

obtained with three different calibration points (see text for details). Black broken lines 

show the 95% high posterior density limits for the node ages using the three-point 

combined calibration.
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Appendix S1 Percentage of uncorrected pairwise genetic distance among the 29 COI sequences of Halocaridina, Antecaridina, Stygiocaris, and Typhlatya 
species studied here. Both COI fragments were combined to estimate the distances. Bold numbers highlight intra-specific divergences.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 H. rubra -

2 A. lauensis 19.49 -

3 T. galapag. (Sta Cruz) 22.59 16.59 -

4 T. galapag. (Isabela) 22.09 17.14 8.01 -

5 S. lancifera 22.06 19.02 18.29 18.16 -

6 S. stylifera 19.50 19.16 19.94 18.59 14.78 -

7 T. mitchelli 22.72 22.32 20.27 19.16 18.98 20.65 -

8 T. pearsei 22.16 20.61 19.93 18.82 17.66 19.38 10.28 -

9 T. dzilamensis 20.36 19.80 21.70 20.74 19.81 19.45 17.42 16.32 -

10 T. iliffei 21.53 21.45 21.91 23.53 21.42 19.99 21.87 20.99 23.84 -

11 T. arfeae 18.89 19.14 21.23 18.70 18.60 17.37 19.82 18.63 18.22 20.58 -

12 T. monae (J. Dolio)-1 20.38 19.05 19.59 19.70 17.25 17.52 19.05 18.10 19.56 20.09 17.35 -

13 T. monae (J. Dolio)-9 20.60 18.11 18.86 19.33 17.17 17.40 20.21 17.80 19.71 21.07 16.52 0.00 -

14 T. monae (J. Dolio)-8 20.60 18.11 18.86 19.33 17.17 17.40 20.21 17.80 19.71 21.07 16.52 0.00 0.00 -

15 T. monae (Oviedo)-2 20.88 18.33 19.30 19.99 17.02 17.85 20.16 18.00 19.57 21.27 16.73 0.18 0.19 0.19 -

16 T. monae (Samaná)-7 20.60 18.11 18.86 19.33 17.17 17.40 20.21 17.80 19.71 21.07 16.52 0.00 0.00 0.00 0.19 -

17 T. monae (P. Rico)-3 20.25 19.02 19.68 19.69 17.13 18.32 19.83 18.13 19.54 20.42 17.72 0.00 0.00 0.00 0.22 0.00 -

18 T. monae (P. Rico)-4 20.26 19.21 19.77 19.78 17.24 18.55 19.64 18.13 19.13 20.51 17.81 0.18 0.44 0.44 0.23 0.44 0.18 -

19 T. monae (P. Rico)-5 20.15 19.15 19.90 19.85 17.29 18.54 19.90 18.32 19.15 20.78 18.11 0.19 0.43 0.43 0.23 0.43 0.19 0.00 -

20 T. monae P. Rico 6 20.28 17.98 19.01 19.34 16.98 18.13 22.04 17.85 19.73 21.64 17.11 0.00 0.00 0.00 0.21 0.00 0.00 0.44 0.43 -

21 T. rogersi 20.37 20.39 21.91 22.87 21.28 22.37 21.37 20.83 24.43 9.23 20.72 20.28 21.51 21.51 21.61 21.51 20.34 20.52 21.07 21.54 -

22 T. garciai 18.03 19.14 21.11 20.75 21.35 22.02 21.54 20.58 17.47 20.67 18.91 20.14 20.00 20.00 20.37 20.00 19.76 19.77 19.74 19.25 22.66 -

23 T. kakuki 16.89 16.99 19.29 20.06 19.41 21.17 21.92 20.04 17.92 18.22 17.50 19.21 19.42 19.42 19.65 19.42 19.25 19.28 19.30 19.47 21.96 0.42 -

24 T. consobrina (Veral) 21.49 19.94 21.10 18.95 18.33 19.40 17.87 17.52 19.23 20.73 19.68 19.22 18.76 18.76 19.03 18.76 19.31 19.49 19.75 19.02 20.98 18.18 15.97 -

25 T. consobr. (Bolondrón) 21.22 18.60 20.62 18.73 17.94 18.54 17.88 16.83 17.44 20.03 18.79 18.21 17.77 17.77 18.21 17.77 18.55 18.73 19.13 18.34 19.86 17.94 15.90 4.70 -

26 T. taina 19.88 19.63 18.62 17.95 17.45 19.73 17.46 17.38 16.46 21.52 18.53 17.46 18.07 18.07 17.95 18.07 17.83 17.65 17.77 18.89 21.37 18.04 16.36 12.25 11.53 -

27 T. miravet. (Cabanes) 19.43 20.15 20.39 18.45 18.75 17.49 18.11 16.87 18.55 19.81 10.08 16.00 14.58 14.58 15.16 14.58 16.34 16.44 16.55 15.28 20.23 17.52 15.78 17.49 17.16 17.07 -

28 T. miravet. (Peñíscola) 18.84 21.69 20.38 19.04 18.03 n/a 18.31 17.69 n/a 20.32 10.41 18.12 n/a n/a n/a n/a 18.15 18.14 18.86 n/a 20.14 20.25 n/a 18.88 18.15 17.68 3.24 -

29 T. miravet. (Xivert) 19.14 21.79 22.10 20.13 17.00 n/a 18.64 17.95 n/a 20.66 11.31 17.70 n/a n/a n/a n/a 17.74 17.73 18.38 n/a 20.13 19.38 n/a 19.50 17.70 16.77 3.13 1.20 -



Appendix S2. Mean ages for the tree nodes of Figure 4 in Myr plus lower and higher confidence interval values estimated from 95% high posterior densities 
for three different calibration points and their combined analysis. Calibration 1: 5–14 Ma as the age interval of the MRCA of Typhlatya galapagensis from 
Santa Cruz and Isabela islands in the Galapagos (Werner et al., 1999); calibration 2: age interval of the MRCA of Stygiocaris lancifera and S. stylifera 
explained by the emergence of the Cape Range anticline in NW Australia at 7–10 Ma (Page et al., 2008) and calibration 3: 5–6 Ma as the age interval of the 
MRCA of Typhlatya consobrina and T. taina using the occlusion of the Havana-Matanzas Channel in Cuba (Iturralde-Vinent et al., 1996). The last three rows 
show the inferred molecular rates per million years per lineage for different gene partitions (x10-2). 

Calibration point 1 Calibration point 2 Calibration point 3
The three calibration points 

combined

Tree nodes mean lower upper mean lower upper mean lower upper mean lower upper

root 52.97 25.28 90.16 36.53 20.52 55.71 32.54 18.09 48.51 45.08 30.56 61.11
a 50.30 24.23 86.47 34.57 18.37 53.29 30.84 16.38 46.44 42.96 28.17 59.24
b 42.80 19.66 73.60 30.12 17.90 44.55 26.82 15.96 39.06 35.75 25.75 47.01
c 19.66 9.20 33.74 13.57 7.22 21.11 12.18 6.53 18.51 16.66 10.93 23.15
d 37.92 16.50 65.55 26.85 15.35 39.60 23.82 13.70 35.15 31.62 22.01 42.29
e 36.78 16.93 63.24 25.74 14.96 38.10 23.04 13.87 33.29 30.72 21.88 40.43
f 6.48 5.00 9.95 3.85 1.66 6.35 3.42 1.51 5.57 5.91 5.00 7.73
g 10.22 3.74 18.86 8.08 7.00 9.65 6.63 3.46 10.21 8.33 7.00 9.75
h 9.14 3.66 16.58 6.31 3.02 10.24 5.63 2.71 9.00 7.63 4.18 11.34
i 31.30 14.28 54.19 22.01 13.21 32.81 19.78 12.05 28.22 25.95 18.64 33.94
j 25.16 10.77 44.02 17.63 9.86 26.69 15.84 9.23 23.34 20.84 13.97 28.46
k 24.43 10.93 42.74 17.27 9.87 25.56 15.60 9.71 22.25 20.12 14.24 26.54
l 4.21 1.45 7.88 2.98 1.38 4.85 2.67 1.30 4.24 3.45 1.88 5.26

m 7.55 2.52 14.15 5.46 2.72 8.64 5.42 5.00 5.92 5.52 5.05 5.99
n 17.99 7.57 31.52 12.73 6.92 19.31 11.48 6.68 16.83 14.91 9.70 20.22
o 5.69 2.15 10.41 4.06 2.02 6.50 3.66 1.85 5.68 4.70 2.70 6.90

Molecular evolutionary rates
Mitochondrial protein coding genes 

(COI + Cyt b) 4.52 1.76 7.45 6.18 3.25 9.64 6.97 3.67 11.01 5.00 3.08 7.19
rrnL (16 rRNA) 0.87 0.34 1.45 1.19 0.63 1.83 1.31 0.73 1.99 0.96 0.63 1.33

Nuclear genes combined 0.15 0.07 0.24 0.21 0.12 0.31 0.24 0.14 0.35 0.17 0.12 0.22




