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Post-functionalized iridium–Zr-MOF
as a promising recyclable catalyst for
the hydrogenation of aromatics†

Antonia M. Rasero-Almansa,a Avelino Corma,b Marta Iglesias*a and Félix Sánchez*c

The multifunctional heterogeneous catalyst iridium–Zr-based MOF is able to effectively catalyze the

hydrogenation of aromatic compounds in high yields under mild conditions. The catalyst was found to be

highly active and reusable, giving similar reactivity and selectivity after at least five catalytic uses.

Introduction

Zr-based MOF (UiO66–NH2) was selected as a support owing to
its many outstanding physical and chemical properties. It has
a large specific surface area and pore size as well as good
chemical resistance to water and organic solvents, a highly
desirable and most promising combination for catalytic appli-
cations.1 These highly stable new materials, after the adequate
post-synthetic modification, can act as heterogeneous catalysts
that combine the properties of soluble organometallic com-
plexes with those of the MOF as a support. Recently we
described that post-functionalized rhodium and iridium–Zr-
based MOFs can be applied as multifunctional catalysts for
one-pot and cascade reactions2.

In order to extend the benefits of the Zr-based MOFs to
other catalytic processes, we shifted our attention to the appli-
cation of Ir–Zr-MOF-supported catalysts for other reactions.
Among such processes, aromatic hydrogenation to form cyclo-
hexane derivatives is one of the most important steps from an
environment preservation standpoint,3,4 in both the petro-
chemical industry, for clean diesel fuel generation, and the
pharmaceutical industry, for safe drug synthesis. The field is
also of interest in relation to hydrogen storage.5 The hydrogen-
ation of benzene and arenes is generally accomplished using
heterogeneous catalysts almost exclusively,4a,6 molecular cata-
lysts immobilized on heterogeneous surfaces,7 supported
nanoparticle,8 or soluble nanoparticle9 systems, sometimes
inadvertently derived from molecular precursors,10 represents

an important industrial catalytic transformation, particularly
for the production of cleaner-burning, low-aromatic diesel
fuels.4a In this paper we report the catalytic activity of iridium
complexes immobilized on functionalized Zr-MOF in the
hydrogenation of arenes. Moreover, the Ir–Zr-MOF can be
recycled via centrifugation and used at least for 5 cycles.

Results and discussion

UiO66–NH2
11 was selected since the presence of NH2 groups

in the linker (2-aminoterephthalic acid) allows the functionali-
zation of the material by conventional reactions, and functio-
nalized-Zr-MOFs can be prepared according to well established
procedures. In addition, UiO66–NH2 possesses Lewis acid sites
(zirconium), and the introduction of metal complexes on
UiO66–NH2 gives rise to a bifunctional catalyst which com-
bines acidity and metallic sites capable of hydrogenation/dehy-
drogenation. UiO66–NH2 was prepared by mixing ZrCl4 and
BDC-NH2 in DMF, crystallization at 120 °C for 12–24 h, acti-
vation by DMF exchange with tetrahydrofurane and drying
under vacuum (BET surface area = 800 m2 g−1). The resulting
Zr–NH2-MOF was suspended in CH2Cl2 and treated with the
aldehyde2,12 (Scheme 1) at room temperature for 24 h. Mean-
while, iridium complexation by the imino-pincer ligand was

Scheme 1 Preparation of iridium–Zr-MOF.
†Electronic supplementary information (ESI) available: Details of characteriz-
ation. See DOI: 10.1039/c4gc00581c
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almost quantitative as we have previously described;2 details
for preparation and characterization can be found in the ESI.†
The modified samples show thermal stabilities comparable to
that of UiO66–NH2 with decomposition temperatures near
350 °C in air. All steps occur without apparently losing the
framework integrity (XRD patterns in Fig. S2†).

N2 adsorption results further confirmed the stability of the
porous structure after metal doping (ESI Fig. S6†). SEM and
TEM micrographs showed the materials have preserved their
structure (Fig. 1).

Iridium-MOF catalyst for hydrogenation of aromatics

The efficient synthesis of cyclohexane derivatives via the cataly-
tic hydrogenation of aromatic compounds is of both scientific
and industrial importance. However, the complete hydrogen-
ation of aromatics still requires highly energetic (>100 °C) and
dangerous reaction conditions (50 atm H2) due to the lack of
efficient catalysts. Recent publications suggest that palla-
dium,13 ruthenium,14 rhodium,15 iridium16 and nickel17 may
be used to achieve the hydrogenation of aromatic compounds
under milder conditions. The utilization of platinum-based
catalysts has been less investigated.18

On the other hand, it is well known that Lewis acids can
activate aromatic compounds19 and a sequential step is hydro-
genation by hydrogen atoms which were activated by the metal
as depicted in Scheme 2. These two types of activation could
work cooperatively, resulting in high activity for producing
cyclohexane derivatives. Our bifunctional Zr–[IrL]-catalyst has
zirconium as Lewis acid and iridium which can act as the
active metal. Herein we report the highly efficient catalytic
hydrogenation of aromatic compounds, under mild conditions
(in ethanol at 6 bar of H2 and 60–90 °C) by simultaneous acti-
vation of molecular hydrogen and the aromatic substrate with
iridium and zirconium as Lewis acid respectively.

We selected aniline as our model compound to explore the
Zr–[IrL] catalyzed aromatic hydrogenation reaction, the selec-
tive conversion to cyclohexanamine, in standard conditions
with ethanol as a solvent, was 100% after 10 h. However, when
temperature increased to 90 °C alkylation of amine to N-ethyl-
cyclohexanamine was the major product. At this temperature,
reaction in isopropanol or 2-butanol also resulted in N-isopro-
pylcyclohexanamine or N-(pentan-2-yl)cyclohexanamine,2,20 for
eliminating this secondary reaction we can use t-butanol as a
solvent or 60 °C temperature and 6 bar H2.

Zr–[IrL] was also tested in the hydrogenation of a series of
other representative monosubstituted benzenes with electron
withdrawing or donating groups. Substrates with electron
donating groups are hydrogenated faster than those with elec-
tron withdrawing groups (Table 1 and Fig. 2). We found that

Table 1 Hydrogenation of aromatic substratesa

Cat.b

(mol%) Substrate Product
Conv. (%)
(h)

TOFd

(h−1)

1 [IrL] (1) 100 (8)c 42

2 [ZIrL] (0.20) 85 (5) 85
98 (10)

3 ZIrL] (0.20) 90 (10) 80

4 [ZIrL] (0.20) 100 (5) 98

5 [ZIrL] (0.20) 49 (6) 60
65 (24)

6 [ZIrL] (0.20) 85 (6) 110

7 [ZIrL] (0.20) 90 (5) 235

8 [ZIrL] (0.20) 90 (22) 10

9 [ZIrL]+ (0.20) 75 (24)c 8

10 [ZIrL] (0.20) Traces (20) —

11 [ZIrL] (0.20) 0 (24) 12

12 [ZIrL] (0.20) 67 + 17 (19) n.d.

a Reaction conditions: solvent: ethanol or isopropanol, T: 60 °C, PH2: 6
bar. b Based on Ir. c Reaction in t-butanol at 90 °C, reaction in
isopropanol (90 °C) yields 60% of N-alkylated product. dmmol subs
mmol−1 cat. h−1.

Fig. 1 SEM (a) and TEM (b) images for UiO66–NH2–[LIr].

Scheme 2 General reaction pathway for the hydrogenation of aromatic
compounds.
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Zr–[IrL] catalyzes the quantitative hydrogenation of aromatic
hydrocarbons such as toluene, and phenol which was reduced
to cyclohexanol with only traces of cyclohexanone detected as
well as ethyl benzoate (Table 1, entries 4, 6, and 7); styrene is
quickly reduced to ethylbenzene (Table 2, entry 1), which was
hydrogenated to ethylcyclohexane at 90 °C (Table 1, entry 8).
Nitrobenzene and benzonitrile were transformed to cyclohexyl-
amine and cyclohexylmethanamine respectively in good yield
and selectivity (Table 1, entries 3 and 9). Bromobenzene or
diethyl phthalate did not react under these reaction con-
ditions, even at 90 °C (Table 1, entries 10 and 11) while methyl
2-methoxybenzoate yields the corresponding cyclohexane car-
boxylate besides 20% of hydrogenolysis of the C–O bond
(Table 1, entry 12). Comparing the soluble Ir-complexes, used
as reference catalysts (Table 1, entry 1), with the corresponding
supported on Zr–[IrL]-MOF, a considerable increase in the
reactivity was observed.

In order to determine the selectivity of different functional
groups against arenes, we explored the catalyzed-hydrogen-
ation for other unsaturated carbon bonds (CvC, CvO) and

cyano and nitro groups attached to an aromatic ring (Table 2).
Thus, olefinic double bonds of styrene and α-methylstyrene
were fully converted to ethylbenzene and isopropylbenzene
respectively; also carbonyl compounds as benzaldehyde or
acetophenone yield the corresponding alcohols, and benzo-
nitrile or nitrobenzene the corresponding amines; in all cases
these groups were hydrogenated before the reduction of arene
was initiated.

Recycling experiments and heterogeneity of catalyst

After the hydrogenation reaction, Zr–[IrL] was separated from
the reaction mixture by filtration or centrifugation, thoroughly
washed with ethanol and reutilized as a catalyst in subsequent
runs under identical reaction conditions. The results included
in Fig. 3a indicate that after the first cycle the activity slightly
decreased and then no efficiency loss was observed in the
arene hydrogenation for up to five runs. Moreover, the filtrate
solutions collected at the end of each catalytic run were ana-
lyzed by ICP-MS and in none of them Ir was detected, which
confirms the absence of iridium in the solution, whilst in
FT-IR spectra of the recovered solid the catalyst appears as a
band at ∼2000 cm−1 corresponding to the ν(Ir–H) bond
(Fig. S10†).

A control experiment was also performed to show that the
hydrogenation reactions are stopped by the removal of Ir–Zr-
MOF from the reaction solution (Fig. 3b). Moreover, they
provide easy separation and high reusability performance in
these reactions by keeping their stability against leaching
throughout the catalytic runs.

The characterization of the isolated samples from the fifth
catalytic run in the hydrogenation of aniline (using XRD, SEM
and TEM) reveals that (i) the crystallinity of the host UiO66
framework is mainly retained (Fig. 4) and (ii) there is some
bulk iridium formed within the framework of UiO66, at the
end of the fifth catalytic run (SEM and TEM images in Fig. 5
and 6). Higher SEM and TEM resolution for Ir–Zr-MOF crystal-
lites is difficult due to local damage by electron beams, which
cause distortion and movement.

Recent studies have shown that metal–organic frameworks
are also to be considered as suitable host materials to con-
trolled growth of catalytic clusters or nanoparticles within
MOF cavities.21 To date it has already been demonstrated that
the zeolitic imidazole framework (ZIF-8 MOF) or MIL101(Cr)
can act as a suitable host material for Au,22 Ag,23 Ni,24 Ir25 and

Fig. 2 Kinetic profile for the Zr–[IrL]-catalyzed aromatic
hydrogenation.

Table 2 Hydrogenation experiments with Zr–[IrL]-catalystsa

Entry Substrate Product Conv. (%) (h) TOF (h−1)

1 100 (0.5) 935

2 100 (2) 325

3 100 (0.5) 1000

4 100 (24) 13

5 85 (2) 850

6 20 (24) 10
100 (20)b

a 0.2 mol% of catalyst based on Ir; PH2: 2 bar, 40 °C. b 90 °C.
Fig. 3 (a) Recycling experiments for the catalyzed hydrogenation of
aniline and (b) hot filtration test for the hydrogenation of ethyl benzoate.
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Pd26 nanoparticles. The chemically robust Zr-based MOF
(UiO66–NH2) also might result in a host matrix to stabilize
guest iridium nanoparticles (IrNPs).

We have reduced the Zr–[LIr]-MOF with NaBH4 (ethanol at
273 K for 2 h) or H2 (6 bar, 120 °C) in order to obtain nano-
particles of iridium supported on the Zr-MOF (Zr-MOF–IrNPs)
and we have found that PXRD analysis (Fig. 7) shows the
typical reflections of UiO66–NH2, which confirm the stability
of the support under the chosen conditions, but reduced cata-
lysts were not active for hydrogenation of aniline and any
product formation was not observed after 24 h; and as a conse-
quence when the hydrogenation of aniline was performed with
Zr–[LIr]-MOF at 120 °C, recycling is not possible because the
activity decreases considerably after the first run.

The morphology of the different Ir–Zr-MOF samples was
examined by dynamic light scattering (DLS) (Fig. S11†), SEM
(Fig. S12†) and TEM (Fig. S13†). The TEM images of material
obtained by reduction with NaBH4 or by hydrogenation at
120 °C show a lot of larger nanoparticles, and we have found
that they are inactive in hydrogenation reactions whilst TEM
images of recovered catalysts in operation conditions (60 °C/6
bar) show that most of the particles have a size similar to that
found in the fresh catalyst, which seems to corroborate the
view that the molecular structure of heterogenized complexes
was preserved, as could be also confirmed by FT-IR in which a
band corresponding to the Ir–H bond can be observed. The
presence of larger particles could be responsible for the
decrease of activity after the first cycle of reactions.

X-ray photoelectron spectroscopy (XPS) analysis was per-
formed on the fresh and recovered Zr–[LIr]-MOF solids. The
samples were kept in vacuum overnight prior to XPS measure-
ments. The spectra were calibrated with respect to the C1s
peaks in each sample. The survey scan XPS spectrum of the
Zr–[LIr]-MOF samples (Fig. S15†) shows the presence of
iridium in addition to the UiO66 framework elements (Zr, C,
N). XPS analysis showed N-1s (399.1 eV) and C-1s signals, the
latter comprising sp2 carbon (284.6 eV), and sp3 carbon neigh-
boring oxygen (287.9 eV). The XPS core level for the iridium

Fig. 4 PXRD for a fresh catalyst and recovered after 1 run and 5 runs.

Fig. 5 SEM images of fresh (a) and recovered catalyst (b).

Fig. 6 TEM images of fresh (a) and recovered catalyst (b).

Fig. 7 PXRD for Zr–[LIr]-MOF: (a) recovered after the first run, (b)
recovered after the fifth run, (c) Zr-MOF-IrNPs after 6 bar H2 at 120 °C
and (d) Zr-MOF-IrNPs obtained for reduction with NaBH4.

Fig. 8 XPS Ir(4f ) region for the original catalyst and recovered after
reaction.
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(Ir(4f ) region) showed no difference in peak positions between
the original catalyst and the solid recovered from the reaction
(peaks at 64.8 and 62.1 eV, readily assigned to Ir4f7/2 and Ir4f5/2)
indicating the Irδ+ oxidation state in the samples27 (Fig. 8).

Conclusions

The use of the iridium pincer complex active phase and
Zr-MOF as a support has allowed us to obtain a new catalyst
for the direct hydrogenation of aromatic compounds at low
temperatures and initial hydrogen pressures. These catalysts
are versatile and can be easily recycled with high conversion
efficiency for up to five cycles and represent an attractive
choice for green industrial and synthetic applications.

Experimental
Reagents and materials

Starting materials were purchased and used without further
purification from commercial suppliers (Sigma-Aldrich and
Alfa Aesar). Dried, distilled and deoxygenated solvents were
used.

Materials preparation

Synthesis of Zr-based metal–organic framework was performed
in a 250 mL round bottom flask using a procedure similar to
that previously described.11 X-ray diffraction (Phillips X’Pert,
CuKα radiation) was used to confirm the expected crystalline
structure of the materials. All substances and reagents used
were commercially available and used as received. The reaction
and analytic methodology are given in ESI.† General consider-
ations and characterization methods are presented in ESI.†

Catalytic measurements

General procedure. Hydrogenation of aromatics was per-
formed in an Autoclave Engineers (100 mL). The reactants
were added to the suspension of catalysts (0.2 mol% based on
iridium) in ethanol (15–40 mL); the reactor was hermetically
sealed, pressurized (6 bar H2) and heated (60 °C) under con-
tinuous stirring (ca. 1000 rpm). Small liquid aliquots
(≈100 µL) were taken. The progress of the reaction was moni-
tored by GC-MS (Fig. S16†).

In particular, hydrogenation of aniline (50 µL, 0.5 mmol)
was performed with 10.5 mg (1.05 × 10−3 mmol Ir) of Zr-MOF–
LIr in 2-propanol (15 mL). The reaction mixture was filtered,
and the solvent was removed under reduced pressure to give
the crude product, pure for GC-MS. When the reaction is
carried out with 10 times more substrate, the reaction is com-
plete in 36 h.

The recycling of Zr-MOF–LIr

After completion of the reaction the catalyst was recovered by
separation of solid MOF-Ir from liquid after extensively centri-
fuging. The recovered catalyst was washed with ethanol three

times, dried at 80 °C for 12 h and reused. The Zr-MOF–LIr
catalyst showed consistent activity for four cycles.

The hot filtration test of Zr-MOF–LIr catalyst

A mixture of Zr-MOF–LIr (6.7 mg, 7.0 × 10−4 mmol Ir), ethyl
benzoate (50 µL, 0.35 mmol), and ethanol (15 mL) was put
into a reactor (Autoclave Engineers) and was extensively stirred
(ca. 1000 rpm) at 60 °C, 6 bar H2 for 0.5 h. The conversion was
∼20%. Then the solid catalyst was quickly separated after fil-
tration of the reactant mixtures. The liquid was kept at 60 °C
with extensive stirring for 24 h. The conversion was 35%. It
was found that the blank thermal reaction without any catalyst
for this reaction at 60 °C was ca. 8% (see Fig. 3).
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