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Abstract 

Male germ cell differentiation entails the synthesis and remodeling of membrane polar lipids 

and the formation of triacylglycerols (TAG). This requires fatty acid-binding proteins (FABP) 

for intracellular fatty acid traffic, a diacylglycerol acyltransferase (DGAT) to catalyze the 

final step of TAG biosynthesis, and a TAG storage mode. We examined the expression of 

genes encoding five members of the FABP family and two DGAT proteins, as well as the 

lipid droplet protein Perilipin 2 (PLIN2), during mouse testis development and in specific 

cells from seminiferous ephitelium. Fabp5 was distinctive of Sertoli cells and consequently 

was higher in prepubertal than in adult testis. Fabp3 expression increased in testis during 

postnatal development, associated to the functional differentiation of interstitial cells, but was 

low in germ cells. Fabp9, together with Fabp12, were prominently expressed in the latter. 

Their transcripts increased from spermatocytes to spermatids and, interestingly, were highest 

in spermatid-derived residual bodies. Sertoli and germ cells, which produce neutral lipids and 

store them in lipid droplets, expressed Plin2. Yet, while Dgat1 was detected in Sertoli cells, 

Dgat2 accumulated in germ cells with a similar pattern of expression as Fabp9. These results 

correlated with TAG levels also increasing with mouse germ cell differentiation to be highest 

in residual bodies, pointing to DGAT2 as the protein involved in the biosynthesis of such 

TAG. The age- and germ cell type-associated increases in Fabp9, Dgat2 and Plin2 levels are 

thus functionally related in the last stages of germ cell differentiation.  

 

Keywords: DGAT; FABP; germ cells; lipid droplets; PLIN2; residual bodies; Sertoli cells; 

spermatids; spermatocytes; triacylglycerols   
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Introduction 

During spermatogenesis, the extensive formation and remodeling of membranes associated 

with germ cell differentiation and maturation entails considerable quantitative and qualitative 

changes in their lipids. In rodents, classical studies have shown that testicular 

glycerophospholipids (GPL) and triacylglycerols (TAG) become increasingly rich in long-

chain polyunsaturated fatty acid (PUFA) like docosapentaenoic acid during postnatal 

development, as spermatids contain more of this fatty acid in their GPL and TAG than 

spermatocytes (Beckman et al. 1978; Grogan & Huth 1983). Concomitantly, there are also 

significant changes in unique fatty acids of testicular sphingomyelins and ceramides destined 

to be components of spermatozoa (Zanetti et al. 2010): the proportion of 2-hydroxy very-

long-chain PUFA with respect to their nonhydroxy counterparts increases considerably In 

both lipids from spermatocytes to spermatids (Oresti et al. 2010). The regulation of fatty acid 

biosynthesis and exchange among intracellular organelles of germ cells during 

spermatogenesis is thus essential for male fertility.  

In the final stages of spermatogenesis, spermatids elongate and undergo a considerable 

cytoplasmic volume reduction via the formation and  release of the membrane-bound vesicles 

known as "residual bodies". These densely packed structures, readily phagocytized by Sertoli 

cells (Kerr & De Kretser 1974), contain remains of cytoplasm, RNA, former organelles, and 

neutral lipid inclusions (Russell et al. 1990). The spermatid-derived residual bodies are 

clearly discernible by markers of neutral lipid droplets, in accordance to the finding that they 

are even richer in TAG than spermatids (Oresti et al. 2010).  

The interstitium-located Leydig cells are involved in the production testosterone. The 

regulatory functions performed by Sertoli cells require a continuous cross-talk between them 

and the germ cells they nurse in the seminiferous epithelium.  Both these functions are under 

autocrine, paracrine and endocrine regulation. The inter-dependent cellular structure and 
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functions of the testis thus provide a paradigmatic model to assess the regulation and 

relevance of the different genes encoding for proteins involved in lipid biosynthesis and 

catabolism, which require fatty acid traffic among membranes throughout development and 

cell differentiation.  

Fatty acid binding proteins (FABPs) comprise a conserved family of small cytosolic proteins 

that reversibly bind long-chain fatty acids and their corresponding acyl-CoA esters. They 

promote the uptake and intracellular transport of fatty acids, guide them to specific metabolic 

pathways, and participate in cell growth by regulating the expression of specific genes 

(Haunerland & Spener 2004; Furuhashi & Hotamisligil 2008). In mammals, ten FABP 

members with different tissue-dependent patterns of expression have been reported 

(Yamamoto et al. 2009). All FABPs have the same primary role with potential differences in 

ligand selectivity for long-chain fatty acids, binding affinity and binding mechanism. The 

expression of FABPs in each particular cell type has been considered to reflect its lipid-

metabolizing capacity (Chmurzynska 2006). 

The predominant FABP in testis is widely accepted to be FABP9 (Kido & Namiki 2000; 

Selvaraj et al. 2010). Although other members of this family have also been reported, such as 

FABP3 (Watanabe et al. 1991), FABP5 (Kingma et al. 1998), and more recently FABP12 

(Liu et al. 2008; Yamamoto et al. 2009), no studies comparing on the same basis the 

expression of different FABPs at definite periods of testis development and correlating this 

with their relative abundances in particular testicular cell types were available.  

The biosynthesis of TAG involves several enzymatic steps. The last of these, in which a long-

chain fatty acyl-CoAs is joined to a diacylglycerol molecule, is catalyzed by the enzyme acyl-

CoA:diacylglycerol acyltransferase (DGAT) with ubiquitous activity in cells of most tissues 

(Lehner & Kuksis 1996). Two DGAT proteins have been described, DGAT1 and DGAT2, 

which probably differ in physiological function (Cases et al. 1998; Cases et al. 2001). To 
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date, the expression of genes encoding for each of these proteins in testis as a function of 

developmental stages and in differentiating cells of the seminiferous epithelium has not yet 

been reported.  

Perilipin 2 (PLIN2), formerly termed adipose differentiation-related protein (ADRP) (Kimmel 

et al. 2010), is one of the proteins involved in maintaining lipid droplet structure and function 

(McIntosh et al. 2012). In the testis the protein was found to be present in  Sertoli and Leydig 

cells, associated with TAG- and cholesterol ester-containing lipid droplets (Brasaemle et al. 

1997; Heid et al. 1998). The abundance of lipid droplets containing TAG -but no cholesterol 

esters- in rat germ cells and residual bodies (Oresti et al. 2010) suggested the possibility that 

in our mice the expression of one of the Dgats would coincide with that of Plin2 in increasing 

with germ cell maturation, the activity of these proteins being indirectly reflected in increased 

amounts of TAG and lipid droplets as germ cell differentiation proceeds.  

In order to assess the co-regulation of genes involved in lipid metabolism in testis, in this 

study we analysed the expression of genes encoding for five FABPs, two DGATs, and PLIN2 

in mouse testis during postnatal development and in specific testicular cell types. The 

inclusion of residual bodies in the germ cell analysis led to the biologically relevant finding 

that some of these mRNAs are highly concentrated in these particles, whose contents are 

destined to be recycled by Sertoli cells.  

Materials and Methods 

Animals 

CD-1 mice were bred at the CIB-CSIC animal facility under specific pathogen-free, 

temperature (22±1ºC) and humidity-controlled (50-55%) conditions, on 12 h light/dark cycles 

and with at libitum access to food and water. Animals were treated according to the guidelines 

of the CSIC Bioethics Committee. 

Tissue and cell isolation 
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Whole testes were obtained from mice at postnatal days 6, 10, and 18 (P6, P10 and P18, 

respectively) and from adult mice. Pachytene spermatocytes, round spermatids, elongating 

spermatids and residual bodies (abbreviated PS, RS, ES and RB, respectively, in figures) were 

obtained from adult mouse testes and enriched using BSA density gradients on STA-PUT 

(Bellve et al. 1977; Oresti et al. 2010; Paz et al. 2006; Romrell et al. 1976). Sertoli cells were 

obtained from testes of mice aged 14–18 postnatal days and enriched by primary culture. The 

cells were maintained for 2 weeks at 37 °C in a 5% CO2/95% air atmosphere and cultured in 

Dulbecco's modified Eagle's medium: Ham-F12 medium (Gibco, BRL) (1:1), following 

standard procedures (Karl & Griswold 1990). The purity of isolated and cultured cells was 

90–95%, as determined by morphological criteria (supplementary Fig. S1) and RT-PCR using 

cell-type specific primers as previously described (Gonzalez-Gonzalez et al. 2008).  

Total RNA extraction and analysis of mRNAs by RT-qPCR 

RNA from testis and germ cells was isolated using TRIzol
®
 Reagent (Invitrogen) according to 

the manufacturer´s instructions. RNA was resuspended in RNase-free water and its 

concentration was assessed from the A260/280 absorbance ratio in a NanoDrop 

Spectrophotometer ND-1000 (NanoDrop). Samples were stored at −80 °C until use. Aliquots 

containing 0.2 μg total RNA were used to synthesize cDNA in reactions containing 2.5 μM 

Oligo dT17, 1X First-Strand Buffer (Invitrogen), 0.01 M dithiothreitol (DTT), 2 UI of RNase 

inhibitor (RNAsin Promega), 0.5 mM of each dNTP and 200 U of superscript II (Invitrogen). 

The reactants were taken to a final volume of 20 μl with RNase-free water. 

The cDNAs resulting from retrotranscription were amplified by real-time quantitative PCR 

(qPCR). Gene expression levels were determined using the CFX96 Touch™ Real-Time PCR 

Detection System (Bio-Rad). RT-qPCR was performed in a final volume of 10 μl using iQ™ 

SYBR Green SuperMix (Bio-Rad) and 0.25 µM concentration of each primer. Primer 

combinations for the specific amplification of the analysed genes were designed in “Universal 

ProbeLibrary” (http://www.roche-applied-science.com/sis/rtpcr/upl/ezhome.html) and 
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purchased from Roche. The primers used in PCR are listed in Table 1. The RT-PCR products 

were assessed by 3% agarose gel electrophoresis. The efficiency of each primer pair was 

calculated for comparative and normalizing purposes. 

The PCR reaction conditions were as follows: 40 cycles of denaturation at 95 °C for 15 s, 

annealing and extension at 60 °C for 1 min, and a final extension step at 72 °C for 1 min. The 

PCR products were also examined by melting curve analysis and agarose gel electrophoresis.  

Data analysis  

A total of 12 measurements were done for each gene studied at each stage or cell type: three 

biological replicates, from which four technical replicates, were analysed. Data were 

normalized according to the previously described 2
-ΔΔCt

 method (Livak & Schmittgen 2001), 

using peptidylprolyl isomerase A (Ppia) and H2A histone family member Z (H2afz) as 

reference genes. The relative level of each gene is expressed as the relative change in gene 

expression (Livak & Schmittgen 2001). 

Antibodies and Western blot  

For FABP9 protein expression analysis, a validated anti-FABP9 antibody (Kido et al. 2005) 

kindly donated by Dr. T. Kido (UCSF, USA) was used. Anti-FABP12 (M-12): sc-241412 and 

anti-Actin (I-19): sc-1616 (both from Santa Cruz Biotechnology) were used as primary 

antibodies. Tissue and cells were lysed and thoroughly homogenized in Tris-HCl (pH 6.8), 5 

mM EDTA, 3% SDS and 1% of protease inhibitor cocktail (Roche Applied Science). Proteins 

were mixed with denaturing Laemmli buffer, heated to 95 ºC for 5 min, resolved by SDS-

PAGE, and subjected to Western blotting using the primary antibody, followed by incubation 

with horseradish peroxidase-conjugated secondary antibody and detection with SuperSignal 

chemiluminescent substrate (Pierce). The intensity of bands was compared using the Image-J 

software (National Institutes of Health, USA), and data were expressed as arbitrary units 

relative to actin expression. 
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Nile Red staining and confocal microscopy 

To detect neutral lipid-containing lipid droplets, testes were fixed at 4% in paraformaldehyde 

at 4ºC, rinsed overnight in PBS containing 30% sucrose at 4°C for cryoprotection, placed in a 

small amount of OCT compound Tissue Tek (Sakura Finetek U.S.A) and stored at -80ºC. Ten 

μm-thick frozen sections were prepared with a cryostat and picked up on poly-L-lysine-coated 

glass coverslips (Sigma). Then, tissue sections were incubated in PBS to remove OCT and 

post-fixed in 4% paraformaldehyde in PBS for 5 min, followed by incubation for 15 min at 

room temperature with 1.5 μg/ml Nile Red (Molecular Probes) in PBS. Samples were 

mounted with Vectashield
 
Mounting Medium with DAPI (Vector Laboratories). All images 

were captured using a Leica TCS-SP5-AOBS confocal microscope with 40X oil immersion 

objectives.  

GPL and TAG  separation and fatty acids analysis 

After collecting pachytene spertmatocyte, round spermatids and residual bodies by 

centrifugation, lipid extracts were prepared and partitioned (BLIGH & DYER 1959). After 

phase separation, the organic solvents were evaporated under N2 and the samples dissolved in 

chloroform-methanol (2:1 v/v). Aliquots were taken for total lipid phosphorus determination.  

Lipid extracts were spotted on TLC plates under N2 along with commercial standards 

(Sigma). The neutral lipids were resolved with n-hexane:diethyl ether (80:20 v/v) to obtain 

the TAG, and the total polar lipid fraction (mostly GPL) was recovered from the origin of 

these plates. The amount of GPL and TAG in germ cells and residual bodies was estimated 

from their fatty acids. These were measured by gas chromatography (GC) after conversion of 

the eluted, dried lipids into fatty acid methyl esters. Before GC, the latter were routinely 

purified by TLC on (pre-washed) silica gel G plates, using hexane:ether (95:5 v/v) as solvent.  

Fatty acid analysis was performed using the conditions and instrumentation described in 

previous work (Oresti et al. 2010).  
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Statistics 

The bars shown in figure histograms represent mean values ± standard deviation. One-way 

ANOVA was used to determine the significance of differences among mean values, which 

were compared using Bonferroni’s test for multiple comparison. In both analyses, the 

minimum acceptable level of significance was p < 0.05. Statistics marks (letters) shown in 

figures compare the different expression rates of a particular gene at different postnatal days 

or cells. Statistical data comparing the expression rates of the genes studied in a particular 

postnatal day or among different cells are provided in Supplemental Table 1.  

Results 

Differential expression of fatty acid-binding proteins  

Because germ cells at progressively advanced stages of differentiation appear at defined times 

after birth (Bellve et al. 1977) it was possible to follow the appearance or accumulation of the 

transcripts under study at specific stages of spermatogenesis. In mice at postnatal day 6 (P6), 

nearly 85% of the cells in the seminiferous epithelium correspond to Sertoli cells and 15% to 

primitive spermatogonia. Pachytene spermatocytes abound at P18, and elongated spermatids 

prevail in the adult testis, where they represent about 60% of the intra-tubular cells, 

accompanied by an abundant presence of residual bodies (Bellve et al. 1977). The pattern of 

expression of the five Fabp genes we studied differed markedly during spermatogenic 

development and cell differentiation (Fig. 1). Analysis by RT-qPCR revealed a relative high 

transcript accumulation of Fabp3 and Fabp5 during early stages of development (P6-P10), 

decreasing significantly at P18. However, from P18 to adult testes, Fabp5 continued to fall 

whereas Fabp3 showed a significant increase. The expression of Fabp7 was almost residual 

in testis and cells (Fig. 1). The Fabp isoform that presented the highest rate of transcript 

accumulation in adult testis was Fabp9 (1300-fold from P6 to adult). Fabp12 mRNAs 
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remained virtually undetectable from P6 to P18 but was clearly more abundant in adult testis 

(Fig. 1).  

To assess cell-type-specific gene expression, additional comparative analyses were performed 

in purified Sertoli cells, pachytene spermatocytes, round spermatids, and residual bodies (Fig. 

2). Normalized data showed that mRNA levels of Fabp3 were higher in whole adult testis 

than in any of the seminiferous tubule cell types studied (Fig. 2 left panel). These results 

indicated that Fabp3 was mainly expressed in extra-tubular cells. This expression was mainly 

located in the interstitium and correlated with the increase of functional activity of Leydig 

cells in adults (see supplementary Fig. 2). In contrast, Fabp5 expression was apparently 

restricted almost exclusively to Sertoli cells. Because the proportion of Sertoli cells relatively 

decreases with respect to the massive increase the number of germ cells undergoes from 

prepubertal to adult testis, this Fabp5 localization explains the apparent progressive reduction 

observed for its transcript in testis with gonadal development (Fig. 1).  

In clear contrast with Fabp5, both Fabp9 and Fabp12 transcript levels were low, virtually 

absent from Sertoli cells. Their expression was restricted to germ cells and residual bodies. 

Transcript levels of Fabp9 and Fabp12 increased from spermatocytes to spermatids and 

reached their maximum values in residual bodies (Fig. 2). In agreement with the lack of 

expression detected in developing testes, Fabp7 transcripts were virtually absent in the 

different cell types analysed. 

In view of the predominance of Fabp9 followed by Fabp12 in the germ cell line, we assessed 

their expression at the protein level during developmental stages and from isolated cell types 

(Fig. 3).  In Western blots, FABP9 was detected as a single band of 15kD, in agreement with 

previous work in adult mice (Selvaraj et al. 2010). The protein was undetectable at P6, first 

appearing at around P18, i.e., associated with the emergence of pachytene spermatocytes in 

the first wave of germ cell differentiation. As did the mRNA transcript, FABP9 reached its 

highest amount in adult testes (Fig. 3A). Also in coincidence with its mRNA distribution, 



11 

 

FABP9 protein level was very low in Sertoli cells, considerably higher in germ cells, and as 

copious in the latest (elongating) spermatids as in residual bodies (Fig. 3A).  

FABP12 was detected as two bands of 15 and 17 kd. This may be ascribed in part to post-

transcriptional modifications or, as previouly suggested for other FABP (Ockner et al. 1982; 

Spener et al. 1990), to alternate forms due to this protein binding different amounts of fatty 

acids or other substrates. FABP12 increased in the testis with postnatal maturation, its level 

being higher at earlier than at later stages of development (Fig. 3B). This tendency correlated 

with the distribution of FABP12 among cells: its level was lowest in Sertoli cells and highest 

in pachytene spermatocytes and round spermatids, being lower in elongated spermatids and 

residual bodies (Fig. 3B). This finding points to an interesting difference between FABP9 and 

FABP12 in relative rates of mRNA and protein expression during germ cell differentiation.  

Dgat and Plin2 Expression, Neutral Lipid Droplets, and TAG levels 

The expression profiles shown by Dgat1 and Dgat2 indicated that both genes were subjected 

to different regulatory mechanisms (Fig. 4A). Although both isoforms were abundantly 

expressed in the testis at all developmental stages, Dgat2 was the predominant one in the 

adult. Dgat2 mRNA maintained a low level between P6 and P18, but increased 30-fold from 

P18 to adult (Fig. 4A). This suggested a preferential association of Dgat2 with spermatids 

which was confirmed by the profiles of Dgat1 and Dgat2 expression among cell types (Fig. 

4B). Sertoli cells had a low but detectable Dgat1 while virtually lacked Dgat2 expression. 

Conversely, in germ cells Dgat1 mRNA levels were lower, and increased less, than those of 

Dgat2 with their differentiation. In comparison with spermatocytes, the amount of Dgat2 was 

3- and 4-fold higher in round spermatids and residual bodies, respectively (Fig. 4B).  

PLIN2 is one of the proteins associated with neutral lipid-storing intracellular lipid droplets 

(Brasaemle et al. 1997). Its testicular mRNA levels underwent a total increase of 3-fold from 

P6 to adult mouse testes (Fig. 4A), in agreement with the finding that Plin2 was expressed in 
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both Sertoli and germ cells (Fig. 4 B). In the latter and residual bodies, its transcript levels 

were twice as large (Fig. 4 B) as in whole testes (Fig. 4A).  

In rat testis, the intensity of lipid droplet staining with Nile Red increases from isolated 

pachytene spermatocytes to round spermatids and from these to residual bodies (Oresti et al. 

2010). This allowed linking this attribute with the increase in TAG concentration per cell or 

particle, which followed the same order. In the mouse, we observed similar attributes, with 

some qualitative and quantitative differences. Three populations of lipid droplets, one extra-

tubular and two within seminiferous tubules, were identified (Fig. 5). The interstitially located 

ones were considerably larger and more abundant in mice than in rats.  Of the intra-tubular 

droplets, those larger, basally located ones were mostly those included in Sertoli cells, and the 

tiny ones, facing the tubule lumena, were considerably smaller and even more numerous in 

mice (Fig. 5) than in rats (Oresti et al. 2010).  

The extra-tubular lipid droplets are expected to contain mostly the cholesteryl esters 

(Brasaemle et al. 1997) that Leydig cells store as a source of the cholesterol involved in 

steroidogenesis. Those of Sertoli cells are probably mixed in nature, since these cells produce 

both cholesterol esters and TAG, whereas those of germ cells mostly contain TAG as the 

main neutral lipid (Oresti et al. 2010).  In the present study we also analysed the content and 

fatty acid composition of the TAG of our mouse germ cell preparations and residual bodies, 

as a manifestation of the TAG-biosynthesizing activity of germ cells.    

Concomitantly with the cell location of lipid droplet staining, the expression of Fabp9, Dgat2 

and Plin2 coincided with the levels of TAG concentration (Fig. 5) in that all of them increased 

from pachytene spermatocytes to round spermatids and from these to residual bodies. The 

differentiation-related increase in TAG amount was mostly accounted for by these neutral 

glycerides becoming enriched in specific PUFA (Fig. 6A), as was the case of 

docosapentaenoic and docosahexaenoic acids (22:5n-6 and 22:6n-3), both showing a 

significant accumulation in the TAG of spermatids, and especially of residual bodies. For 
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comparison purposes Fig. 6B shows that as mouse spermatogenic germ cells differentiation 

proceeds the major membrane GPL became (as TAG) more richer in 22:5n-6 and 22:6n-3 

fatty acids and these molecular species were highly accumulated in residual bodies. 

Discussion 

FABPs are ubiquitously expressed proteins with the various members of this family differing 

in tissue expression patterns (Haunerland & Spener 2004; Yamamoto et al. 2009). The present 

quantitative study in the mouse testicular tissue showed, in our knowledge for the first time, 

cell-compartmentalized and time-dependent variations in the gene expression of five 

simultaneously assessed FABP members indicative that there is a differential regulation of 

their expression at specific stages of spermatogenesis.  

Our finding that Fabp3 increased 8-fold from the first spermatogenic wave to adult testis is in 

agreement with the increase in FABP3 previously reported in a proteomics study (Paz et al. 

2006). The developmental profile we observed for Fabp3 expression was consistent with this 

protein mostly localizing in Leydig cells (Heuckeroth et al. 1987; Watanabe et al. 1991; 

Zschiesche et al. 1995) and with the changes of intratesticular testosterone concentrations 

during mouse testis postnatal maturation. Thus, levels of this hormone (O'Shaughnessy et al. 

2002), as did Fabp3 (present results), showed a decline between P10 and P20, followed by an 

increase at P25. Using immunofluorescence, we confirmed that FABP3 protein was 

interstitially located and that it displayed low signal level at P6, was almost undetectable at 

P18, and was plentiful in adult testis (see Fig. 2 in Supplemental Material). Interestingly, the 

Fabp3 gene is down regulated in Leydig cells as a result of exposure to a known endocrine 

disruptor (Chauvigne et al. 2011). 

Together, the above commented results suggest a fine regulation of Fabp3 expression 

associated with the functional activity of Leydig cells in testosterone production. A trait of the 

protein FABP3 is its higher affinity for arachidonic than for palmitic acid (Murphy et al. 
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2005). Arachidonic acid (AA) is the fatty acid specifically involved in the mechanism of 

cholesterol transport from the outer to the inner mitochondrial membrane in Leydig cells, the 

first step in steroidogenesis (Albert et al. 1980; Castillo et al. 2006). Taken together, these 

observations allow the speculation that FABP3 could play a role in testosterone production by 

transporting the required AA from other cellular sites to mitochondria. Although there are 

studies using Fabp3-knock-down mice to define FABP3 functions in different tissues 

(Schachtrup et al. 2008; Shioda et al. 2010), no one has yet informed on the effects of such 

gene change on testicular function. 

Fabp5 expression was here detected as significant in Sertoli cells. The developmentally 

associated decrease of its expression in whole testis may be ascribed to the relatively small 

proportion of these cells with respect to germ cells in the adult, and with the almost negligible 

expression of this gene in germ cells (Figs. 1 and 2). As a protein, FABP5 was previously 

observed in bovine Sertoli cells and retinal Müller cells, both having in common that they are 

supportive of other cell types in their respective tissues (Kingma et al. 1998). A function of 

Sertoli cells is to remove, by means of phagocytosis, apoptotic bodies evolving from 

supernumerary spermatocytes and residual bodies released from condensing spermatids. Once 

these lipid-containing bodies have been incorporated, and their content hydrolyzed in 

lysosomes, a variety of fatty acids —from saturates to long-chain and very-long-chain 

PUFA— need to be transported to subcellular organelles such as the endoplasmic reticulum, 

mitochondria or peroxisomes to be used in biosynthetic and/or catabolic pathways. The high 

level of Fabp5 expression that we found in mouse Sertoli cells points to a highly active 

intracellular fatty acid traffic among organelles. The fact that this protein has a low ligand 

specificity, since it binds fatty acids with widely differing levels of unsaturation with 

relatively high affinities (Kingma et al. 1998), agrees with this possibility. 

The mRNA of Fabp7, mainly detected in brain, was included in our study because this 

isoform was occasionally detected in the zebrafish (Danio rerio) testis (Liu et al. 2003) and 
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because it is involved in the transport of 22 carbon PUFA like docosahexaenoic acid 

(Balendiran et al. 2000; Mita et al. 2010). This fatty acid, like docosapentaenoic acid, 

abounds in mouse testis lipids (Furland et al. 2003), highly concentrated in membrane 

phospholipids, and especially in TAG, of germ cells and residual bodies (present results).  

However, in addition to being expressed at much lower levels than other FABP isoforms, 

Fabp7 remained virtually constant throughout testicular development and showed no 

remarkable variations among the studied cell types. Further work is required to clarify the 

apparent discrepancy between the faint expression of Fabp7 and the abundance of 22 carbon 

PUFA in mouse testis.  

FABP9 is the best characterized member of the FABP family in the testis. Our results 

quantifying Fabp9 mRNA and protein levels in different developmental stages and specific 

cell types concur with, and extend, previous reports. The fact that both increase in ascendant 

order from pachytene spermatocytes to round spermatids, from these to elongating 

spermatids, and from these to residual bodies explains why Fabp9 mRNA and protein 

accumulate during postnatal maturation in the testis. The presence of FABP9 protein at the 

latest stages of spermatid differentiation agrees with previous observations using 

immunohistochemistry in testis sections (Korley et al. 1997; Selvaraj et al. 2010). Our results 

detecting this protein in isolated elongating spermatids and residual bodies agrees with the 

presence of this protein in mouse spermatozoa (Korley et al. 1997). Interestingly, FABP9 is 

one of the proteins whose phosphorylation state increases during in vitro sperm capacitation 

(Platt et al. 2009).  

The Sertoli cells used in the present study, in addition to being obtained at a relatively early 

developmental stage (P18), were cultured for two weeks in order to exclude remainders of 

germ cells as possible sources of this gene.  Although these conditions may be considered 

with caution, since the transcripts could have been degraded during that time, the same 

conditions served to demonstrate high and specific Fabp5 (and other mRNAs) expression by 
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these cells. Our observation that FABP9, both at the mRNA and protein levels, were 

completely undetectable in Sertoli cells supports the notion that it is not endogenous to these 

cells. The fact that it is detectable in Sertoli cells after a massive apoptosis of spermatocytes is 

induced, is probably a result of Sertoli cell phagocytic activity (Kido & Namiki 2000). 

It was intriguing that during the last stages of germ cell differentiation, both Fabp9 and 

Fabp12 expression increased at the mRNA level but apparently not both at the protein level. 

Problems with the immunodetection are not likely, since both proteins were expressed at 

similar rates during meiosis (pachytene spermatocytes) and up to early steps of 

spermiogenesis (round spermatids), the main difference being established in elongating 

spermatids and residual bodies. This discrepancy could bear a relationship with post-

transcriptional regulation via RNA, whereby the latter is silenced concomitantly with mouse 

germ cell differentiation (Gonzalez-Gonzalez et al. 2008), possibly affecting each of these 

isoforms to different extents.  

 In general, FABPs participate mainly in the uptake and intracellular traffic of fatty acids and 

acyl-CoAs prior to their utilization in cells (Liou & Storch 2001). Because Fabp9 not only 

abounded but increased in cells in the late stages of spermatogenesis as well as residual 

bodies, we suggest that the protein could contribute to the intracellular transport of those fatty 

acids that are required for the synthesis of the membrane sphingolipids and 

glycerophospholipids that will exit from the testis together with the mature gametes.  It could 

also contribute to the conservation of fatty acids within the testis by transporting the surplus 

of fatty acids discarded during spermatid volume reduction to the subcellular site of TAG 

synthesis. This possibility is suggested by the fact that these neutral glycerides concentrate a 

lot of the most metabolically costly PUFA (e.g. 22:5n-6 and 22:6n-3). Further studies are still 

needed to establish the nature of the hydrophobic ligands of FABP9 and clarify its role in 

spermatogenesis. Intriguingly, mice lacking Fabp9 are viable and fertile, and the total lipid 

fatty acid profile of their spermatozoa is not apparently affected (Selvaraj et al. 2010). It is 
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then possible that the deficiency in FABP9 could be compensated by overexpression of 

Fabp12 in the germ cells of Fabp9-null mice, thereby enabling spermatogenesis to continue. 

Our finding that that the testis contains transcripts encoding for both Dgat1 and Dgat2 and 

that these genes differ in their degree of upregulation with testicular development and in their 

distribution among cells, suggests their involvement in TAG biosynthesis as part of the 

testicular lipid homeostasis. TAG are the main neutral lipids present in adult rodent 

seminiferous tubules (Furland et al. 2003). That Dgat2 was increasingly expressed from 

spermatocytes to spermatids and from these to residual bodies is in agreement with the 

concurrently progressive increase of TAG levels we observed in rodent testis in this sequence 

((Oresti et al. 2010) and present results).   

The biosynthesis of TAG was proposed to function as one of the strategies used by 

developing spermatids while reducing their volume to become thinner and longer before 

being released as spermatozoa into the tubular lumen (Oresti et al. 2010). Intracellular 

organelles such as Golgi membranes, ribosomes or peroxisomes, which have important 

biosynthetic functions in germ cells during earlier stages, are no longer required in gametes. 

In the last stages of spermiogenesis, all surplus material in each spermatid including lipids is 

tightly condensed and enclosed in a subacrosomal cytoplasmic lobe, that is then released in 

compact form as a residual body (Russell et al. 1990). The volume occupied by membrane 

glycerophospholipids may be efficiently reduced by converting them partly into 

diacylglycerols and partly into free fatty acids, then combining these products into TAG, and 

confining such TAG into lipid droplets.  

In addition to diglycerides, DGAT2 requires fatty acids or acylCoAs to be carried to the site 

of TAG synthesis, a function that could be played by FABP9 —or alternatively by FABP12—

Subsequently, TAG need to be transported to, and stored in, lipid droplets. The increasing 

amounts of these subcellular inclusions with germ cell differentiation, detected in tissue 

sections with Nile Red, agrees with the finding that Plin2 mRNA level was higher in 
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spermatids and residual bodies than in spermatocytes. In other words, the differentiation-

related increase in the amounts of TAG and lipid droplets, concomitant with the increase in 

Fabp9, Dgat2 and Plin2 expression as spermatogenesis progresses suggests a functional 

connection between the products of these transcripts. The finding of a high concentration of 

these three mRNAs in residual bodies is intriguing, but reasonable if one considers that they 

have terminated their function related to protein synthesis in spermatids. In fact, these 

mRNAs are in fact a minor part of the total RNA that residual bodies were shown to contain 

(Shin et al. 2007). Although the ultimate biochemical fate of the RNA molecules confined in 

these particles remains to be established, the possibility that some of their hydrolysis products 

or related metabolites could serve regulatory functions relevant to spermatogenesis in Sertoli 

cells cannot be excluded. 
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FIGURE LEGENDS 

FIGURE 1. RT-qPCR analyses of Fabp3, Fabp5, Fabp7, Fabp9 and Fabp12 transcripts 

during postnatal testicular development in the mouse (P6, P10, and P18 refer to postnatal 

days). Data were normalized to Ppia and H2afz as internal reference using the 2
-∆ΔCt

 method 

(described in Materials and Methods). Values with different letters (a-d) are significantly 

different (P < 0.05). Statistical significance between different expression rates of all genes 

studied in a particular postnatal day is shown as supplemental data. 

FIGURE 2. RT-qPCR analyses of Fabp3, Fabp5, Fabp7, Fabp9 and Fabp12 transcripts in 

different cell types purified from mouse seminiferous tubules. SC, Sertoli cells; PS, pachytene 

spermatocytes; RS, round spermatids; RB, residual bodies. Data were normalized to Ppia and 

H2afz as internal reference using the 2
-∆ΔCt

 method. Values with different letters (a-d) are 

significantly different (P < 0.05).  Statistical significance between different expression rates of 

all genes studied in a particular cell type is showed as supplementary tables. 

FIGURE 3. FABP9 and FABP12 protein expression in mouse testis. Western blots from 

samples obtained from testis during postnatal development (A) and in different cell types 

obtained from adult testes. (B): SC, Sertoli cells; PS, pachytene spermatocytes; RS, round 

spermatids; ES, elongating spermatids; RB, residual bodies.  

FIGURE 4. RT-qPCR analyses of Dgat1, Dgat2 and Plin2 transcripts during postnatal 

development in the mouse testis (A) and in cells from the seminiferous epithelium of adult 

mice (B). SC, Sertoli cells; PS, pachytene spermatocytes; RS, round spermatids; RB, residual 

bodies. Data were normalized to Ppia and H2afz as internal reference using the 2
-∆ΔCt

 method. 

Values with different letters (a-d) are significantly different (P < 0.05).  Statistical 

significance between different expression rates of all genes studied in a particular postnatal 

day or cell type is shown in supplementary tables.  



25 

 

FIGURE 5. Testicular lipid droplets during postnatal testis development as revealed by Nile 

red staining and fluorescence microscopy (40X, bar = 100 μm). P6, P10, and P18 refer to 

postnatal days; AD, adults. In the panel labeled as AD 63X, the localization of different lipid 

droplets is illustrated, showing their intense concentration in the interstitium (asterisks). 

Within seminiferous tubules, two populations of lipid droplets are evident: a smaller one 

typically facing the tubular lumen (arrow heads) and a less numerous, larger and more 

disperse type, located close to the basal membrane (arrows) of tubules. The lowest panel on 

the left corner shows the concentration of triacylglycerols (TAG) in the mouse pachytene 

spermatocytes (PS), round spermatids (RS) and residual bodies (RB) employed in this study. 

TAG were quantified by their fatty acids, and their concentration is expressed on the basis of 

a fixed amount of lipid phosphorus (P). 

FIGURE 6. Amounts of main fatty acids in TAG and glycerophospholipids (GPL) in the 

mouse germ cells and residual bodies employed in this study. PS, pachytene spermatocytes; 

RS, round spermatids; and RB, residual bodies. 
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Table 1. Sequences of primers for RT-qPCR

Forward atccatgtgcagaagtggaa

Reverse cactgccatgagtgagagtca

Forward acggctttgaggagtacatga

Reverse ctcggttttgaccgtgatg

Forward caagaacacagagatcaatttcca

Reverse catccaaccgaaccacaga

Forward cactgcagacaaccgaaaag

Reverse tctgtttgccaagccatttt

Forward ttgaaaactacatgaaggaattgg

Reverse agtgggctttgccagaca

Forward ggtcaaggccaaagctgtc

Reverse gatctcggtaggtcaggttgtc

Forward tactccaagcccatcaccac

Reverse ggcatggtacaggtcgatgt

Forward cagccaacgtccgagatt

Reverse actgtgctggctacagaatcc
Plin2 (107 nt)

Fabp12 (71 nt)

Dgat1  (95 nt)

Dgat2  (93 nt)

Fabp5 (122 nt)

Fabp7 (92 nt)

Fabp9 (86 nt)

Gen Primer Sequence Amplicon Length

Fabp3 (91 nt)
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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