
Performance of activated carbons in consecutive phenol photooxidation cycles 

 

Leticia F. Velasco1,2, Rocio J. Carmona1, Juan Matos3, Conchi O. Ania1*  
1 Adsorption and Environmental Remediation on Porous Solids (ADPOR), Dpt. Chemical 

Processes for Energy and Environment, Instituto Nacional del Carbón, INCAR-CSIC, Apdo. 

73, 33080 Oviedo, Spain 
2 Dpt. Chemistry, Royal Military Academy, Renaissancelaan 30, 1000 Brussels, Belgium 
3 Dpt. Photocatalysis and Alternative Energies, Venezuelan Institute for Scientific Research 

(IVIC), 20632, Caracas 1020-A, Venezuela 

 

Abstract 

The long term performance of semiconductor-free activated carbons showing photochemical 

activity was explored by monitoring the photodegradation of phenol from aqueous solution 

along 20 hours of illumination in consecutive photocatalytic cycles. The efficiency of the 

process was evaluated in terms of phenol conversion, mineralization degree and evaluation of 

degradation intermediates upon cycling. Data showed a strong dependence of the 

photooxidation efficiency on the hydrophobic/hydrophilic nature of the carbons. The 

outstanding role of dissolved oxygen as a promoter of phenol photodegradation through the 

formation of O-radicals upon illumination of the carbons was also demonstrated. The excess 

of oxygen not only improved phenol conversion and mineralization, but delayed the clogging 

of the carbon’s porosity upon cycling. This is important since a fraction of the photooxidation 

reaction also takes place inside the porous network of the carbon materials. Overall, the 

performance of the activated carbons, especially in conditions of excess of oxygen, is 

comparable to that of commercial titania.  
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1. Introduction 

Photochemical reactions are useful for the degradation of refractory pollutants, since the 

excitation of electronic molecular states at energies provided by light may induce chemical 

bond breaking [1]. However, the large-scale implementation of photocatalytic processes in 

environmental remediation is yet hindered by technological and economical drawbacks 

(mainly low semiconductor activity under visible light, high recombination rate of 

photogenerated electron–hole pairs, and recovery and reutilization issues) [2]. Addressing 

these problems calls out for a research to be conducted to enhance the performance of 

semiconductors or to explore the possible use of other types of materials in this kind of 

applications. Among different approaches, the use of carbon materials in heterogeneous 

photocatalysis has attracted a lot of research efforts during the last years [3-8]. First 

investigations in the field focused on the use of carbons as supports or additives of TiO2, and 

the enhanced photocatalytic performance of carbon/TiO2 composites has been attributed to 

several factors associated to visible light absorption and the porosity the carbon support, 

and/or strong interfacial electronic effects [3-8]. 

More recently, our previous studies have demonstrated the self-photochemical activity of 

certain activated carbons under irradiation in the absence of conventional semiconductors and 

their ability to generate O-radical species upon UV irradiation [9-12]. Despite the increasing 

interest in the topic, there is still a dearth in the understanding of the origin of the carbon/light 

interactions accounting for the formation of the O-radicals and their enhanced performance 

under UV light. Although further studies are needed to establish the origin of the 

photochemical behavior of activated carbons, it is also necessary to corroborate their activity 

trough the performance of consecutive photodegradation runs. In order to be competitive with 

other materials, activated carbons for photo-oxidation must fulfill the requirements of long 

cycle life, and good degradation efficiency. Thus, the objective of this work was to explore 

the potential application of activated carbons showing photochemical activity in wastewater 

remediation [9], by investigating their performance towards the photocatalytic degradation of 

phenol from solution after several consecutives runs, and their stability under prolonged 

exposure to UV light (ca. 20 h). Scarce studies are available in the literature dealing with the 

long-term cycling performance of photocatalysts, including our previous data on 

carbon/titania composites [13]. Moreover, to the best of our knowledge this is the first time 

that the response of semiconductor-free activated carbons as photocatalysts are tested through 

the performance of consecutive photocatalytic runs.  



The choice of the activated carbons was based on our previous works reporting their good 

performance towards phenol photooxidation in the absence of semiconductors after 6 hours of 

irradiation [9]. Moreover, their rich surface chemistry allowed to study the influence of the 

carbon functionalization on their long-term stability and photodegradation performance under 

UV light, compared to that of commercial TiO2 under similar experimental conditions. The 

efficiency of the systems was evaluated in terms of phenol conversion and mineralization 

degree upon consecutive cycles; the evolution of the main phenol photodegradation 

intermediates was also assessed upon cycling. Additionally, the role of the oxygen as a 

promoter of phenol photooxidation was studied. Experiments have been carried out for 20 

hours of illumination, and data showed that the performance of the activated carbons, 

especially in conditions of excess of oxygen, is still comparable to that of commercial titania. 

Although the results obtained can be very dependent on the nature of the carbons investigated 

and further studies would be needed using other carbon materials, we expect that the general 

trend would be the same for other carbons showing similar characteristics (concerning surface 

functionalization, hydrophobicity, pore texture and phenol photodegradation yields). 

 

2. Experimental 

2.1 Materials  

A commercial powdered lignocellulose-based activated carbon (sample CV, phosphoric acid 

activation) and with a mean particle size below 45 μm was selected for this study [9]. A 

second sample (labeled as CVH) was prepared by thermal treatment at 850 ºC under inert 

atmosphere (30 min, N2 flow 50 ml/min) of carbon CV to remove the surface functionalities, 

thus obtaining a more hydrophobic material. For the sake of comparison, commercially 

available titania powders (Evonik, P25) were also used as a reference photocatalyst in this 

kind of applications. The main physicochemical characteristics of the tested materials are 

compiled in Table 1 and Fig. S1 and S2 in Suppl. Info.  

 

2.2 Photodegradation runs 

Photodegradation experiments were carried out at room temperature using a photo-reactor of 

400 mL capacity and a loading catalyst ratio of 0.5 g/L. The UV irradiation source was 

provided by a high pressure mercury lamp (Helios Italquartz, 125 W, emitting at 313, 360, 

404, 436, 546, 577 and 579 nm), vertically suspended in a cylindrical, double-walled quartz 

jacket cooled by flowing water, immersed in the solution. The water cell was used to control 

the temperature during the experiments, preventing any overheating of the suspension due to 



the irradiation. In each run, about 200 mg of the catalysts (either carbon or titania) were added 

to 400 mL of phenol solution under continuous and vigorous stirring (900 rpm); then the 

suspensions were allowed to equilibrate under dark conditions before being illuminated. After 

the equilibration step, the suspension was irradiated for 180 min.  

Table 1. Main physicochemical characteristics of the selected activated carbons obtained 

from gas adsorption, elemental analysis, point of zero charge, Boehm titration and 

TPD-MS.  

  CV CVH TiO2 

SBET [m2g-1] 1280 1040 53 

VTOTAL [cm3g-1]a 1.014 0.787 0.083 

VMICROPORES [cm3g-1]b 0.314 0.272 -- 

VMESOPORES [cm3g-1]b 0.517 0.357 -- 

C [wt.%] c 84.6 90.9 -- 

H [wt.%] c 2.4 0.9 -- 

N [wt.%] c 0.1 0.1 -- 

S [wt.%]  -- -- -- 

O [wt.%] c 12.0 5.9 -- 

Ash [wt.%]c 0.9 2.2 -- 

pHPZC 2.2 6.5 5.2 

Amount CO2 [mmol/g]d 0.45 1.93 -- 

Amount CO [mmol/g]d 0.06 0.51 - - 

Carboxilic groups [meq/g] e 0.41 0.07 -- 

Lactones [meq/g] e 0.31 0.12 -- 

Phenolic groups [meq/g] e n.d. 0.04 -- 

Total Acidic groups [meq/g] e 0.72 0.23 -- 

Total Basic groups [meq/g] e n.d. 0.24 -- 
a evaluated at relative pressure ~0.95 
b evaluated from DFT method applied to N2 adsorption data 
c on dry basis 
d quantification from TPD-MS  
e Boehm titration (n.d., not detected) 

 

Since we are using porous carbons, to maintain the same phenol concentration in solution at 

the beginning of each cycle (ca. 50 ppm), a pre-equilibration step at dark conditions was 



carried out (Fig. 1). Phenol adsorption kinetics and capacity of the activated carbons were 

previously evaluated at dark conditions to establish the time required for the equilibrium (ca. 

30 min in all the samples) and the amount adsorbed. Hence before the irradiation was applied, 

CV and CVH carbons were allowed to pre-equilibrate with phenol solutions of 65 and 78 ppm 

concentration, respectively. Furthermore, to maintain the same initial concentration and 

volume of phenol solution at the beginning of each cycle, 5 mL of a concentrated phenol 

solution (ca. 1500-2500 ppm, depending on the carbon) were added to the photoreactor in 

order to begin the next photocatalytic run in similar conditions than the previous one. 

Fig. 1 . Sketch illustrating the experimental procedure followed for the consecutive phenol 

photooxidation cycles on sample CVH. Arrows indicate the beginning/end of the 

irradiation period. 

 

Small aliquots of the solution (~1 mL) were taken out at predetermined time intervals and 

analyzed by reverse-phase HPLC (Spherisorb C18 column 125 mm x 4 mm, methanol to 

water 5:95, 30 ºC, 0.7 ml/min flow rate, photodiode array detector). The samples were 

previously filtered using regenerated cellulose filter having mean pore size of 0.45 μm. Total 

organic carbon (TOC) of the solution at the end of each run was also measured in a TOC-V 

analyzer. To keep constant the initial concentration for each photocatalytic cycle, a spike of a 

concentrated phenol solution (recalculated from the amount of phenol remaining in solution) 
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was added to the suspension; subsequently, the next run was carried out under similar 

conditions of equilibration for 30 min under dark followed by illumination for 180 min. 

Photodegradation cycles were carried out in the presence of air, under ambient conditions (no 

external air supply) and O2 saturation conditions (provided by continuous air bubbling 

through the solution). Direct photolysis (non-catalyzed reaction) of phenol was performed 

through the irradiation of an aqueous solution of phenol in the absence of catalyst. All the 

experiments were done in triplicate with deviations below 5 % in all cases; reported data 

represent the average values.  

 

2.3 Textural and Chemical Characterization  

The porous texture of the samples was characterized by measuring the N2 adsorption 

isotherms at -196 ºC (ASAP 2010, Micromeritics) before and after the consecutive 

photocatalytic cycles. Before the experiments, the samples were outgassed under vacuum (ca. 

10-3 torr) at 120 °C overnight. The isotherms were used to calculate the specific surface area, 

SBET, total pore volume, VT, and pore volumes using the DR formulism and non-local density 

functional theory (DFT). Elemental analysis was carried out in LECO CHNS-932 and LECO 

VTF-900 automatic analyzers. The surface chemistry of the carbons was further characterized 

by temperature programmed desorption (TPD) analysis and Boehm titration. TPD 

experiments were performed with samples of about 100 mg in a Chemisorb 2750 apparatus 

(Micromeritics), under an argon flow rate of 50 cm3 min−1, at a heating rate of 15 °C min−1, 

up to a final temperature of 900 °C. The amounts of CO and CO2 evolved during the 

experiment were quantified by means of a mass quadrupole (Balterzs). Boehm method was 

carried out by neutralization with bases of increasing strength: NaHCO3, Na2CO3 and NaOH 

[14]. About 0.5 g of the carbon was put in contact with 100 ml of 0.05N base solution in 

sealed flasks. The suspensions were shaken for 16 h and then filtered. The excess of base 

remaining in the solution was determined from back titration after adding an excess of 

standard HCl solution. It was assumed that NaHCO3 neutralizes all carboxylic groups, 

Na2CO3 -carboxylic and lactonic groups- and NaOH -carboxylic, lactonic and phenolic 

groups-. The total number of basic sites was determined with 0.05 N HCl [15]. The procedure 

is the same as above mentioned, as back-titration of the excess of HCl was performed using a 

0.05 N NaOH solution. 

 
2.4 Spin Trapping Electron Spin Resonance (ESR) Measurements 



The formation of paramagnetic species during irradiation of carbon suspensions in aqueous 

solution was detected by Spin Trapping ESR measurements, using 5,5-dimethylpyrroline-N-

oxide (DMPO) as trapping agent [16]. About 2.5 mg of the samples were suspended in 5 ml 

of HClO4 buffer at pH 3 (final solids concentration 0.5 g/L), and 10 μL of DMPO was added 

to the suspension to reach a final concentration of 18 mM, introduced in quartz tubes and 

irradiated for 20 minutes (Philips TL K40W/05 lamp, with a broad emission peak centred at 

365 nm). ESR spectra were immediately recorded from the solution (after filtering out the 

solids) at room temperature on a Bruker ESP 300E X band spectrometer with the following 

spectral parameters: receiver gain 105; modulation amplitude 0.52 G; modulation frequency 

100 KHz, microwave frequency 9.69 GHz; microwave power 5.024 mW; conversion time 

40.96 ms; center field 3450 G, sweep width 120 G. Simulations of the individual components 

of the ESR spectra were obtained using the Winsim 2002 software [17].  

 

3. Results and discussion 

 

The choice of the pristine carbon used in this work was based on its physico-chemical 

features (Table 1) and its good performance towards phenol photooxidation in the absence of 

semiconductors after 6 hours of irradiation [9]. Furthermore, this adsorbent is commonly used 

for the removal of phenolic compounds in the purification of industrial wastewater and 

drinking water. Although phenol photodegradation efficiency in solution has been previously 

reported for carbon CV, herein we investigate the performance under long illumination times 

during consecutive photodegradation cycles. Also the chemical composition (surface 

chemistry and low ash content, as seen in Table 1 and Fig. S2) makes it a good candidate to 

explore the role of the surface chemistry on phenol photooxidation reaction upon cycling.  

The outcome of previous studies is used here only for data interpretation. 

Due to the characteristics of our irradiation source, the photolytic breakdown of phenol under 

our conditions was rather large (see Fig. S3); however the overall efficiency and 

mineralization extent of direct photolysis is very poor (TOC value drop by 8 % after 3 h) 

because apart phenol, none of the intermediates are further decomposed. As the yield of direct 

photolysis is highly dependent on the concentration from solution [18], the photocatalytic 

cycles were designed so as to maintain a constant phenol solution at the initial stage of the 

illumination step (thereby controlling the effect of the photolysis for all the studied materials).  

Also, based on their porous nature and different surface chemistry (Table 1), these carbons are 

expected to show different adsorption capacities. This is expected to modify the concentration 



of phenol in solution in the course of the photooxidation reaction and should be taken into 

account to compare their performance on consecutive photodegradation cycles (discriminating 

between the photooxidation reaction and the adsorption, both occurring simultaneously), as 

well as to compare vs non porous titania powders as reference catalysts (SBET = 50 m2/g), in 

which the amount of phenol adsorbed is almost negligible (~3%).  

Indeed, Fig. 2 shows the kinetics of adsorption and equilibrium adsorption isotherms of 

phenol obtained at dark conditions on both carbons, where their different adsorption behavior 

is evidenced. A summary of the Langmuir adsorption parameters and surface coverage is 

compiled in Table S1 and Fig. S4. The adsorption kinetics was very fast, with the maximum 

uptake attained after 20-30 minutes in both carbons. This is consistent with their well 

developed micro/mesoporous network as shown in Table 1; even after thermal treatment the 

porosity remained rather unchanged, beyond a slight drop or the total pore volume but 

preserving the micropore to mesopore ratio. This slight structural annealing upon heating at 

high temperatures is rather common on carbon materials [19, 20]. On the other hand, the 

amount adsorbed is almost twice larger on carbon CVH compared to CV. This is also 

consistent with its more basic nature, as phenol is favorably adsorbed in hydrophobic carbons 

[21-24].   

 

Fig. 2. Equilibrium adsorption isotherms of phenol (A) and kinetics of adsorption (B) under 

dark conditions on carbons CV and CVH.  
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For all these reasons, and to avoid biased interpretations, the photocatalytic experiments were 

designed allowing the carbons to equilibrate in contact with the phenol solution for 30 min 

before exposing to UV light. The initial phenol concentration was calculated for each carbon 

considering the equilibrium adsorption isotherms (Fig. 2), so as to obtain a concentration of 

50 ppm in solution after the equilibration step. As mentioned above, this will keep the direct 

photolysis constant in all the experiments. Furthermore, it is important to point out that, even 

though both carbons have different adsorption capacities, for both materials the chosen 

experimental conditions correspond to an almost full coverage of the carbon surface, with 

respect to their corresponding maximum uptake. For instance, the amount adsorbed 

accounting for 50 ppm phenol equilibrium concentration is ca. 46 and 116 mg/g for CV and 

CVH, respectively, which correspond to a surface coverage of 93 and 96 % for both carbons 

(Fig. S4). This is most important since in previous works we have demonstrated that the 

photocatalytic degradation of the pollutant adsorbed inside the porosity of the carbons also 

occurs upon irradiation in solution [9]. Thus, under these experimental conditions the direct 

photolysis and the degradation rate of the confined species on the porosity maintained 

constant for both carbons. This should be advantageous for a direct comparison of the overall 

photocatalytic yield upon cycling of the activated carbons monitored in solution.  

 

3.1. First photocatalytic cycle  

 

Fig. 3 and 4 show the evolution of phenol concentration and its degradation intermediates 

after several hours of illumination for the carbon materials compared to titania powders. The 

first cycle, discussed in this subsection, is compared for the three materials for clarity 

purposes. Experiments were initially conducted in the presence of air but without an external 

supply of oxygen (ambient conditions). When comparing the performance of the carbon 

materials for phenol photo-oxidation to that of titanium dioxide, several differences become 

clear. First, the overall phenol conversion after one cycle (i.e. 180 min) is rather high for all 

the processes, with slight higher values for both activated carbons compared to titania. Since 

the photocatalytic runs were preceded by an equilibration step and thus the porous voids of 

the activated carbons are already filled with phenol molecules when the irradiation starts, it 

seems reasonable to consider that the disappearance of the pollutant from the solution under 

these conditions is mainly due to a photocatalytic process.  



Secondly, the total amount of degradation intermediates was again slightly lower for both 

carbon materials and the distribution of degradation intermediates was also dependent on the 

type of catalyst, with a marked regioselective photoxidation for the activated carbons and the 

titania powders. For instance, oxidation of phenol in para- position to form quinones 

(hydroquinone and benzoquinone) is predominant when using titania as catalyst (under these 

operating conditions), as opposed to preferential ortho- position (1,2 catechol) in the case of 

both activated carbons. The regioselective formation of catechol over quinones is considered 

more advantageous for the overall reaction yield; according to literature, catechols are more 

reactive than quinones (due to the stability of intermediates formed) [25, 26], as a result of 

which the degradation pathway of catechol proceeds through a simple mechanism involving a 

less number of intermediates (organic acids).  

 

Fig. 3. Evolution of phenol concentration after several consecutive photocatalytic cycles on 

carbon CV, carbon CVH and TiO2 under excess (solid symbols) and depleted (empty 

symbols) oxygen supply. For clarity, comparison of the performance of the three 

studied materials is shown for (A) the first and (B) all the cycles; circles (CV), 

squares (CVH), triangles (TiO2).  

 

In all three cases negligible amounts of the meta-hydroxylated compound (resorcinol) were 

detected. Interestingly, trace amounts of a trihydroxylated intermediate (1,2,4 
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trihidroxybenzene) were formed in the catalyzed reactions (but not upon direct photolysis). 

The formation of this trihydroxylated derivative seems to be somehow related to the 

acidity/basicity of the catalysts, as larger amounts were detected for both CV and TiO2 

(hydrophilic materials), and almost negligible amounts for the more hydrophobic carbon 

(CVH). No traces of other phenol coupling subproducts were detected despite they are rather 

frequent upon direct hydroxylation by free radical reagents in solution [25].   

The different distribution of hydroxylated degradation intermediates in the presence of carbon 

materials in the first cycle is in good agreement with the data reported in the literature [5, 9, 

13, 27, 28]. In most cases the participation of catechol and quinones is described, and scarce 

mention is found to trihydroxylated products, although they have been detected as primary 

and secondary hydroxylation intermediates at quite small concentrations [29, 30].  

Fig. 4. Evolution of main phenol photooxidation intermediates detected in solution upon the 

consecutive photocatalytic cycles on the studied materials under excess (top, solid 

symbols) and depleted (bottom, empty symbols) oxygen supply. Hydroquinone 

(circles); benzoquinone (down triangles); catechol (squares); 2,4,6-

trihydroxybenzene (up triangles); resorcinol (crosses); 1,3,5-trihydroxybenzene 

(diamonds). 
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Considering that the ortho- and para- substitution are the preferred positions in electrophilic 

substitution of aromatic rings, it seems reasonable that the formation of the hydroxylated 

products follows an electrophilic mediated pathway or an electron transfer process promoted 

by hydroxyl radicals, direct hole-oxidation, or some other transient one-electron oxidants [31, 

32]. The poor oxidation extent of the intermediates -compared to phenol- indicates the 

preferential reactivity of the radicals towards the aromatic ring, rather than to phenol 

subproducts [31], which is also characteristic of electrophilic mechanisms. A similar 

photodegradation pathway via electrophilic substitution of the aromatic ring has been reported 

for 4-chlorophenol [33].  

It should also be mentioned that electrophilic additions are favoured at acidic pH [31], which 

is consistent with the higher oxidation yields obtained for TiO2 and CV, both acidic materials 

(COOH moieties in the carbon are Bronsted acid sites, whereas Ti atoms with oxygen 

vacancies are Lewis acid sites). In the case of CVH, its more basic nature could delay the 

electrophilic substitution reaction, due to the increased basicity of the reaction medium in 

contact with the more hydrophobic carbon which adsorbs H+.  

The analysis of the TOC values from solution after 3 hours of irradiation (Table 2) shows a 

similar trend, with rather smaller values for carbon CVH. Indeed, the mineralization degree 

after the first cycle (accounting for the mass balance evaluated from the initial and final TOC 

values of the corresponding cycle) was about 50% for TiO2 and CVH, slightly higher than the 

42% for sample CV. This points out the better performance of the carbons (at least) in the first 

cycle, not only in terms of phenol conversion but also in the complete mineralization.  

 

Table 2. Total Organic Carbon (TOC, mg C/L) values in solution after the consecutive 

photocatalytic cycles. Shaded values correspond to the experimental carried out 

under excess of O2. Initial TOC value was 38 mg C/L for all the samples.  

 

 Cycle 1 Cycle 3 Cycle 6 

CV 22.2 22.2 47.5 40.2 66.4 36.4 

CVH 18.1 18.1 43.6 38.3 51.2 40.0 

TiO2 19.3 19.3 30.5 29.6 49.8 45.3 

 

3.2. Consecutive photocatalytic cycles 

On the other hand, the situation changes when the materials are submitted to consecutive 

illumination cycles (Fig. 3 and 4). The performance of the activated carbons gradually 



decreases with the number of the cycles, being this effect more remarkable in the acidic 

carbon (sample CV). After the third run the overall phenol efficiency reaches a plateau at 

about 50 % conversion after the first 90 min of irradiation in every run. This is in agreement 

with the accumulation of intermediates observed for the first cycles, where it seems that the 

materials are capable of promoting the photodegradation of phenol but not that of the 

polyhydroxylated intermediates.  

For titania powder the tendency seems to be more stable (Fig. 3 and 4); although the 

conversion of phenol still reaches values around 60% upon cycling, the degradation of the 

intermediates seems to be less efficient (or delayed) with the number of cycles, as an 

important accumulation of hydroxylated intermediates was also detected after 400 min (2-3 

cycles). The preferential oxidation to quinones dominates the photocatalytic reaction of TiO2 

showing a maximum concentration in the first 4 hours, followed by a gradual fall below 1-3 

ppm. After this point, the amount of catechol started to accumulate in solution with the 

number of cycles, following the same pattern described for both carbons.  

Although some differences are evident in the evolution of the TOC values within the cycles 

(Table 2), the three samples perform quite similarly in terms of degree of mineralization after 

the sixth cycle. The total organic carbon loading treated in the whole process (after the 6 

cycles) was about 228 mg C/L, leading to very close mineralization yields for samples TiO2, 

CVH and CV: 78, 78 and 71%, respectively. This leads us to conclude that the photocatalytic 

efficiency of the carbon is comparable to that showed by the commercial titania. This 

contrasts with the different trend of phenol disappearance from solution showed in Fig. 3, and 

the higher accumulation of aromatic intermediates when irradiating the activated carbon 

(Fig. 4). Both results indicate that the accumulation of short alky chain acids (final 

degradation intermediates during phenol photo-oxidation) would be higher for titanium oxide 

than for the activated carbons.  

We attributed the fall in the efficiency to an eventual depletion of the dissolved oxygen 

present in the solution during the cycles, since they were carried out in the presence of air but 

without an external supply of oxygen. The influence of molecular oxygen will be further 

discussed below.  

Furthermore, molecular oxygen is known to be a good electron scavenger to generate 

superoxide anions, which could contribute to the oxidation of the pollutant in solution. The 

formation of O-radicals upon illumination of suspensions of the activated carbons was 

confirmed by Electron Spin Resonance spectroscopy, using DMPO as spin trap (Fig. 5). The 

ESR spectra of all three samples showed the characteristic quartet peak profile with 1:2:2:1 



intensity (g = 2.006, aN = aβH = 14.8 G hyperfine splitting constants), due to the formation of 

DMPO-OH adducts [16, 34] attributed to the presence of hydroxyl and/or superoxide radicals 

in the reaction medium (superoxide anion is unstable in water and is rapidly converted to •OH 

radical, eventually contributing to the DMPO-OH adduct signal) [34,35]. Simulation of the 

experimental spectra allowed the identification of a second adduct for titanium dioxide, 

(HDMPO-OH adduct, aN=14.6 G, aγH=1.1 G) [34], with a relative abundance close to 20%. 

These adducts were not detected when the DMPO solution was illuminated alone, confirming 

that they are generated during irradiation of herein studied catalysts and corroborating the 

high reactivity in the presence of molecular oxygen.   

 
Fig. 5. (A) Example of the ESR signal measured after UV irradiation of aqueous suspensions 

of the activated carbons and titania powders. (B) Quantification of the radical species 

corresponding to DMPO-OH adducts by integration of the intensity of the second 

peak in the profiles, as marked by the star.  

  

Moreover, integration of the intensity of the second peak in the profiles allowed the 

quantification of the radical species (Fig. 5B). Although lower concentrations were obtained 

in the carbons, compared to TiO2, it is interesting to recall that the amount of radicals was 

larger for CVH than CV. This suggests that the presence of O-containing functionalities on 

the carbon matrix has a negative impact on the detection of radicals. A similar behavior with 

the extent of the carbon oxidation has been reported for other carbons [11]. It should be noted 

that despite the low concentration of radicals detected in solution, carbon CV displayed 
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similar activity towards phenol photooxidation than CVH (Fig. 3 and 4), being higher than 

other carbons with larger ESR signals [11, 12].  

 

3.3. Consecutive photocatalytic cycles under excess of oxygen 

The role of the oxygen as a promoter of phenol photooxidation was further confirmed 

measuring the cycles under continuous oxygen supply (Fig. 3 and 4), to avoid an eventual 

depletion of dissolved oxygen in solution during the cycling. 

The loss of activity towards phenol conversion after consecutive cycles was less pronounced 

under excess of oxygen, particularly for carbon CV that had shown a marked deactivation 

upon cycling. In fact, the performance of both carbons was similar to that of titanium dioxide. 

As for the intermediates, the amount detected is lower when the cycles are carried out under 

excess of oxygen (Fig. 4), confirming that dissolved oxygen is consumed during the 

photocatalytic reaction, likely through the formation of O-radicals. Also, the regioselectivity 

towards the formation of catechol over quinones in the activated carbons is still maintained. 

The enhanced photocatalytic conversion under excess of oxygen is also in agreement with 

TOC values (Table 2) that show a higher mineralization of phenol.  

Based on these results, it can be assumed that the formation of O-radicals upon illumination 

of the catalysts is important to achieve high phenol conversions and mineralization. Direct 

hole oxidation of phenol to form catechol and trihydroxylated intermediates should not be 

discarded [37], although this reaction typically displays a slow kinetics [38]. With increasing 

the concentration of dissolved oxygen, the rate for the recombination of the photogenerated 

species is reduced due to the competitive electron scavenging by oxygen; as a result, the 

generation of O-radicals would be improved. The effect was very marked in the hydrophilic 

carbon, but it was evident also for CVH and the titania powders (Fig. 5). A similar role of 

dissolved oxygen has been reported for the mineralization of phenol in aqueous TiO2 

suspensions [39,40]. Moreover, TOC values (Table 2) revealed that the degree of 

mineralization also depended on the supply of oxygen introduced to the photoreactor, being 

the differences higher after longer irradiation times (i.e., increasing the number of cycles).  

Although some of the intermediates detected have more toxicity than phenol itself [41], they 

are detected at a trace level after six cycles (Fig. 4); in all cases at much lower values 

compared to the overall phenol concentration treated during the course of the reaction (ca. 300 

ppm).  

The porosity of the carbons decreased gradually with the number of cycles, as shown in 

Fig. 6, indicating that further adsorption occurs to some extent in the course of the 



photooxidation experiments. The clogging of the porosity affected mostly the specific surface 

area and microporosity, which is somehow expected since both textural parameters are 

closely related and micropores are known to be the active sites where phenol and its aromatic 

photo-oxidation products are preferably adsorbed [21]. The collapse of the porosity upon 

cycling was more pronounced for sample CV, indicating that a higher amount of species are 

adsorbed inside its porous network. This result was somehow expected taking into account 

that this carbon leads to lower photodegradation and mineralization yields than sample CVH. 

It has to be considered that a greater amount of remaining phenol and its oxidation products 

are present in solution when irradiating carbon CV, favoring the extension of the adsorption.  

Fig. 6. Evolution of the porous features of the catalysts upon consecutive irradiation cycles 

under depleted (light grey) and excess (dark grey) dissolved oxygen conditions for the initial 

carbons, after adsorption at dark conditions and after consecutive photocatalytic runs (first 

and sixth cycles).  

 

Moreover, the evolution of the porous features of the carbons during the consecutive cycles 

was very dependent on the presence of dissolved oxygen in the reactor. Under excess of 

oxygen, the collapse of the porosity upon consecutive runs is significantly lower, which 

confirms that in these conditions phenol and its degradation intermediates are photo oxidized 

rather than adsorbed in the porosity of the carbons (which would lead to lower porous 

features). These results are in agreement with the higher photodegradation performance 
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(Table 2 and Fig. 3 and 4), and thus corroborate the outstanding role of dissolved oxygen as a 

promoter of phenol photooxidation.  

 

4. CONCLUSIONS  

 

The performance of activated carbons with different surface chemistry after 20 hours of 

illumination in consecutive photocatalytic cycles for the photodegradation of phenol has been 

evaluated and compared to that of commercial TiO2 under similar experimental conditions. 

The overall performance of the activated carbons upon cycling was comparable to that of 

commercial titania -especially in conditions of excess of oxygen- with close mineralization 

yields in all three studies materials after six consecutive cycles (ca. 20 hours of illumination).  

Data showed a strong dependence of the photocatalytic efficiency on the basic/acidic nature 

of the activated carbons, with a lower performance for the hydrophilic carbon. For the 

activated carbons, a marked accumulation of phenol degradation intermediates was observed 

during cycling, with preferential formation of catechol over quinones. For titanium oxide, the 

concentration of aromatic intermediates is lower but still TOC values show low 

mineralization due to the accumulation of short alkyl chain organic acids.  

Phenol conversion and mineralization rates were greatly enhanced in the presence of excess 

of dissolved oxygen in the solution, demonstrating the outstanding role of oxygen in the 

photooxidation of phenol. This was critical for the long-term performance of the hydrophilic 

carbon, which showed a sharp fall in phenol conversion upon cycling under oxygen depletion 

conditions. The evolution of the porous features of the carbons was also very dependent on 

the presence of dissolved oxygen. The lower collapse of the porosity under oxygen excess 

indicates a higher conversion of phenol and its degradation intermediates. Furthermore, the 

formation of O-radicals upon illumination of both activated carbons and titanium dioxide was 

evidenced by electron spin resonance spectroscopy. Both results confirmed that the formation 

of •OH and •O2
- is important to achieve high phenol conversions and mineralization yields, 

particularly for activated carbons.  
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Figures Captions 

 

Fig. 1. Sketch illustrating the experimental procedure followed for the consecutive phenol 

photooxidation cycles on sample CVH. Arrows indicate the beginning/end of the 

irradiation period. 

Fig. 2. Equilibrium adsorption isotherms of phenol (A) and kinetics of adsorption (B) under 

dark conditions on carbons CV and CVH.  

Fig. 3. Evolution of phenol concentration after several consecutive photocatalytic cycles on 

carbon CV, carbon CVH and TiO2 under excess (solid symbols) and depleted 

(empty symbols) oxygen supply. For clarity, comparison of the performance of the 

three studied materials is shown for (A) the first and (B) all the cycles; circles (CV), 

squares (CVH), triangles (TiO2).  

Fig. 4. Evolution of main phenol photooxidation intermediates detected in solution upon the 

consecutive photocatalytic cycles on the studied materials under excess (top, solid 

symbols) and depleted (bottom, empty symbols) oxygen supply. Hydroquinone 

(circles); benzoquinone (down triangles); catechol (squares); 2,4,6-

trihydroxybenzene (up triangles); resorcinol (crosses); 1,3,5-trihydroxybenzene 

(diamonds). 

Fig. 5. (A) Example of the ESR signal measured after UV irradiation of aqueous suspensions 

of the activated carbons and titania powders. (B) Quantification of the radical species 

corresponding to DMPO-OH adducts by integration of the intensity of the second 

peak in the profiles, as marked by the star.  

Fig. 6. Evolution of the porous features of the catalysts upon consecutive irradiation cycles 

under depleted (light bars) and excess (dark bars) dissolved oxygen conditions for 

the initial carbons, after adsorption at dark conditions and after consecutive 

photocatalytic runs (first and sixth cycles).  

 

Tables Captions 

Table 1. Main physicochemical characteristics of the selected activated carbons obtained 

from gas adsorption, elemental analysis, point of zero charge, Boehm titration and 

TPD-MS.  



Table 2. Total Organic Carbon (TOC, mg C/L) values in solution after the consecutive 

photocatalytic cycles. Shaded values correspond to the experimental carried out 

under excess of O2. Initial TOC value was 38 mg C/L for all the samples.  

 


