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We introduce a class of models defined on ladders with a diagonal structure generafgpldyuettes. The
casen,=1 corresponds to the necklace ladder and has remarkable properties that are studied using density
matrix renormalization-group and recurrent variational ansatzes. The antiferromagnetic Heisétifdrg
model on this ladder is equivalent to the alternating spin-l/épm:H chain, which is known to have a
ferromagnetic ground stat&S). For doping 1/3 the GS is a fully dopédd,1) stripe with the holes located
mostly along the principal diagonal while the minor diagonals are occupied by spin singlets. This state can be
seen as a Mott insulator of localized Cooper pairs on the plaquettes. A physical picture of our results is
provided by at,-J,-ty model of plaquettes coupled diagonally with a hopping parantgtetn the limit ty
—oo Wwe recover the original-J model on the necklace ladder while for a weak hopping parameter the model
is easily solvable. The GS in the strong hopping regime is essentially an “on link”” Gutzwiller projection of the
weak hopping GS. We generalize thel,-ty model to diagonal ladders with,>1 and the two-dimensional
square lattice. We use in our construction concepts familiar in statistical mechanics such as medial graphs and
Bratelli diagrams[S0163-1829)05108-5

[. INTRODUCTION ferent properties of the even and odd, doped and undoped
ladders in order to arrive at a consistent picture of the 2D
Ladders provide a class of interesting theoretical modelsuprates. Ladder systems are sufficiently interesting on their
for studying the behavior of strongly correlated electron sysown to deserve detailed studies, in addition there are a vari-
tems. Besides representing simplified models for actual maety of materials that contain weakly coupled arrays of
terials, ladders offer a possible way of interpolating betweeradders>
one and two spatial dimensions with the hope that they will In this paper we study a class of ladders characterized by
yield insights into the physics of two-dimension@D) sys-  a diagonal structure that provides an alternative to the afore-
tems, such as the Cy®lanes of the cupratd$or a review  mentioned route to 2D. We shall call these objects diagonal

see Ref. L ladders in order to distinguish them from the more familiar
It has been found that ladders exhibit quite different be+ectangular-shaped ones. Diagonal ladders are labeled by an
havior depending on whether the number of legss even  integern,=1,2,..., which gives the number of elementary

or odd. Antiferromagnetic spin ladders with odd are gap- plaquettes needed to generate the entire structure. The first
less with spin-spin correlation functions decaying algebramember of this family, i.en,=1, is also known as the neck-
ically, while even-leg ladders are gapped with a finite spinlace ladder and it consists of a collection Nfplaquettes
correlation length. Upon doping, these two types of laddergoined along a common diagonal. In this paper we shall focus
also behave differently concerning the existence of pairing obn the necklace ladder, although the other cases will also be
holes or spin-charge separation. In the limit where the numbriefly considered.

ber of legs goes to infinity the spin gap of the even-spin The original motivation of this work was to understand
ladders vanishes exponentially fast, in agreement with théhe fully doped stripes in thél,1) direction that have been
gapless nature of the 2D magndn®n the other hand, the observed experimentally in materials such as
antiferromagnetic long-range ordéAFLRO) characteristic  La;_,SrNiO,,* in Hartree-Fock studies afJ and Hubbard

of the 2D antiferromagnetic HeisenberFH) model can be  models® and numerically in density matrix renormalization
more naturally attributed to the quasi-long-range order of thegyrou (DMRG) studies of the-J model” The simplest pos-
odd-leg ladders. It thus seems that one has to combine ditible toy model of this type of stripes is provided by a neck-
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FIG. 2. (a) Weak-coupling(dashed linesregime in rectangular
--------- ladders.(b) Strong-couping(dashed linesregime in rectangular
=3 N YN X Y e ladders.
....... In Fig. 1 we show diagonal ladders with,=1, 2, and 3.
There aren,+ 2 sites per unit cell. Assuming open boundary
FIG. 1. Examples of diagonal ladders with a number of conditions the total number of sites is then given Ky
plaguettesn,=1,2,3 in the unit cell. =(np+2)N+n,.

Rectangular ladders can be seen either as a collections of
lace ladder with a hole doping equal to 1/3. As we shall segegs coupled along the rungs or as collections of rungs
this doping plays an important role in our work. coupled along the legsee Fig. 2 This geometric feature is

Lattices similar to the diagonal ladders, but with addi-the basis of the weak-coupling and strong-coupling ap-
tional one-electron hopping terms along the major and minoproaches to the various physical models defined on ladders.
diagonals of each plaquette, and willit=0, have been Thus for example the Heisenberg model on théeg ladder
solved exactly for certain fiIIing%‘.lOGiesekug’ has shown js usually defined with an exchange coupling constint
that for the corresponding version of the necklace ladder, imlong the legs and an exchange coupling conslarglong
the case when all of the one-electron hopping terms are equgie rungs. The weak and strong coupling limits correspond to
and the hole doping is set to=1/3, the model has a short- the cases wherg>J, andJj<J,, respectively.
range resonating valence bo(RlVB) ground state, in which On the other hand, diagonal ladders do not admit such a
the static correlations exhibit an exponential decay and thgimple construction. The most natural interpretation is to re-
dynamic correlation functions exhibit a gap in their spectralgard them as collections of plaquettes joined along their
densities. common diagonalsee Fig. 3. The trouble with this con-

Let us also note in passing that diagonal ladders havetruction is that it does not preserve the number of sites!
recently appeared as constituent parts of some interestingdeed one has to fuse the points on the principal diagonal of
materials such as §iCay3¢Clh4O41.84, KNown for its super-  the plaquettes before getting the actual necklace structure.
conducting properties at high pressur€here are also con- We shall resolve this problem in Sec. VII on physical
jugated polymers with the structure of a necklace ladtfers. grounds.

The organization of the paper is as follows. In Sec. Il we
define the diagonal ladders from a geometrical viewpoint and
compare them with the more familiar ladder structures. In
Sec. Il we study the AF Heisenberg model of the necklace Let us begin by considering the AFH model on the neck-
ladder. In Sec. IV we study thieJ model on the necklace lace ladder of Fig. (B). The Hamiltonian of the model is
ladder and show the conservation of the parity of thesimply,
plaquettes. In Sec. V we present the ground-g@® struc-
ture of a necklace-J ladder with seven plaquettes, obtained
with the DMRG and recurrent variational ansaiVA) H:JZ S-S, @
methods. In Sec. VI we study in more detail the structure of i
the GS at doping 1/3. In Sec. VII we introduce a generalizedvhere J is a positive exchange coupling constant and the
t-J model on an enlarged necklace ladder, called th&-t;  sum runs over all linksi,j) of the ladder. We shall label the
model, and use it to give a physical picture of the results okites of thenth plaquette as in Fig. 4. The Hamiltonidh)
Secs. V and VL. In Sec. VIII we define thg-J,-t; model on  then becomes
diagonal ladders with more than one plaquette per unit cell
and on the 2D square lattice. In Sec. IX we state our conclu- N
sions. There are three appendices which give the technical H=J, (SintSopn) - (SsntSgn-1), 2
details concerning the RVA calculatioidppendix A), the n=1

complete spectrum of theJ Hamiltonian on a plaquette wheres, , is a spind operator acting at tha=1,2,3 posi-

(Appendix B and a plaquette derivation of the equwalencetion of the nth plaguette. Equationi2) implies thatH de-

g?;\évesetgt;hgf ?r?:antvxl/ oﬁgglg_;st:‘tlz dOCI E(?Asgggndiing the d'mer'pends on the spins of the minor diagonals through their sum

Il. GEOMETRY OF DIAGONAL LADDERS <><><><> — <>.<>_O_<>

A diagonal ladder can be characterized by the number of
plaquettes, of the unit cell and the numbét of these cells. FIG. 3. Plaquette constructigright) of a diagonal laddegeft).

I1l. SPIN NECKLACE LADDER
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At this stage we are free to choose the spins ofritie FIG. 6. Diagrammatic representation of the recurrent relations

diagonal in the singlet$,,,=0) or triplet (S;,,=1) repre-  generating the GS of an undoped necklace ladder using the varia-
sentations. In the latter case the Hamiltoni@h becomes tional RVA method(see Appendix A
entirely equivalent to that of an alternating spin-1/spin-

chain. Choosing a singlet on the minor diagonal of a givemear the center of the system are given <l$in>:<55,n>

plaguette amounts to adding a spin-zero impurity on the cor=( 396 and S% )= —0.292 in agreement with the results of
responding spin-1 site in the alternating chain, which thereges 13 namély(Sin>=0.39624 and(SZ,) = —0.29248.

fore breaks into two disconnected pieces. The net result iﬁ\lso using variational RVA methods we have fouf€f )
that the spin necklace ladder in fact describes aIternatingL04160 and(S:, )= — 0.2893 n
. n . .

i o . : : .
spin-1/spinz chains with all possible sizes. The existence of a very short correlation length suggests

Fortunately, the alternating spin-1/spinehain has been that the ferromagnetic GS is an adiabatic deformation of the

the subject of several studies concerning the ground statﬁ, : : .
o . . Neel state, which can be described by a short-range varia-
(GS), excitations, and thermodynamic and magnetic

propertiesl.3‘15 The GS tums out to be ferromagnetic with tional state. References 13 and 14 propose several variational

total spin aiven bvs~— N/2 whereN is the number of unit matrix product state¥ It is more convenient for our pur-
pIn 9 OYSe . oses to use the RVA of Refs. 20 and 21, in order to deal
cells of the chain. The later result is a consequence of

. . , ith doped and undoped cases on equal footing. The GS of a
general theorem proved by Lieb and Mattis concerning th(?adder of lengthN is built up from the states with lengths

atticost® Simiar results aiso hord for he repuisve Hubbara N LN~ 2. @nd eventualin 3 if N is odd. The GS thus
j P generated is a third-order RVA state. In Fig. 6 we show a

model at half-filling!” Shen and co-workers in Ref. 18 have 3 : . ;
i ; . diagrammatic representation of the corresponding recurrence
also established the existence of ferromagnetic long-rangée

order in the antiferromagnetic Heisenberg model and th (elations (we leave for Appendix A the technical details
agnet -Nberg Moy The Gs energy per site of the associated alternating chain
Hubbard model at half-filling in any bipartite lattice. that we obtain is given by-0.7233, which is to be com-

Moreover, as shown in Refs. 13-15, in the alternatm%ared with the extrapolated DMRG results0.727 04 or

spin-1/spins chain there are gapless excitations to state -~ .
with spin sg—1 and gapped excitations to states with spin he spin-wave value-0.718) of Pati, Ramasesha, and Sen.

sgt 1. In spite of the existence of gapless excitations, the
chain has a finite correlation lengé 1, defined from the IV. t-J MODEL ON THE NECKLACE LADDER
exponential decay of the spin-spin correlation function
(S-S;) after subtraction of the ferromagnetic long-range
contribution. These results have been obtained by a combi-
nation of spin-wave, variational, and DMRG techniques, His="Ps
with very satisfactory quantitative and qualitative agreement
among thent>*

We have confirmed some of these properties by applying —PG<t
DMRG and variational methods to the spin necklace ladder.
In Fig. 5 we present a snapshot of the spin configurations ofnere thec
the GS of an & 3 ladder, obtained with the DMRG, which
has total spirsg=4. We find that the mean value of the spins

The Hamiltonian of theé-J model is given by

J% <s-sj—%ninj>)7>e

(CiT’SCj’S-i- H. c.))Pg, (4)

(i.i)s

LS(CIS) is the electron destructioftreation) op-

erator for sitei and spins, n; is the occupation number op-

erator, andPg is the Gutzwiller projection operator which,

forbids doubly occupied sites. The density-density and ki-

netic terms in Eq(4) can be written in a form similar to Eq.

(2) for the exchange terms. This suggest that there will also

be a “decoupling” of degrees of freedom associated with the

transverse diagonals. The simplest way to see how this de-

’[‘ 0.45 coupling works is as follows.

For the necklacd-J ladder, there is a parity plaquette
FIG. 5. DMRG results for the spin configuration for the GS of COnservation theorerf: the t-J Hamiltonian on a necklace

an undoped & 3 necklace ladder. The state has total spir=4.  ladder commutes with every graded permutation opefgor

The length of the arrow is proportional {8,), according the scale associated with the minor diagonal of thth plaquette. Here

in the box. the permutation operatd?,(n=1,... N) is defined by its
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TABLE I. Classification of the states of the minor diagonal ofa  TABLE Il. DMRG and RVA total energies for a seven-
plaguette according to their paritp] = (c],c +cl,cl )/\V2is  plaguette necklace ladder withholes and total spis,. The string

the pair field operator. of epsilons is the pattern of parities in the subdiagoalegs.
State € h S (€1,..., €7) Figure EgMRCG EQVA

Two holes |0) 1 8 0 (+++++++) 7and8 -16.554153 -16.33996

Bonding (cls+chg)|o) 1 8 1 (+++—+++) 9  -16.284855 -16.00358

Singlet AlJo) 1 7 12 (++++++-) 10 -15489511 -15.18141

Antibonding (cis—clol0) -1 6 0 (—+++++—-) 11  -14.424805 -14.02286

Triplet (clcl +s—5)|0) -1 6 1 (—+++++-) 12  -14.424798 -14.02286

: 9 12 (+++++++) 13 -16.746112

10 0 (+++++++) 14  -16.927899
action on the fermionic operators, which is trivial at all the 10 1 (+++++++) 15  -16.718476
sites except for those on the minor diagonal of thih
plaquette, where it acts as

On the other hand, if the parity of the plaquette is even,

PnC<1,n),sP;=C(2,n>,s, then the corresponding site in the chain has four possible
states which can be put into one-to-one correspondence with
PnCi2m).sPh="C1ns- (5  those of a Hubbard model as follows:

Of course the spin and the density number operators at the
sites (1n) and (2n) are also interchanged under the action
of P,. The above theorem is the statement tRgatcom-
mutes withH, ;, Eq. (4), for all n,

Even diagonal— Hubbard site,
Empty(two holes «— empty(1 hole),

[Hey,Pa]=0 for n=1,... N (6) Bonding states(T,| )« single occupied stat€T,|),

and can be easily proved. Equati@®) is not special to the Singlet state— doubly occupied state. 9

t-J Hamiltonian, since any other lattice Hamiltonian having

the permutation symmetry between the two sites on the mi- |n this case the Hamiltonian of the model is a Hubbard
nor diagonal of every plaquette would share this same propsamiltonian with hopping parameter equal {@t and with

erty. _ . the same exchange and density-density couplings. There is
The immediate consequence of E@) is that we can o Hubbardy term.
simultaneously diagonalize the Hamiltonia#h, ; and the In summary, theorent6) implies that the necklace ladder

whole collection of permutations operatd?g, the possible s in fact equivalent to a huge collection of alternating chains
eigenvalues of which are given lsy=* 1. The latter factis  models where half of the sites ateJ like while the other
a consequence of the equation half may be either spin-1 or sphantibonding states for odd
5 parity, or Hubbardlike for even parity.
Pa=1. 7 It is beyond the scope of the present paper to study such

. . . an amazing variety of chain models disguised in the

Letting €, denote the parity of thath plaquette, the nine o cent j0oking necklace ladder. Instead, a more reasonable
possible states assou_ated with 'ghe minor dlagonql of @trategy is to ask for the values of the total siand parity
plaguette can bg classified according to their parlty, €8 ¢ which give the absolute minimum of the GS energy, keep-
=1 for even-parity states angy=—1 for odd-parity states j fived the values of the number of plaquettésthe num-

(see Table)l _ ber of holesh, and the ratial/t, i.e.,
The Hilbert spaceéccuaceOf the t-J model can be split
intq a direct sum of susspacésf classified by the parity of Eo(N,,Siins €mins I <Eo(N,h,S, €,J/t), VS,e.
their plaquettese={e,} -, namely, (10)
Hiecklace @ eHe (8) Even this question is not easy to answer with full generality.

However, we shall study a few cases that suggest a general

Every SL_JbSpaCé'le is I_eft invariant under the gction _of the pattern for the behavior of the spin and parity as functions of
t-J Hamiltonian(4), which can therefore be projected into an doping.

“effective” Hamiltonian H, ;(€). In the previous section we

have already seen an example of this type of decoupling

phenomena. Indeed, the alternating spin-1/gpithain cor- o l o l o l o l o I o l o l o

responds precisely to the case where all the plaquettes are

odd and there are no holes. If holes are allowed then one has

to consider, in addition to the triplets, the antibonding states F|G. 7. Pictorical representation of the most probable state for
on the odd plaquettes. Hence there are a total of five states @ped x=1/3 necklace ladder of dimensionx®. Blank circles

each site of the “effective” alternating chain associated withdenote holes and vertical solid lines represent valence bond states
the minor diagonal of the odd plaquettes. [case(8,0)].
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o 2z 4 6 8 10 12 14 16 FIG. 10. DMRG results for the hole and spin densities of the
N necklace state with seven holes and spin- 1/2.

FIG. 8. Electronic densities for a necklace ladder as depicted in . . .
Fig. 7. It corresponds to 7 plaquettes and eight hétispingx ~ US @ Systematic way to explore the GS manifold in the un-

=1/3). Below are shown the DMRG and RVA values for the sitesderdoped regiorx=<1/3. The overdoped region has to be
in the main diagonal, while above are shown the values on thétudled with delocalized RVA states as discussed in Refs. 20

rungs corresponding to subdiagonals. and 21.
Let us comment on the DMRG results shown in the fig-
V. DMRG AND RVA RESULTS ures.

a. Case (8,0).This is the most interesting case and it
corresponds to one hole per site along the principal diagonal.

We shall concentrate on the case of a necklace ladder withm the infinite length limit this state has dopimxg=1/3. For
seven plaquettes and open BC's, which will allow us tothis reason we shall hereafter call this statexkel/3 state.
present in a simple manner the basic features of the GS fdfigure 7 shows the most probable configuration which oc-
various sping(S) and dopings [f). The values of the cou- curs when the holes occupy the principal diagonal of the
pling constants are fixed to=1 andJ=0.35. ladder and the spins form perfect singlets along the minor

In Table Il we show, for several paird(S), the parities diagonals. The latter fact implies that all the plaquettes are
of the plaquettes, the total GS energy computed with theeven (see Table ). Figure 8 shows the electronic density
DMRG and the RVA methods. This table also lists the labelalong the ladder computed with the DMRG and the RVA.
of the corresponding figures showing DMRG results for the b. Case (8,1)(See Fig. 9. The spin excitation of the
hole and spin densities of the corresponding state. =1/3 state is given by a spin-1 magnon strongly localized on

The RVA results have been derived from an inhomoge-an odd-parity plaquette located at the center of the ladder.
neous recurrence variational anségee Appendix A Asin  The other plaquettes remain even and spinless. The value of
the latter cases we start from a state, hereafter called “claghe spin gap is given b =0.27(DMRG) and 0.32(RVA).
sical,” which is considered to be the most important con- c¢. Case (7,1/2)(See Fig. 10. This case is obtained by
figuration present in the actual GS. Next we include the localloping thex= 1/3 state with an electron. The additional elec-
quantum fluctuations around the classical state. tron goes into either of the boundary plaquettes. The corre-

This is done for a whole set of “classical” states having sponding plaquette changes its parity-td..
the same number of plaquettes, holes antbmponent of d. Cases (6,0) and (6,1)jSee Figs. 11 and 12The state
spin. As discussed in Appendix A, the classification of thex=1/3 is now doped with two electrons, which go to the
classical states is achieved by means of paths in a Bratelfoundary plaquettes that change their parity. There seems to
diagram generated by folding and repeating the Dynkin diabe a small effective coupling between the two spin-1/2 at the
gram of the exceptional Lie grougs. The six points oE;  ends of the ladder, which lead to a breaking of the degen-
are in one-to-one correspondence with six different states osracy between the triplet and the singlet. This is reminiscent
the necklace ladder, while the links d&; are nearest- of the effective spin 1/2 at the ends of the Haldane and
neighbor constraints derived on the basis of the DMRG reAKLT open spin chaing? There also exists a weak effective
sults in the region &x=1/3. The Bratelli construction gives coupling that breaks the fourfold degeneracy of the open
chains.

e. Case (9,1/2)(See Fig. 13. The x=1/3 state is doped

ON THE NECKLACE LADDER

FIG. 9. Results using DMRG showing the necklace state with
eight holes and spi®,=1. The diameter of the circles are propor-
tional to the hole density, and the length of the arrows are propor- FIG. 11. Results from DMRG showing the necklace state with
tional to(S,), according to the scale in the box. six holes and spits,=0.
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FIG. 14. Results from DMRG showing the necklace state with
10 holes and spi$,=0.

FIG. 12. Results from DMRG showing the necklace state with
six holes and spirs,=1.

with one hole. The parity of the plaquettes remain unchangeWhereA is given by
and the extra spin 1/2 delocalizes along the whole system 1
perhaps with some spin-density-wave component. The dif- A= _
ferences between this hole doped case and the electron doped [2+ (J/4t)2]Y2—J/4t
case(7,1/2) are quite striking.

f. Case (10,0)(See Fig. 14.This state looks very much
the same as the=1/3 but just with more holes.

(12

If J/t<2, thenA<1, which means that a diagonal bond is
more probable that a nondiagonal one. This feature is also
observed in thex=1/3 state, where the most probable bonds

g. Case (10,1)(See Fig. 15. Same pattern as in the . .
(9,1/2 case with the spin delocalized over the whole systemare thosg that I|ne. up _along the tran;verse diagonals O.f the
' ladder(Fig. 7). Taking into account this state together with

In summary the DMRG results clearly suggest the exis- . : :
tence of two distinct regimes corresponding to dopings geome important local f!uctuaﬂons a_m“r_‘d It I(_ead us to pro-
<x<1/3 andx=1/3. In the overdoped regime the plaquettespose an RVA_state W'.th(: 1./3’ Wh'Ch IS defmeq by the
are always even while in the underdoped regime they can pgeursion relations depicted in F'g.‘ 18ee Appendix A for
even or odd. Phase separation into even and odd plaquett gt_alls). The _RVA stgte corresppndmg 'N>=l plaquette co-
may also be possible. Our results at this moment are ambigd2cides precisely with statell) identifying A=al\2b=1
ous and further numerical work is required. The most impor-S€€ Fig. 16 For ladders with more than one plaquetté (
tant result is the peculiar structure of the 1/3 state, which ~ 1) the symmetry of the diagonals disappear @rell in

we shall study further in the next two sections. general. In this case we have two independent variational
parametersa and b. In Fig. 18 we give the energy per
VI. x=1/3 STATE OF THE NECKLACE LADDER plaguette and the values afandb as functions of the num-

ber of plaquettes of the necklace ladder obtained by minimi-
The most important configuration contained in tke zation of the energy of the RVA state. We observe that both
=1/3 state has spin singlets along the diagonal. This is cora andb become less than one in agreement with the DMRG
sistent with and helps explain the phase shift in thél,1) results. All these results are quite satisfactory but still they
domain walls observed numerically with DMR®ef. 7) and  do not give us a transparent physical picture of x+el/3
Hartree-FocR calculations in large lattices and experimen- state. This will be done in the next section.
tally in some nickelates compounds.
On the other hand, the=1/3 state is a kind of 1D gen- VIl. PLAQUETTE PICTURE OF THE NECKLACE
eralization of the GS of two holes and two electrons on the LADDER: THE tp-J,-tp MODEL
2x 2 cluster discussed in refererféén connection with the
binding of holes in the two-leg and higher-leg ladders. One An interesting property of the rectangular ladders is that
can also use this local structure to build up a variational statée strong-coupling picture of the GS and excited states is
of the two-leg ladder valid for any dopirfg. generally valid also in the intermediate and weak-coupling
The GS of two holes in a plaquette is the localized Coopefedimes. Thus, for example, the spin gap of the two-leg spin
pair depicted in Fig. 16 and can be generated by the pair fielldder can be seen in the strong-coupling limit as the energy

operators acting on the vacuum as cost for breaking a bond along the_ rungs.
In Sec. Il we suggested that diagonal ladders could be
|Cooper Pabrz[A(AI’3+ AI4+ A;3+ A;A) thought of as collections of coupled plaquet(Egy. 3. The
+ t trouble is that in doing so one actually needs more sites than
+(A1,+4541]0), (1D those available in the original lattice. Indeed the necklace

FIG. 13. Results from DMRG showing the necklace state with FIG. 15. Results from DMRG showing the necklace state with
nine holes and spi,=1/2. 10 holes and spils,= 1.
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FIG. 16. A pictorical representation of a localized Cooper pair

on a plaquette. The parametiin Eq. (11) is A=a/\2,b=1.

ladder £° with N plaquettes has sites forN large while
the extended or decorated laddéf shown on the right-
hand side of Fig. 3 hasMN.

The solution of this problem is achieved on physical
grounds by defining on the lattic€” an extendedt-J
Hamiltonian which, in a certain strong-coupling limit, be-
comes equivalent to the standard Hamiltonian on£P.
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FIG. 17. A pictorical representation of the recurrence relations
employed with the RVA methodsee Appendix A to construct
variational GS states for the doped=1/3 necklace ladder. The
diagonal squares represent bulk states of a given length. Small

The extended Hamiltonian can also be studied in the limi€ircles represent holes and solid lines represent valence bonds.

where the plaquettes are weakly coupled. As we shall see, o ) )
the latter limit provides a useful physical picture of the prop-  The Hamiltonianh, ,.,(tg) acts in a Hilbert space of
erties of the necklace ladder far=1/3 and other dopings as dimension 3 3=9. It has two eigenvalue§=0 and 24,

well.

A. t;-J,-ty model
We shall define on the lattic8® an extended-J model
by the following Hamiltonian:

de:Hp+Hd1 (13)

Hp:; hn(tp !‘]p);

Hd E hn,n+1(td),

n

whereh,(t,,Jp) is a standard,-J, Hamiltonian involving
only the four sites of the plaquette labeledrbyOf courseh,,
andh,, commute fom#m. On the other handy, ;. 1(tg) is

a hopping Hamiltonian associated with the link that connects

the two nearest-neighbor plaquetteandn+ 1. Denoting by

with degeneracies 3 and 6, respectively. The zero eigenvalue
corresponds to the states with two holes and the bonding
state with up and down spins. In the lintig>t,,J, one
retains only the latter three degrees of freedom, which can be
thought of as renormalized hole and spin-up and spin-down
electron states, respectively. The truncation operaidhat
maps the Hilbert spack . r into the effective Hilbert space
H,o is, given by

L and R the corresponding sites on the different plaguettes

joined by the link(L,R) thenh, ,,; is given by the link
Hamiltonian defined as

hLry=ta(Cl s Ch o) (CLs—Cris)- (14)

B. Strong hopping limit of the t,-J,-ty model

We want to prove that in the strong hopping limit, where
tg—o, the t,-J,-ty model becomes equivalent to thel
model on the necklace laddérP.

In this limit we first diagonalizeH 4 looking for the low-

energy modes of the plaquettes. We then define a®

renormalization-grouRG) operatorT, that leads to a renor-

malization of operators in the extended lattice model into
operators that act on the necklace lattice. In particular the

H,q Hamiltonian is truncated to an effective Hamiltonian

T:H p—H, o,
| ®.0)-0,
1
*
|@,0)— —|*),
V2
1 *
|O,@)— —|*),
V2
10,0)=|o), (18
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T T T T T T T ) ! ' ' l I
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FIG. 18. Ground-state energy per site as function of the number

that is equivalent to the original necklace Hamiltonian. Theof plaquettes for a dopes=1/3 necklace ladder. It is obtained

truncation operation is given by the equatidor a review of
the real-space RG method see Ref) 24

Her=THpaT". (15)

using the RVA methodsee Appendix A Herea andb denote the
variational parameters and it is shown how they get stabilized to-
wards their thermodynamic values as the length of the ladder in-
creases.
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where @ and O stand for one electron, with spin up or

down, and one hole, respectively, living on a given link of

L£P, while * ando are the effective electron and holes living
on the corresponding site @f® obtained by contracting the
previous link to a site. The Hermitian operatdf acts as
follows:

TT:HED_)HLP,

1
|*>—>—2(|.,O)+|O,.>),

%

|o)—]O,0). 17

Equation(17) means that an electron state of £P be-
comes the bonding state in the enlarged Hilbert spdge.
The RG operatord andT" defined above satisfy the follow-
ing equationg*

TT'=1, T'7=PY, (18)

where PY) is a Gutzwiller operator that now acts on links
rather than on sites as follows,

Pg> :HCPHHL P,
|®,®)—0,

1
|0.O>—>—2(|0.O>+|O,0>),

5

1
IO,.>—>—2(I.,O>+|O,.>),

5

|0,0)—|0,0). (19

G. SIERRAet al.
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1
J=313,

5 (necklace ladder

(22

In the derivation of Eq.(22) we are assuming periodic
boundary conditions, along the principal diagonal of the
necklace ladder.

The strong hopping limit studied above is reminiscent of
the strong-coupling limit of the Hubbard model, which leads
to the t-J model plus some extra three-site terms that are
usually ignored. In the latter case the strong Coulomb repul-
sion forces the Gutzwiller on-site constraint. Our case is a
“dual version” of this mechanism, in the sense that the cou-
pling constant involved is a hopping parameter, and that the
Gutzwiller constraint arises from a link rather than from a
site constraint. In the case of thgJ,-ty model one does not
have to do perturbation theory in order to produce the ex-
change term in the effective Hamiltonian since it is already
contained in the plaquette Hamiltonian. Perturbation theory
would produce terms of the ordert]/ but they vanish at
ty=. The construction we have performed in this section
can in principle be generalized to the Hubbard mddel.

The analogy between the Hubbard andttfé,-t; model
suggests that we may learn something about the strong hop-
ping limit by studying the weak hopping one. This is cer-
tainly true if there are no phase transitions between the two
regimes.

C. Weak hopping limit of the t,-J,-ty model

In the weak hopping regime, i.ey<t,,J,, we first di-
agonalize the plaquette Hamiltonidh, and treatHy as a
perturbation. The energy levels éf, are given, to lowest
order in perturbation theory, as tensor products of the eigen-
states of every plaquette. There will be in general a huge
degeneracy, which will be broken by the effective Hamil-
tonian derived fromHy using perturbation theory. Before

Using the above definitions we can easily obtain thegoing further into the study of the plaguette Hamiltonian we

renormalization of the different operators actingdf,

Te T =TcrsTT=—=cpy s,

ol =

N[ =

TST'=TST'=3 Sy,

1
TnLTT=TnRTT=§nM . (20)

have to consider the relationship between the filling factors
of the states belonging to lattices with different number of
sites.

Let us consider a state ii® with N,, holes and\,, elec-
trons. Applying the operatdF', this state is transformed to a
state in£ P with N{P) holes and\N{" electrons given by

NiP'=iNp+3Ne,  NP'=N,. (23
These equations reflect the fact one gets an extra hole upon
going to the enlarged lattice. Equatio(&3) imply the fol-

Herec; ¢,S ,n; are the fermion, spin and number operatorslowing relations between the doping factoxs=Ny/(Ny,

acting at the edges of the linlt,R) for i=L,R while for i
=M they act at the effective “middle” point of the link.e.,

(L,R)—M). Of course, the operators and states that are not

on the principal diagonal of botfi® and £ P are not affected
by the renormalization procedure.

Using Egs(15) and(20) we can immediately find that the
renormalized effective Hamiltonian is given by thel
Hamiltonian(4), i.e.,

Her=THpaT =TH,(tp, ) T =H, ;, (21

with the following values for the coupling constants:

+N¢) andx,= NP/ (NP -+ NP

x=31(4x,—1), X,=3(1+3X). (24)

From Eq.(24) we get the following correspondences:

X=0x,=1/4, (25

X=1/3-x,=1/2,

which we shall discuss in detail below.
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o | 0 Oo\ o | o0 | ICooper Pair +¢ >= a (\o . V4 o. )14/3
. .
(l) +b( e} ) ® )
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FIG. 20. A pictorical representation of a bound state formed by
a Cooper pair and one electron. Small blank circles represent holes,
© \ black circles represent electrons and solid lines are valence bonds.
O

o] N E  circles represent ele os
) o Herea,b are relative amplitudes taken as variational parameters.

FIG. 19. Ground state for a doped=1/3 necklace ladder

(down) obtained as the projection ofxg=1/2 doped state in the Heff:JeffE Sﬁﬁ' fil- (28)

decorateddua) diagonal laddefabove. n

Heresﬁff is the overall spin-1/2 operator of the odd plaquette

and Jeﬁ~—t§ is a ferromagnetic exchange coupling con-
Equation(25) implies that the 1/3 doped state of the neck-stant.

lace ladder is transformed to a state with two holes and two Following a reasoning similar to that for the case 1/3

electrons per plaquette in the expanded necklace lattice. Wige conjecture that the=0 state can be represented as the

show in Appendix B that the lowest GS for this filling is following Gutzwiller projected state,

given by the coherent superposition of Cooper pairs local-

1. Weak hopping picture of the x 1/3 state

ized on the plaquettes, i.e., x=0)~TPY|x,=1/4,e,=— Lty=0), (29)
N the structure of which is indeed very similar to the ferromag-
|x :1/2td:O>:H |Cooper paiy (26) netic RVA state proposed in Sec. lll. See Fig. 21 for a
P ’ n=1 " plaquette construction of the Mlestate of the necklace lad-

der starting from thex,=1/4, e,=—1 state. The gapless
excitations of the ferromagnetic=0 GS correspond, in the
weak-coupling picture, to the magnons of the ferromagnetic
chain (29), while the gapped excitations correspond to an
‘excitation of the plaquette to a state with spin 3/2.

In summary we have been able to obtain a satisfactory
picture of both thex=0 and 1/3 states in the weak-coupling
limit of the extended-J model, which leads us to conclude
that for these dopings there are no phase transition between
the weak- and strong-coupling regimes. Other dopings in-
volve the competition of the two elementary plaquette states
used above and will be considered elsewhere.

where|Cooper paly, is the state given in Eq11) with the
parametera andb given by Eq.(12) for the values of;,J,,.
Turning ty on, the state(26) will be perturbed mainly
along the principal diagonal. The doubly occupied and anti
bonding links will become high-energy states while the
bonding and empty links will remain low in energy. In the
limit when ty becomes infinite we expect the GBq. (26)]
to evolve continuously into the=1/3 GS of the necklace.
This suggest that the=1/3 state of the necklace ladder can
be described as a Gutzwiller projected state, i.e.,

|x=1/3)~ TP |x,=1/2t4=0), (27

where we first project out the doubly occupied and antibond-VIll. FROM 1D TO 2D THROUGH DIAGONAL LADDERS
ing states on the links on the principal diagonal of the ex-
panded ladder and then project the resulting state into thﬁa
Hilbert space of the necklace ladder. Some diagrammatic L : :

ush forward this viewpoint trying to see how much one can

(Fig. 19 shows that the stat@7) is basically the same as the , L :
x=1/3 RVA state constructed in Sec. VI. This leads us to theeXpeCt from it. This will lead us to ask questions whose

. N solution we do not yet know. In this sense some of the ma-
e /3 O ol i neckiace adder Can befral presened below s conjecural.
. / . Let us first start with a short excursion into graph theory.
on the plaquettes. In this case the Cooper pairs are locked in
a Mott insulating phase and there is an exponential decay of
the pair field.

The necklace ladder represents the first step in the diago-
| route to the 2D square lattice. In this section we shall

2. Weak hopping picture of the %0 state

The GS of a plaquette with one hole and three electrons
for J,/t,=0.5 has spin 1/2 and it belongs to the two- p¥
dimensional irrep labeled bE of the symmetry grou,
(see Appendix B These two states differ in their parity
along the minor diagonal, which can be even or odd. Both * f * +
states can be thought of as bound states of a Cooper pair and * + * * * * } *
one electror{see Fig. 2D The fourfold degeneracy on every
plaquette is broken byy. The odd-parity plaquettes are  FIG. 21. A Nel-like ground statgdown) for an undopedx

lower in energy than the even ones and the effective model is0 necklace ladder obtained as the projectiabove of a doped
given by a ferromagnetic spin-1/2 chain, state in the decorate@ua) diagonal ladder.
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L,=
FIG. 23. An example of medial graph construction. Here the
graph G is made by solid lines and blank circles. Its associated
medial graphM(G) is made by dashed lines.
D
L. =

as then;-even rectangular ladders, while thg-odd diagonal
ladders belong to a different universality class characterized
by ferromagnetic GS'’s.

The opposite limit, wherety—0, has the geometrical
meaning of shrinking the plaquettes into sites, so mﬁt

renormalizes the system to a rectangular ladder wjthegs

L,= ( see Fig. 22

We summarize the above geometric RG operations in the
FIG. 22. Several examples of related ladders as explained if°llowing symbolic manner,

text. (Above) An example of a (4,8) lattice with,=2 plaquettes.

(Middle) An example of a diagonal ladder with,=3 plaquettes.

(Down) An example of rectangular ladder with=2 legs.

‘Cl':pHEZDHp*l (tdﬁw)!

LP LR (t4—0). (32)
A. Plaguette construction and medial graphs P .

The plaguette construction of the necklace ladder is reln this sense the (4,8) lattice is an interpolating structure

lated to the so-called medial graphs used in the colorin between diagonal and rectangular lattices.
. o grap oMY There is an interesting connection between this plaquette
problem or in statistical mechaniésBefore we show this

) . . construction and the theory of medial graphs. Consider a
connection we need to generalize our plaquette construction

: . graphG made of a set of pointsconnected by linkgi,j). A
::c;”dl?gor:]a!idders with more than one plaquette per un'%edial graphM(G), associated with the grap®, is ob-
,i.e,np>1

: . . S tained by surrounding every sifeof G by a polygonP;,

In this section we shall use the following notations: such that two polygon®,; and P;, which correspond to a
£R: rectangular ladder withn, legs, I!nk (i,j), meet at a smglg intersection poitN Pi, which

: lies on the middle of the linki,j) (Ref. 27 (see Fig. 23 for
a generic exampje

Choosing the polygon®; to be 4-gons, i.e., plaquettes,
o _ _ one can easily show that a diagonal ladder with an odd num-
Ln: (48 latticewith n, plaquettes. (300 ber of plaguettes is the medial graph of a rectangular ladder,
namely,

Eﬁp: diagonal ladder with n, plaquettes,

As an example we depict in Fig. 22 the lattic®§,£5, and

L3. The latticeL , consist of 4-gons, i.e., plaguettes, joined Lo 1= M(LT). (32

by links, which are associated with the hopping paramgter

while the plaquettes are associated with the parameters ~ Medial graphs are used in statistical mechanics to show

ande_ Forn,>1 L‘E contains also 8-gons that are formed the equivalence between the Potts model and the six-vertex

by four t links and fourt, links model?®?’ Indeed one can show that the Potts model defined
As shown in the previpous section the linbjf— has the ona graptG is equiva]ent, .i._e., _has the same partition funp—

geometric significance of shrinking the corresponding tion after appropriate |dent|f|cat|or_1 of parameters, to the six-

links into sites, so that the the lattic@; “renormalizes” vertex model defined on the medial grapt(G), i.e.,

p
into the diagonal Iaddeﬁz'?np,l (see Fig. 22 In this strong- Zpottd G) = Zgixverte M(G)). (33
coupling limit the number of plaquettes actually increasesg)-g
I

and some plaquettes are generated for free. The number ates two seemingly unrelated models and it is in fact the

plaguettes of the diagonal ladder so obtained is odd. Thiﬁey to solving the 2D critical Potts model in terms of the
construction does not produce even plaquette diagonal Iacg

ix-vertex one.
ders.

Observe that all the diagonal ladders are bipartite lattices
but only whenn, is even are the number of sites of the two
different sublattices the same. This suggests thahtheven In Fig. 24 we apply the plaquette construction to the 2D
diagonal AFH ladders belong to the same universality classquare lattice. It is a simple generalization of the construc-

e transformatiotc — M(G) is a kind of duality map that

B. Plaquette construction of the 2D square lattice
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o e . - tively with the RG flow of theO(3) nonlinear sigma model
in the renormalized classical region at zero temperafure.
D I:[ In the weak hopping limit, however the GS of the 2D

model is given essentially by the coherent superposition of

N localized Cooper pairs used in the construction of the

D I:I =1/3 necklace state. The Gutzwiller projection of this state
- onto the original lattice will produce a spin-Peierls state
rather than an AFLRO state.

]:[ ]:’ We conclude that, unlike the case of the necklace ladder,
e _ the ty-Jy-tqy model in two dimensions must have a phase
transition for some intermediate value ©f. The study of

Ij I:I this model may serve to clarify the relationship between the

— S AFLRO and thed-wave pairing structures observed in the
theoretical models of strongly correlated systems.

FIG. 24. Plaquette construtiofsmall interior squares plus
dashed lingsof the 2D square lattice as explained in the text. IX. CONCLUSIONS

Diagonalt-J ladders provide an alternative route of inter-
tion shown in the previous subsection whep-x. If L2is  polating between one and two spatial dimensions. Here we
a square lattice with lattice spaciray then £F is also a  have described a general framework for such an interpolation
square lattice but with spacingga.?® and introduced a generalized-J,-ty plaguette model in

Let x be the doping of @-J model defined o2, andx, which the individual plaquettes are linked by a hopping term
the doping factor of &,-J,-ty model defined orC?, then  ta- In the strong hopping>t,,J, limit, the generalized
the relations between these quantities are analogous to Ed¥aquette model was shown to map into the original diagonal

(22) and (24) for the necklace ladder, namely, t-J model with renormalized parameters and filling factor.
Thus, the generalizet}-J -ty model provides a dual model
X=(2x,—1), (34  to the original diagonal model. In this sense, it is interesting
to study thety-J,-ty model in the weak hopping limit. If
tz%tp, J=%Jp. (35  there is no phase transition between the weak and strong

hopping limits, then the weak hopping limit can provide new

Equation(34) implies that the undoped systex®0 cor-  insight into the nature of the originglJ diagonal ladder. We
responds to doping,=1/2 in the enlarged lattice. Figure 25 pelieve that this is the case for thg=1 plaguette necklace
shows a plaquette construction of theeNetate from the |adder and that its ground state for a dopixg: can be
Xp=1/2 state. Notice that the plaquettes have spin 1 and th@inderstood as the Gutzwiller projection of a product state of
the parity on their diagonals alternate between—() and  Cooper pairs localized on the plaquettes of the quarter-filled
(—1,1). In the strong hopping limit the plaquettes have arextendedt,-J,-ty model. Alternatively, for then,— 2D
effective spin 1. The whole set of these effective spin 1's argimit, we believe that the extendeg-J,-t; model at a dop-
coupled antiferromagnetically and form a square lattice withng Xp= 1 which corresponds to the undoped=(0)t-J
lattice spacing, which i§'2 times larger than the lattice spac- model, will have a phase transition for an intermediate value
ing of the original spin-1/2 model. In a certain sense theof t,/t,. In this case, our conjecture is that the strong-
plaquette construction integrates out degrees of freedom angbupling limit will have a ground state with long-range AF
renormalizes the system into an AF Heisenberg model witlbrder while the weak-coupling phase will be a localized spin-
spin 1 and lattice spacg2a. This picture agrees qualita- Peierls state.

In order to make these ideas more concrete, we have fo-
cused on the single plaquettg=1 necklace ladder. Here,
using the results of DMRG and RVA calculations, we have
studied the necklace ladder for various dopingsFor x
=1, the DMRG calculations show that, in the most probable
configuration, the holes occupy the sites along the principal
diagonal of the necklace and the spins form perfect singlets
along the minor diagonals. The RVA calculations, starting
from a classical configuration and mixing in local quantum
fluctuations about this state, provide a ground-state energy in
good agreement with the DMRG result. Then, as discussed
above, a more transparent physical picture ofxtke: state
of the diagonal necklace is provided by the extenged,-t,
dual model at a filling okp=% in which this state is seen as

FIG. 25. Plaguette constrution of the 2D élstate in a square & localized Cooper pair state. It will be interesting to under-
lattice as explained in the text. The corresponding depicted state ostand what happens when additional holes are added. In par-
the decorateddua) lattice has doping,= 1/2 and spin 1 on every ticular, will a necklace with a doping of,=0.5+ 6 have
small square plaquette. power lawd-wave-like pairing correlations?
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Forx=0, the diagonal necklace is equivalent to an alter- 1~ 3 35
natings= 1/s= 3 spin chain and has a ferromagnetic ground Lo
state with total spifN/2, with N the number of unit cells of
the necklace. There are gapped excitations with $ybia
+1 and gapless excitations with spNY2— 1. In the weak
hopping limit of thet-J,-ty model, these excitations corre-
spond to local excitations of the plaquettes to a spstate 2 4 N

"’_md to magnpns of a ferromagnetic sélnehaln, res_pec- FIG. 26. A pictorical view of the necklace ladder showing the
tively. Thus, in thex=0 case, the dual model provides a |apejing convention employed to denote the variational RVA states.

useful physical picture. Here the positions along the maihorizonta) diagonal of the lad-

‘We have also found that when the-=; state is doped der are odd sites, while the even positions are made up of rungs or
with holes, the ground-state plaquettes retain the even paridiagonals.

characteristic of the= 3 state. However, when electrons are
added, this parity can be even or odd. Thus, it appears that At zero doping there are only two possible states on the
the x=3 doping separates the system into two distinct re-odd sites given by

gions. A simple way to understand these results is to con-

sider a tight-binding model with nearest-neighbor hopging. ITy=clloy, [|l)y=c]l0). (A1)
Combining the bonding orbitals with the orbitals in the prin-
cipal diagonal one gets a standard hand, while the anti-

On the even sites there are a triplet and a singlet state given

bonding orbitals produce a flat band. For dopingssIX3 by
=<1 the bonding band is filled with electrons while the anti- |S)=AIZ|O>,
bonding band is empty. For dopings< 1/3 the bonding band '
::)SCChLIaIf' filed and in the antibonding flat band is partially |TT>:CI,TC;T|0>'
pied.
learly, the di Il f ich cl f I
Clearly, the diagonal ladders form a rich class of models |Tl>:CI1C;,¢|O>'

with properties ranging from ferromagnetic to antiferromag-

netic and from localized pair states to possible extended pair- 1

ing states. Furthermore, thg-J,-ty model provides a dual I Toy=—=(cl ch —cl ci o). (A2)
description that suggests alternative physical pictures and ap- V2

proximation schemes as well as connections to concepts

from statistical mechanics. The Neel state on the necklace ladder can be written sim-

ply as
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IDITH=1LTOY=1)To),
APPENDIX A: RVA APPROACH TO THE NECKLACE
LADDER T = (T, D)=To)l 1), (A5)

The RVA method is a kind of simplified DMRG where o / O A
one retains a single state as the best candidate for the GS l(0,8)>= (\ + )1/2 (0, Ty)>= (* A -4 )1/1/5
the system. As in the DMRG the GS of a given length is o ©
constructed recursively from the states defined in previous o A
steps. This idea can be implemented analytically if the ansaty, T. > = ( ¥ )1/2 Ih T )> = ( + v 3
is sufficiently simple. Below we shall propose various RVA Y ¥ \ o) Y ¥ ' 4
states for the necklace ladder with dopings<1/3.

Ij Te)>= ($ * +4 ! )1/|/E
1. Casex=0 +

Let us begin by labelling the sites of the necklace ladder FIG. 27. A pictorical representation of fluctuation states as con-

as in Fig. 26. The even sites denote the minor diagonal of thetructed in the text for the RVA method in the necklace ladder.
ladder while the odd sites are those on the principal diagonaHereT, andT_ stand forT, and T, respectively.
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IDITOID =1L T IN=IDIT . 2. Casex=1/3
Hence a globally perturbed Nkstate is a coherent superpo- _ 1€ most probable state for this doping is given(bge
sition of states of the form Fig. 7)
|O)S[O)[S)---|O)[S)[O). (A13)

T I(M DT AT DM DT (T DT L, (A6) _ .
where the parenthesis denote the quantum fluctuations give@nalogously to Eq(A5) we define local fluctuations around

in Eq. (A5). The RVA state is a linear superposition of states| % (SA<1)3) (ijn tie:mcris inm;:ithe 237tat§§ (§r>rn§)=>1|/(38RC\>/)A>\ ?ntd
of the type(A6) weighted with probability amplitudes, which (©.S,0)) depicte 9s. £7—239. . state
are the variational parameters. can then be constructed from the following RR&e Fig.

The RVA state is generated by the following recursion17):

relations(RR): 2N+1)=|0)|2N)+a|(O,S))|2N— 1)
[2N+1)=[]}|2N)+u[(],T}))[2N-1) +b|(0,S,0))[2N-2),
+o|(L Ty, 1)[2N=2), 12N)=|S)[2N—1)+a|(S,0))|2N-2).  (A14)
|2N)=[T)[2N=1)+u[(T;,1));|2N=-2) (A7) The norm of|N) satisfies the RR'$Eq. (A10)] with the

replacementsi—a,v—b. The RR’s for the energy matrix

with the initial condition .
elements are given by

N=1)=||), |N=0)=L1. A8
| =10 ) (A8) Eon+1=Eonta’Ean-1+b%Eoy
To compute the energy of the stdi¢) we define the follow-

oA ]a2 _
ing matrix elements: +(V2(=2t)a—Ja%)Zyy -1+ V2(—21)2abZy

+a2(—J14)(a2Z,n_3+b%Zyn_4) +b2(—J1b)
X(2Zon—3+8%ZoN-_4), (A15)

Zy=(NIN), (A9)

En=(N[H\[N),

— 2 2
whereHy, is the Hamiltonian of the system witK sites. Eon=Ean-1+ "o~ (2212 +38%) Zon
The RR’s for the state$A7) imply a set of recursion +(—J14)(a%Z,n_3+ 2b%Z,n_4) +@%(— J/I4)
relations for the matrix elemen¢49). From the norm we get )
X(2Zyn-3+aZon-a)-

— 2 2
Zoni1=Zont U Zon_ 1t v ZoN- >, (A10)  The initial conditions for bottz, andEy are the same as for

2 the undoped case. In the linfit—c we find
Zon=Zon-1T U ZoN-2.

The initial conditions are lim EO&N) =-0.7387, a=0.7873, b=0.5478,
N— o
Zo=2,=1. (A11) (A16)
The RR’s for the energy are which give the asymptotic values of the curves in Fig. 18.

B B 3. Cases &x<1/3
Eont1=Eont U Eon— 10 BEon-_2+

1
\/EU_ E) Zon-1

In the underdoped region<0x<1/3 we have observed
J with the DMRG that many of the GS’s that one gets, and
+J(2\/§uU—02)22N_2+ ~v%Zon-3, particularly those listed in Table Il can be understood as
2 quantum fluctuations around a classical stdig. This state
has the generic structure already seen in the casds and
J2u— ;) Zon» 1/3 [see Eqgs(A6) and (A13)], namely,

1(S,0)> = ( O/+ o\) 172 I(T+,0)>=(C; 4 -2 *)14/3

Eon=Eon_1+UEoy_o+J

J
+JUZZZN—3§UZZZN—41

L I o) }
while in this case the initial data are [(T.,0)> = Y 172 T. })>= + Y 1
(N O;) (T > (N +;)4/3
Eo=E,;=0. (A12)
_ A
Minimizing the GS energy in the limiN>1 we find that Ty )>= (* b+ \ +)WE

the GS per plaquette is given by0.4822 J, which corre-

sponds to an energy per site of the associated spin chain FIG. 28. A pictorical representation of fluctuation states as con-
equal to—0.7233 J. The values of the variational parameterssitructed in the text for the RVA method in the necklace ladder.
are given byu=—0.3288 andb =0.1691. HereT, andT_ stand forT; andT,, respectively.
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c - e T £ T + T. +
1(0,S,0)> = -
O
----------- 0
O O S
0, T.0-= 4 4 0T 0-=y g N o N
O 0 T -
+
* (‘f + * FIG. 31. Bratelli diagram of the exceptional Lie gro&g. It
I, T op)> = ¢ ' A T, T.,H)>= V. ¥ serves to classify all the classical statsappearing in the RVA
treatment of the underdoped necklace ladder: every path on this
diagram characterizes one of those classical states and provides its
A o A ¥ guantum numbers. Herg, andT_ stand forT, and T, respec-
(0, Tof )> = ( i b 5 *)14/5 = |§.I.0> tively. Also, Sdenotes a singlet state a@represents a hole.

Now we can characterize every admissible classical state
|io) in a geometrical fashion: eadh,) is a path in the
o, T_,*)> _ (+ ] vy 4 ;)1/\/5 _ I(+ T, 0> so-called_BrateIIi c_iia_gram as_,sociated .to the Dynkin diagram
) o of Eg. This Bratelli diagram is shown in Fig. 31. The way it
is constructed is apparent in that figure: one starts with the
FIG. 29. A pictorical representation of fluctuation states as conthree possible site stat€¢818) located one on top of each
structed in the text for the RVA method in the necklace ladder.other. These states are located by the labeff the first site

HereT, andT_ stand forT; and T, respectively. of the diagonal ladder. Then we link them to the three pos-
sible rung state§A19) according to the connectivity pre-
[oy=1lon+ ) lan) - - - |12)[11), (A17)  scribed in Fig. 30. These rung states are located by the label

. I, of the second position of the diagonal ladder. Once this is
where the statef;),i=1,2,... N,2N+1, are taken to be  achieved, the rest of the graph in Fig. 31 is made up by
reflecting this basic piece over the rest of the labels
loa ={10),[1),11)}=1{1,3,}, (A18) 1,14, ... lon,lonss. Observe that thex=0 and x=1/3
states discussed previously correspond to straight paths of
Hever ={IS) T[T )} ={2,4.6. (A19)  the Bratelli diagram(31). A similar type of construction is

. . . also used in statistical mechanics in the context of the face
Notice that we do not allow the holes on the minor dlagonalsmodelsy

of the classical statp)g). They will go there after consider-
ing the fluctuation€® Based on the DMRG results as well as
physical considerations, we shall allow the following pairs

The quantum fluctuations arouhg,) amounts to consid-
ering the normalized statégl;,l;, 1)) and|(l;,li1,1i42))
depicted in Figs. 27, 28, and 29. An interesting property of

Tllise) in 4o these states is that they are orthogonal, i.e.,
[0MSLIONT ) LINTLIONT)ITHIT,),  (A20) (i1 lia2))=0, j=ii+1i+2, (A22)
[SHONITHIO)ITHILTHIONTHIT). (A1) (05 D105 1,4 2))=0,  j=ii+1. (A23)

This connectivity of the states making up a cerfaig) State  The RVA state built upomyyg) is generated by the RRisee
can be summarized in a graph in which we place a site f0[:ig 32

each and every six states in Eg818) and (A19), and join
them by links whenever it is possible to find them next to

each other in théy,) state according to the allowed local
configurations(A20),(A21). This graph is depicted in Fig. = ® +ay *
30, and coincides with the Dynkin diagram of the excep-
tional Lie groupEg.
+ by
>
> ] g OROIREO
O O O

O O

I { > [O> 4> FIG. 32. A pictorical representation of the recursion relations in
Eq. (A24) employed to generate the variational states in the RVA
FIG. 30. Dynkin diagram of the exceptional Lie groltg and  treatment of the underdoped€X=1/3) necklace ladder. Hege b
its associated site and rung states contributing to the variationandc are local variational parameters. A square denotes a bulk state
RVA method for the necklace ladder. These six states make upn a ladder of a length given by its number inside. The black circles
every classical statel,) on the underdoped ladder according to the and solid lines represent generic fluctuation states as explained in
connectivity of this diagram. the text.
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2N+1)=]I 2N)+ay(l Jon) Y 2N—1 TABLE lll. Here his the number of holesS the total spin. The
| ) | 2N+1>| ) (T fon >| ) third column denotes the irrep of tii®, group. We give the values
+bnl(Ions15lonslon-1) ) 2N—2), of the energy fod=0 and 0.5 {=1).
|2N) =[Ion)[2N= 1)+ eyl (Ion sl on-1) )| 2N—2), h S Dy Energy J=0 J=05
A24) 5 o B, 33 o  -15
; ; P 0 1 A, —-2J 0 -1
provided with the initial data, 0 0 A =3 0 _05
0 1 E -J 0 -0.5
|1)=[1),|0)=1. (A25) ¢ 2 B, 0 0 0
1 1/2 E —J—\3t?+J%4 -y3 -225
Using the orthogonality condition®22,A23) itis easyto 1 1/2 B, —3J/2—t -1 —1.75
get the RR’s satisfied by the norm of the RVA state, 1 172 By —Ji2—-t -1 —-1.25
1 1/2 A, —3J/2+t 1 0.25
_ 2 ) 1 1/2 A, —J2+t 1 0.75
Zon+1= ZontaNZon-11T BNZon-2, (A26) 7 1/2 E — I+ 3% 374 V3 1.25
1 3/2 A, -2t -2 -2
Zon=Zon-1TCoZon-2. (A27) 1 312 E 0 0 0
2N 2N-1 N&2N—-2 1 3/2 Bz ot > 2
The RR’s for the energy are more involved and will be omit-2 0 Ay —J2-\8t?+3%4 -8  —3.09
2 0 B 0 0 0
ted here. 0 E é ] 0 05
. - B y 2 - - .
The results pres.ented in Sec. V have been derived usmé 0 A, )2+ BT T4 /8 259
the following steps: 2 1 E ot AP P
(i) Fix the lengthN of the ladder, the number of holés > 1 A,,B; 0 0 0
and the third component of the sp8i of the whole ladder. 2 1 E 2t 2 2
(i) Generate all théy,) configurations with those quan- 3 1/2 Aq -2t -2 -2
tum numbersN,h,S%. Generically the number of configura- 3 1/2 £ 0 0 0
tions grows exponentially. For example the seven plaquettg 1(/)2 21 Zot 2 %
case studied in Sec. V ha$=15 and a total of X 10 !
configurations.
(iil) Compute the energy of the state associated with the
. . . ! N (N]dg|N) dn(R)
zero-order statéy,) using the recursion relations and find du(R) = = A30
o . n(R) (A30)
the variational parameters that lead to a minimum energy. (N[N) Zy
For example for the seven plaquette ladder we used 21 inde- R
pendent variational parameters. The densitiesly(R) takes on values from 0 to 1 depend-
(iv) Extract the statéyo) which has the absolute mini- iNg on whether we find a hole with maximum probability
mum energy for a givei, h, andS. [dn(R)=0] or one electrondy(R)=1].

Using the RR’s for the diagondEq. (A24)] ladder we

4. Electronic density GS expectation values may find also RR’s for the unnormalized VEV's:

Here we derive the general equations to compute the elec- g, . ;(R)=d,y(R) + alz\leN—l(R) + bﬁdzm—z(R),

tronic density expectation values using the RVA method. In (A31)
particular, we have plotted in Fig. 8 the results for the doping
casex=1/3 in the necklace ladder and compared it with the dZN(R):dZNfl(R)+Cl2\Jd2N72(R)v (A32)

DMRG results showing a good agreement. - _ o
Let us denote the density electronic operator at the sit&henever the positioR of the insertion is not near the end

positionR asdg, namely, of the diagonal ladder state. The derivation of these RR’s
follow closely that of the norm’@’s using the orthogonality
dr=ng;+nNg |, (A28)  relations.

One can similarly determine the boundary or initial con-
whereng ; andng | are the number operators for fermions ditions to feed those RR’s.
with spins up and down, respectively.
For a diagonal ladder of lengtK (sitestrungg we need  AppENDIX B: SPECTRUM OF THE T-J MODEL ON THE
to compute the vacuum expectation valM&EV) of the den- PLAQUETTE

sity operatordg in the ground state, which we denote as o
The t-J Hamiltonian on the plaquette has the symmetry

dn(R)=(N|dg|N). (A29)  groupD, of the square. This implies that the eigenstates can
be classified with the irreps & ,, together with the number
When the positionR is even we shall need an additional of holesh and the total spirS D, has five irreps, four of
index k=1,2 to locate the upper sitk€ 1) and the lower which are one-dimensionah;,B;,A,,B, and one two-
site (k=2) of the rung. dimensional irrepE. From the character table of this group
Notice that these density VEVIEQ. (A29)] are not nor-  one sees that the irreps ,B, have, in our terminology, even
malized. We may introduce normalized densities as parity in both diagonals, while the irreps,B, are odd. The
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0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
T T T T T T T T T T T T T T T T
2 |- (1,3/2,B2) 2
(2,0,A1) (2,1,E)(3,1/2,81)
K (4,0,A1%2,1,A2-B1)
0 (0,2.82)(1,3/2,E)2,0,B1) 3,12,E) | O
(1,1/2,A1)
[7:) 2 (1,3/2,A2) (2,1,E) (3,1/2,A1) -2
o (1,1/2,B1)
5 (0.0,A1) (0,1,E) (2,0,E-B2)
| (1,1/2,A2)
> 4 -4
o (2,0,A1)
[«h} (1,1/2,E)
ch sl (1,1/2,B2) i
(0,1,A2)
-8 |- -8
(0,0,82)
-10 ] . ] . 1 R ] . ] . ] 5 1 . ] R ] 10
0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
Jit

FIG. 33. Plot showing the energy levels fotamodel on the X2 plaquette as a function of the couplidgf. The energy levels are
classified according thB, symmetry group of the square as shown in Table III.

parity of the states in the irreR is (+,—) and (—,+) for

dial construction in this case, since two plaquettes are al-

the two diagonals. In Table Il we show the analytic expres-lowed to have more than one common link. The interesting

sion of the energy and the value for the cages0 andJ

point is that the filling factox of the ladder and the one of

=0.5 (t=1). In Fig. 33 we show a plot with all the energies the extended mode, , are related in exactly the same man-
as functions ofJ/t. Observe the crossover between thener as the 2D latticessee Eq(34)]. Thusx=0 corresponds

lowest-energy states aft~1.37.

APPENDIX C: PLAQUETTE DERIVATION OF THE
EQUIVALENCE BETWEEN THE HALDANE STATE AND
THE RVB STATE OF THE TWO-LEG SPIN LADDER

to x,=1/2. Let us assume for the moment that each plaquette
has spin 1. Then the effective interaction describing the cou-
pling of these spins will be an AFH model. This suggests
that we can construct a valence bond state to approximate the
plaguette ground state by drawing nearest-neighbor bonds
among the elementary spins between plaquettes, as shown in

There has been some debate in the past as to whether tHe upper part of Fig. 35. Now, if we project out of this state
Haldane state of the spin-1 chain is in the same phase as th@y S=0 components of each plaquette, we get the AKLT
GS of the AFH two-leg ladder. The general consensus is thegtate, where each plaquette is a pure spinl. If, instead,
they both belong to the same universality class characterizedle Gutzwiller project they links, as shown in Fig. 35, we
by a spin gap, finite spin correlation length and nonvanishinget the dimer-RVB state proposed in references 32 and 20.

string order parameter. The DMRG study of Ref. 31 demon-

Hence, the plaquette model acts as intermediate system,

strated a continuous mapping between these systems, afef which different projections generate either the AKLT
pointed out the equivalence between a dimer-RVB state on state of the spin-1 chain or the dimer-RVB state of the two-
composite spin modewhich is a ladder model with some leg ladder.

extra hopping termsand the AKLT model.

This suggests that there must be a direct way to relate the
valence bond construction of the spin 1 AKLT statend the
dimer-RVB picture of the two-leg laddéf:?**We shall show
that this is indeed possible through the plaguette construction
of the two-leg ladder, which is shown diagrammatically in
Figs. 34 and 35.

In Fig. 34 the two-leg ladder is split into plaquettes con-
nected by two links. We have generalized somewhat the me-

7N\ 7\
O &[0 &[0 ¢ O é|oé|[oé] 0w
e O[Te 0O[T® O| [ O||p O| |e5[T® O
"/
—eo 0—0
I o—o/—o

FIG. 35. (Bottom) A dimer-RVB state on a rectangular two-leg

ladder obtained as the projectigiop) of a dopedx,=1/2 valence
FIG. 34. Plaquette constructiofsmall interior squares plus bond state on the decoratédua) lattice associated with the rect-

dashed linesof the rectangular ladder with;=2 legs.

angular ladder.
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