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We introduce a class of models defined on ladders with a diagonal structure generated bynp plaquettes. The
casenp51 corresponds to the necklace ladder and has remarkable properties that are studied using density
matrix renormalization-group and recurrent variational ansatzes. The antiferromagnetic Heisenberg~AFH!
model on this ladder is equivalent to the alternating spin-1/spin-1

2 AFH chain, which is known to have a
ferromagnetic ground state~GS!. For doping 1/3 the GS is a fully doped~1,1! stripe with the holes located
mostly along the principal diagonal while the minor diagonals are occupied by spin singlets. This state can be
seen as a Mott insulator of localized Cooper pairs on the plaquettes. A physical picture of our results is
provided by atp-Jp-td model of plaquettes coupled diagonally with a hopping parametertd . In the limit td

→` we recover the originalt-J model on the necklace ladder while for a weak hopping parameter the model
is easily solvable. The GS in the strong hopping regime is essentially an ‘‘on link’’ Gutzwiller projection of the
weak hopping GS. We generalize thetp-Jp-td model to diagonal ladders withnp.1 and the two-dimensional
square lattice. We use in our construction concepts familiar in statistical mechanics such as medial graphs and
Bratelli diagrams.@S0163-1829~99!05108-5#
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I. INTRODUCTION

Ladders provide a class of interesting theoretical mod
for studying the behavior of strongly correlated electron s
tems. Besides representing simplified models for actual
terials, ladders offer a possible way of interpolating betwe
one and two spatial dimensions with the hope that they
yield insights into the physics of two-dimensional~2D! sys-
tems, such as the CuO2 planes of the cuprates~for a review
see Ref. 1!.

It has been found that ladders exhibit quite different b
havior depending on whether the number of legsnl is even
or odd. Antiferromagnetic spin ladders withnl odd are gap-
less with spin-spin correlation functions decaying algeb
ically, while even-leg ladders are gapped with a finite s
correlation length. Upon doping, these two types of ladd
also behave differently concerning the existence of pairing
holes or spin-charge separation. In the limit where the nu
ber of legs goes to infinity the spin gap of the even-s
ladders vanishes exponentially fast, in agreement with
gapless nature of the 2D magnons.2 On the other hand, the
antiferromagnetic long-range order~AFLRO! characteristic
of the 2D antiferromagnetic Heisenberg~AFH! model can be
more naturally attributed to the quasi-long-range order of
odd-leg ladders. It thus seems that one has to combine
PRB 590163-1829/99/59~12!/7973~17!/$15.00
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ferent properties of the even and odd, doped and undo
ladders in order to arrive at a consistent picture of the
cuprates. Ladder systems are sufficiently interesting on t
own to deserve detailed studies, in addition there are a v
ety of materials that contain weakly coupled arrays
ladders.3

In this paper we study a class of ladders characterized
a diagonal structure that provides an alternative to the af
mentioned route to 2D. We shall call these objects diago
ladders in order to distinguish them from the more famil
rectangular-shaped ones. Diagonal ladders are labeled b
integernp51,2,. . . , which gives the number of elementar
plaquettes needed to generate the entire structure. The
member of this family, i.e.,np51, is also known as the neck
lace ladder and it consists of a collection ofN plaquettes
joined along a common diagonal. In this paper we shall fo
on the necklace ladder, although the other cases will also
briefly considered.

The original motivation of this work was to understan
the fully doped stripes in the~1,1! direction that have been
observed experimentally in materials such
La12xSrxNiO4,4 in Hartree-Fock studies oft-J and Hubbard
models,5 and numerically in density matrix renormalizatio
group6 ~DMRG! studies of thet-J model.7 The simplest pos-
sible toy model of this type of stripes is provided by a nec
7973 ©1999 The American Physical Society
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7974 PRB 59G. SIERRAet al.
lace ladder with a hole doping equal to 1/3. As we shall
this doping plays an important role in our work.

Lattices similar to the diagonal ladders, but with ad
tional one-electron hopping terms along the major and mi
diagonals of each plaquette, and withJ/t50, have been
solved exactly for certain fillings.8–10 Giesekus10 has shown
that for the corresponding version of the necklace ladder
the case when all of the one-electron hopping terms are e
and the hole doping is set tox51/3, the model has a shor
range resonating valence bond~RVB! ground state, in which
the static correlations exhibit an exponential decay and
dynamic correlation functions exhibit a gap in their spect
densities.

Let us also note in passing that diagonal ladders h
recently appeared as constituent parts of some interes
materials such as Sr0.4Ca13.6Cu24O41.84, known for its super-
conducting properties at high pressure11 There are also con
jugated polymers with the structure of a necklace ladder12

The organization of the paper is as follows. In Sec. II
define the diagonal ladders from a geometrical viewpoint
compare them with the more familiar ladder structures.
Sec. III we study the AF Heisenberg model of the neckla
ladder. In Sec. IV we study thet-J model on the necklace
ladder and show the conservation of the parity of
plaquettes. In Sec. V we present the ground-state~GS! struc-
ture of a necklacet-J ladder with seven plaquettes, obtain
with the DMRG and recurrent variational ansatz~RVA!
methods. In Sec. VI we study in more detail the structure
the GS at doping 1/3. In Sec. VII we introduce a generaliz
t-J model on an enlarged necklace ladder, called thetp-Jp-td
model, and use it to give a physical picture of the results
Secs. V and VI. In Sec. VIII we define thetp-Jp-td model on
diagonal ladders with more than one plaquette per unit
and on the 2D square lattice. In Sec. IX we state our con
sions. There are three appendices which give the techn
details concerning the RVA calculations~Appendix A!, the
complete spectrum of thet-J Hamiltonian on a plaquette
~Appendix B! and a plaquette derivation of the equivalen
between the spin 1 AKLT state of a chain and the dim
RVB state of the two-leg AFH ladder~Appendix C!.

II. GEOMETRY OF DIAGONAL LADDERS

A diagonal ladder can be characterized by the numbe
plaquettesnp of the unit cell and the numberN of these cells.

FIG. 1. Examples of diagonal ladders with a number
plaquettesnp51,2,3 in the unit cell.
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In Fig. 1 we show diagonal ladders withnp51, 2, and 3.
There arenp12 sites per unit cell. Assuming open bounda
conditions the total number of sites is then given byNs
5(np12)N1np .

Rectangular ladders can be seen either as a collection
legs coupled along the rungs or as collections of run
coupled along the legs~see Fig. 2!. This geometric feature is
the basis of the weak-coupling and strong-coupling
proaches to the various physical models defined on ladd
Thus for example the Heisenberg model on thenl-leg ladder
is usually defined with an exchange coupling constantJi
along the legs and an exchange coupling constantJ' along
the rungs. The weak and strong coupling limits correspon
the cases whereJi@J' andJi!J', respectively.

On the other hand, diagonal ladders do not admit suc
simple construction. The most natural interpretation is to
gard them as collections of plaquettes joined along th
common diagonal~see Fig. 3!. The trouble with this con-
struction is that it does not preserve the number of sit
Indeed one has to fuse the points on the principal diagona
the plaquettes before getting the actual necklace struct
We shall resolve this problem in Sec. VII on physic
grounds.

III. SPIN NECKLACE LADDER

Let us begin by considering the AFH model on the nec
lace ladder of Fig. 1~a!. The Hamiltonian of the model is
simply,

H5J(
^ i , j &

Si•Sj , ~1!

where J is a positive exchange coupling constant and
sum runs over all linkŝi , j & of the ladder. We shall label the
sites of thenth plaquette as in Fig. 4. The Hamiltonian~1!
then becomes

H5J(
n51

N

~S1,n1S2,n!•~S3,n1S3,n21!, ~2!

whereSa,n is a spin-12 operator acting at thea51,2,3 posi-
tion of the nth plaquette. Equation~2! implies thatH de-
pends on the spins of the minor diagonals through their s

f

FIG. 2. ~a! Weak-coupling~dashed lines! regime in rectangular
ladders.~b! Strong-couping~dashed lines! regime in rectangular
ladders.

FIG. 3. Plaquette construction~right! of a diagonal ladder~left!.
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S12,n[S1,n1S2,n . ~3!

At this stage we are free to choose the spins of thenth
diagonal in the singlet (S12,n50) or triplet (S12,n51) repre-
sentations. In the latter case the Hamiltonian~2! becomes
entirely equivalent to that of an alternating spin-1/spin1

2

chain. Choosing a singlet on the minor diagonal of a giv
plaquette amounts to adding a spin-zero impurity on the c
responding spin-1 site in the alternating chain, which the
fore breaks into two disconnected pieces. The net resu
that the spin necklace ladder in fact describes alterna
spin-1/spin-12 chains with all possible sizes.

Fortunately, the alternating spin-1/spin-1
2 chain has been

the subject of several studies concerning the ground s
~GS!, excitations, and thermodynamic and magne
properties.13–15 The GS turns out to be ferromagnetic wi
total spin given bysG5N/2 whereN is the number of unit
cells of the chain. The later result is a consequence o
general theorem proved by Lieb and Mattis concerning
GS of the antiferromagnetic Heisenberg model on bipar
lattices.16 Similar results also hold for the repulsive Hubba
model at half-filling.17 Shen and co-workers in Ref. 18 hav
also established the existence of ferromagnetic long-ra
order in the antiferromagnetic Heisenberg model and
Hubbard model at half-filling in any bipartite lattice.

Moreover, as shown in Refs. 13–15, in the alternat
spin-1/spin-12 chain there are gapless excitations to sta
with spin sG21 and gapped excitations to states with sp
sG11. In spite of the existence of gapless excitations,
chain has a finite correlation lengthj;1, defined from the
exponential decay of the spin-spin correlation functi
^Si•Sj& after subtraction of the ferromagnetic long-ran
contribution. These results have been obtained by a com
nation of spin-wave, variational, and DMRG technique
with very satisfactory quantitative and qualitative agreem
among them.13,14

We have confirmed some of these properties by apply
DMRG and variational methods to the spin necklace ladd
In Fig. 5 we present a snapshot of the spin configuration
the GS of an 833 ladder, obtained with the DMRG, whic
has total spinsG54. We find that the mean value of the spi

FIG. 4. Diagonal coordinates for a single plaquette.

FIG. 5. DMRG results for the spin configuration for the GS
an undoped 833 necklace ladder. The state has total spinsG54.
The length of the arrow is proportional to^Sz&, according the scale
in the box.
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near the center of the system are given by^S1,n
z &5^S2,n

z &
50.396 and̂ S3,n

z &520.292 in agreement with the results o
Ref. 13 namely ^S1,n

z &50.39624 and^S3,n
z &520.29248.

Also using variational RVA methods we have found^S1,n
z &

50.4160 and̂ S3,n
z &520.2893.

The existence of a very short correlation length sugge
that the ferromagnetic GS is an adiabatic deformation of
Néel state, which can be described by a short-range va
tional state. References 13 and 14 propose several variat
matrix product states.19 It is more convenient for our pur
poses to use the RVA of Refs. 20 and 21, in order to d
with doped and undoped cases on equal footing. The GS
ladder of lengthN is built up from the states with length
N21,N22, and eventuallyN23 if N is odd. The GS thus
generated is a third-order RVA state. In Fig. 6 we show
diagrammatic representation of the corresponding recurre
relations ~we leave for Appendix A the technical details!.
The GS energy per site of the associated alternating c
that we obtain is given by20.7233J, which is to be com-
pared with the extrapolated DMRG results20.727 04J or
the spin-wave value20.718J of Pati, Ramasesha, and Sen13

IV. t-J MODEL ON THE NECKLACE LADDER

The Hamiltonian of thet-J model is given by

Ht,J5PGS J(
^ i , j &

~Si•Sj2
1
4 ninj ! DPG

2PGS t (
^ i , j &,s

~ci ,s
† cj ,s1H. c.! DPG , ~4!

where theci ,s(ci ,s
† ) is the electron destruction~creation! op-

erator for sitei and spins, ni is the occupation number op
erator, andPG is the Gutzwiller projection operator which
forbids doubly occupied sites. The density-density and
netic terms in Eq.~4! can be written in a form similar to Eq
~2! for the exchange terms. This suggest that there will a
be a ‘‘decoupling’’ of degrees of freedom associated with
transverse diagonals. The simplest way to see how this
coupling works is as follows.

For the necklacet-J ladder, there is a parity plaquett
conservation theorem:10 the t-J Hamiltonian on a necklace
ladder commutes with every graded permutation operatorPn
associated with the minor diagonal of thenth plaquette. Here
the permutation operatorPn(n51, . . . ,N) is defined by its

FIG. 6. Diagrammatic representation of the recurrent relati
generating the GS of an undoped necklace ladder using the v
tional RVA method~see Appendix A!.
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7976 PRB 59G. SIERRAet al.
action on the fermionic operators, which is trivial at all th
sites except for those on the minor diagonal of thenth
plaquette, where it acts as

Pnc~1,n!,sPn
†5c~2,n!,s ,

Pnc~2,n!,sPn
†5c~1,n!,s . ~5!

Of course the spin and the density number operators at
sites (1,n) and (2,n) are also interchanged under the acti
of Pn . The above theorem is the statement thatPn com-
mutes withHt,J , Eq. ~4!, for all n,

@Ht,J ,Pn#50 for n51, . . . ,N ~6!

and can be easily proved. Equation~6! is not special to the
t-J Hamiltonian, since any other lattice Hamiltonian havi
the permutation symmetry between the two sites on the
nor diagonal of every plaquette would share this same p
erty.

The immediate consequence of Eq.~6! is that we can
simultaneously diagonalize the HamiltonianHt,J and the
whole collection of permutations operatorsPn , the possible
eigenvalues of which are given byen561. The latter fact is
a consequence of the equation

Pn
251. ~7!

Letting en denote the parity of thenth plaquette, the nine
possible states associated with the minor diagonal o
plaquette can be classified according to their parity, i.e.,en
51 for even-parity states anden521 for odd-parity states
~see Table I!.

The Hilbert spaceHnecklaceof the t-J model can be split
into a direct sum of subspacesHe classified by the parity of
their plaquettes,e5$en%n51

N , namely,

Hnecklace5 % eHe. ~8!

Every subspaceHe is left invariant under the action of th
t-J Hamiltonian~4!, which can therefore be projected into a
‘‘effective’’ Hamiltonian Ht,J(e). In the previous section we
have already seen an example of this type of decoup
phenomena. Indeed, the alternating spin-1/spin-1

2 chain cor-
responds precisely to the case where all the plaquettes
odd and there are no holes. If holes are allowed then one
to consider, in addition to the triplets, the antibonding sta
on the odd plaquettes. Hence there are a total of five stat
each site of the ‘‘effective’’ alternating chain associated w
the minor diagonal of the odd plaquettes.

TABLE I. Classification of the states of the minor diagonal o
plaquette according to their parity.D1,2

† 5(c1,↑
† c2,↓

† 1c2,↑
† c1,↓

† )/A2 is
the pair field operator.

State e

Two holes u0& 1
Bonding (c1,s

† 1c2,s
† )u0& 1

Singlet D1,2
† u0& 1

Antibonding (c1,s
† 2c2,s

† )u0& 21
Triplet (c1,s

† c2,s8
†

1s↔s8)u0& 21
he

i-
p-

a

g

re
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s
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On the other hand, if the parity of the plaquette is ev
then the corresponding site in the chain has four poss
states which can be put into one-to-one correspondence
those of a Hubbard model as follows:

Even diagonal↔ Hubbard site,

Empty~ two holes! ↔ empty~1 hole),

Bonding states~↑,↓ !↔ single occupied state~↑,↓ !,

Singlet state↔ doubly occupied state. ~9!

In this case the Hamiltonian of the model is a Hubba
Hamiltonian with hopping parameter equal toA2t and with
the same exchange and density-density couplings. The
no Hubbard-U term.

In summary, theorem~6! implies that the necklace ladde
is in fact equivalent to a huge collection of alternating cha
models where half of the sites aret-J like while the other
half may be either spin-1 or spin-1

2 antibonding states for odd
parity, or Hubbardlike for even parity.

It is beyond the scope of the present paper to study s
an amazing variety of chain models disguised in t
innocent-looking necklace ladder. Instead, a more reason
strategy is to ask for the values of the total spinSand parity
e, which give the absolute minimum of the GS energy, ke
ing fixed the values of the number of plaquettesN, the num-
ber of holesh, and the ratioJ/t, i.e.,

E0~N,h,Smin ,emin ,J/t !<E0~N,h,S,e,J/t !, ;S,e.
~10!

Even this question is not easy to answer with full general
However, we shall study a few cases that suggest a gen
pattern for the behavior of the spin and parity as functions
doping.

FIG. 7. Pictorical representation of the most probable state
doped x51/3 necklace ladder of dimension 838. Blank circles
denote holes and vertical solid lines represent valence bond s
@case~8,0!#.

TABLE II. DMRG and RVA total energies for a seven
plaquette necklace ladder withh holes and total spinSz . The string
of epsilons is the pattern of parities in the subdiagonals~rungs!.

h S (e1 , . . . ,e7) Figure E0
DMRG E0

RVA

8 0 (1111111) 7 and 8 -16.554 153 -16.339 96
8 1 (1112111) 9 -16.284 855 -16.003 58
7 1/2 (1111112) 10 -15.489 511 -15.181 41
6 0 (2111112) 11 -14.424 805 -14.022 86
6 1 (2111112) 12 -14.424 798 -14.022 86
9 1/2 (1111111) 13 -16.746 112
10 0 (1111111) 14 -16.927 899
10 1 (1111111) 15 -16.718 476
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V. DMRG AND RVA RESULTS
ON THE NECKLACE LADDER

We shall concentrate on the case of a necklace ladder
seven plaquettes and open BC’s, which will allow us
present in a simple manner the basic features of the GS
various spins~S! and dopings (h). The values of the cou
pling constants are fixed tot51 andJ50.35.

In Table II we show, for several pairs (h,S), the parities
of the plaquettes, the total GS energy computed with
DMRG and the RVA methods. This table also lists the la
of the corresponding figures showing DMRG results for
hole and spin densities of the corresponding state.

The RVA results have been derived from an inhomo
neous recurrence variational ansatz~see Appendix A!. As in
the latter cases we start from a state, hereafter called ‘‘c
sical,’’ which is considered to be the most important co
figuration present in the actual GS. Next we include the lo
quantum fluctuations around the classical state.

This is done for a whole set of ‘‘classical’’ states havin
the same number of plaquettes, holes andz component of
spin. As discussed in Appendix A, the classification of t
classical states is achieved by means of paths in a Bra
diagram generated by folding and repeating the Dynkin d
gram of the exceptional Lie groupE6 . The six points ofE6
are in one-to-one correspondence with six different state
the necklace ladder, while the links ofE6 are nearest-
neighbor constraints derived on the basis of the DMRG
sults in the region 0<x<1/3. The Bratelli construction give

FIG. 8. Electronic densities for a necklace ladder as depicte
Fig. 7. It corresponds to 7 plaquettes and eight holes~doping x
51/3). Below are shown the DMRG and RVA values for the si
in the main diagonal, while above are shown the values on
rungs corresponding to subdiagonals.

FIG. 9. Results using DMRG showing the necklace state w
eight holes and spinSz51. The diameter of the circles are propo
tional to the hole density, and the length of the arrows are prop
tional to ^Sz&, according to the scale in the box.
ith
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us a systematic way to explore the GS manifold in the
derdoped regionx<1/3. The overdoped region has to b
studied with delocalized RVA states as discussed in Refs
and 21.

Let us comment on the DMRG results shown in the fi
ures.

a. Case (8,0).This is the most interesting case and
corresponds to one hole per site along the principal diago
In the infinite length limit this state has dopingx51/3. For
this reason we shall hereafter call this state thex51/3 state.
Figure 7 shows the most probable configuration which
curs when the holes occupy the principal diagonal of
ladder and the spins form perfect singlets along the mi
diagonals. The latter fact implies that all the plaquettes
even ~see Table I!. Figure 8 shows the electronic densi
along the ladder computed with the DMRG and the RVA

b. Case (8,1).~See Fig. 9.! The spin excitation of thex
51/3 state is given by a spin-1 magnon strongly localized
an odd-parity plaquette located at the center of the lad
The other plaquettes remain even and spinless. The valu
the spin gap is given byDs50.27~DMRG! and 0.32~RVA!.

c. Case (7,1/2).~See Fig. 10.! This case is obtained by
doping thex51/3 state with an electron. The additional ele
tron goes into either of the boundary plaquettes. The co
sponding plaquette changes its parity to21.

d. Cases (6,0) and (6,1).~See Figs. 11 and 12.! The state
x51/3 is now doped with two electrons, which go to th
boundary plaquettes that change their parity. There seem
be a small effective coupling between the two spin-1/2 at
ends of the ladder, which lead to a breaking of the deg
eracy between the triplet and the singlet. This is reminisc
of the effective spin 1/2 at the ends of the Haldane a
AKLT open spin chains.22 There also exists a weak effectiv
coupling that breaks the fourfold degeneracy of the op
chains.

e. Case (9,1/2).~See Fig. 13.! The x51/3 state is doped

in

e

h

r-

FIG. 10. DMRG results for the hole and spin densities of t
necklace state with seven holes and spinSz51/2.

FIG. 11. Results from DMRG showing the necklace state w
six holes and spinSz50.
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7978 PRB 59G. SIERRAet al.
with one hole. The parity of the plaquettes remain unchan
and the extra spin 1/2 delocalizes along the whole sys
perhaps with some spin-density-wave component. The
ferences between this hole doped case and the electron d
case~7,1/2! are quite striking.

f. Case (10,0).~See Fig. 14.! This state looks very much
the same as thex51/3 but just with more holes.

g. Case (10,1).~See Fig. 15.! Same pattern as in th
~9,1/2! case with the spin delocalized over the whole syste

In summary the DMRG results clearly suggest the ex
tence of two distinct regimes corresponding to dopings
<x,1/3 andx>1/3. In the overdoped regime the plaquett
are always even while in the underdoped regime they ca
even or odd. Phase separation into even and odd plaqu
may also be possible. Our results at this moment are amb
ous and further numerical work is required. The most imp
tant result is the peculiar structure of thex51/3 state, which
we shall study further in the next two sections.

VI. x51/3 STATE OF THE NECKLACE LADDER

The most important configuration contained in thex
51/3 state has spin singlets along the diagonal. This is c
sistent with and helps explain thep phase shift in the~1,1!
domain walls observed numerically with DMRG~Ref. 7! and
Hartree-Fock5 calculations in large lattices and experime
tally in some nickelates compounds.

On the other hand, thex51/3 state is a kind of 1D gen
eralization of the GS of two holes and two electrons on
232 cluster discussed in reference,23 in connection with the
binding of holes in the two-leg and higher-leg ladders. O
can also use this local structure to build up a variational s
of the two-leg ladder valid for any doping.21

The GS of two holes in a plaquette is the localized Coo
pair depicted in Fig. 16 and can be generated by the pair
operators acting on the vacuum as

uCooper Pair&5@A~D1,3
† 1D1,4

† 1D2,3
† 1D2,4

† !

1~D1,2
† 1D3,4

† !#u0&, ~11!

FIG. 12. Results from DMRG showing the necklace state w
six holes and spinSz51.

FIG. 13. Results from DMRG showing the necklace state w
nine holes and spinSz51/2.
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whereA is given by

A5
1

@21~J/4t !2#1/22J/4t
. ~12!

If J/t,2, thenA,1, which means that a diagonal bond
more probable that a nondiagonal one. This feature is a
observed in thex51/3 state, where the most probable bon
are those that line up along the transverse diagonals of
ladder~Fig. 7!. Taking into account this state together wi
some important local fluctuations around it lead us to p
pose an RVA state withx51/3, which is defined by the
recursion relations depicted in Fig. 17~see Appendix A for
details!. The RVA state corresponding toN51 plaquette co-
incides precisely with state~11! identifying A5a/A2,b51
~see Fig. 16!. For ladders with more than one plaquette (N
.1) the symmetry of the diagonals disappear andbÞ1 in
general. In this case we have two independent variatio
parametersa and b. In Fig. 18 we give the energy pe
plaquette and the values ofa andb as functions of the num-
ber of plaquettes of the necklace ladder obtained by mini
zation of the energy of the RVA state. We observe that b
a andb become less than one in agreement with the DMR
results. All these results are quite satisfactory but still th
do not give us a transparent physical picture of thex51/3
state. This will be done in the next section.

VII. PLAQUETTE PICTURE OF THE NECKLACE
LADDER: THE tP-Jp-tD MODEL

An interesting property of the rectangular ladders is t
the strong-coupling picture of the GS and excited state
generally valid also in the intermediate and weak-coupl
regimes. Thus, for example, the spin gap of the two-leg s
ladder can be seen in the strong-coupling limit as the ene
cost for breaking a bond along the rungs.

In Sec. II we suggested that diagonal ladders could
thought of as collections of coupled plaquettes~Fig. 3!. The
trouble is that in doing so one actually needs more sites t
those available in the original lattice. Indeed the neckla

FIG. 14. Results from DMRG showing the necklace state w
10 holes and spinSz50.

FIG. 15. Results from DMRG showing the necklace state w
10 holes and spinSz51.



a

e-

m
se
p
s

c

te

re

-
nt
th
n
h

f

alue
ing

be
wn

ai

ns

mall
.

ber
d

to-
in-

PRB 59 7979DIAGONAL LADDERS: A CLASS OF MODELS FOR . . .
ladderLD with N plaquettes has 3N sites forN large while
the extended or decorated ladderL P shown on the right-
hand side of Fig. 3 has 4N.

The solution of this problem is achieved on physic
grounds by defining on the latticeL P an extendedt-J
Hamiltonian which, in a certain strong-coupling limit, b
comes equivalent to the standardt-J Hamiltonian onLD.
The extended Hamiltonian can also be studied in the li
where the plaquettes are weakly coupled. As we shall
the latter limit provides a useful physical picture of the pro
erties of the necklace ladder forx51/3 and other dopings a
well.

A. tp-Jp-td model

We shall define on the latticeL P an extendedt-J model
by the following Hamiltonian:

Hpd5Hp1Hd , ~13!

Hp5(
n

hn~ tp ,Jp!,

Hd5(
n

hn,n11~ td!,

wherehn(tp ,Jp) is a standardtp-Jp Hamiltonian involving
only the four sites of the plaquette labeled byn. Of coursehn
andhm commute fornÞm. On the other hand,hn,n11(td) is
a hopping Hamiltonian associated with the link that conne
the two nearest-neighbor plaquettesn andn11. Denoting by
L and R the corresponding sites on the different plaquet
joined by the link^L,R& then hn,n11 is given by the link
Hamiltonian defined as

h^L,R&5td~cL,s
† 2cR,s

† !~cL,s2cR,s!. ~14!

B. Strong hopping limit of the tp-Jp-td model

We want to prove that in the strong hopping limit, whe
td→`, the tp-Jp-td model becomes equivalent to thet-J
model on the necklace ladderLD.

In this limit we first diagonalizeHd looking for the low-
energy modes of the plaquettes. We then define
renormalization-group~RG! operatorT, that leads to a renor
malization of operators in the extended lattice model i
operators that act on the necklace lattice. In particular
Hpd Hamiltonian is truncated to an effective Hamiltonia
that is equivalent to the original necklace Hamiltonian. T
truncation operation is given by the equation~for a review of
the real-space RG method see Ref. 24!

Heff5THpdT
†. ~15!

FIG. 16. A pictorical representation of a localized Cooper p
on a plaquette. The parameterA in Eq. ~11! is A5a/A2,b51.
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The Hamiltonianhn,n11(td) acts in a Hilbert space o
dimension 33359. It has two eigenvaluesE50 and 2td ,
with degeneracies 3 and 6, respectively. The zero eigenv
corresponds to the states with two holes and the bond
state with up and down spins. In the limittd@tp ,Jp one
retains only the latter three degrees of freedom, which can
thought of as renormalized hole and spin-up and spin-do
electron states, respectively. The truncation operatorT, that
maps the Hilbert spaceHL P into the effective Hilbert space
HL D is, given by

T:HL P→HL D,

ud,d&→0,

ud,s&→
1

A2
u* &,

us,d&→
1

A2
u* &,

us,s&→uo&, ~16!

r

FIG. 17. A pictorical representation of the recurrence relatio
employed with the RVA method~see Appendix A! to construct
variational GS states for the dopedx51/3 necklace ladder. The
diagonal squares represent bulk states of a given length. S
circles represent holes and solid lines represent valence bonds

FIG. 18. Ground-state energy per site as function of the num
of plaquettes for a dopedx51/3 necklace ladder. It is obtaine
using the RVA method~see Appendix A!. Herea andb denote the
variational parameters and it is shown how they get stabilized
wards their thermodynamic values as the length of the ladder
creases.
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7980 PRB 59G. SIERRAet al.
where d and s stand for one electron, with spin up o
down, and one hole, respectively, living on a given link
L P, while * ando are the effective electron and holes livin
on the corresponding site ofLD obtained by contracting the
previous link to a site. The Hermitian operatorT† acts as
follows:

T†:HL D→HL P,

u* &→
1

A2
~ ud,s&1us,d&),

uo&→us,s&. ~17!

Equation~17! means that an electron stateu* & of LD be-
comes the bonding state in the enlarged Hilbert spaceHL P.
The RG operatorsT andT† defined above satisfy the follow
ing equations:24

TT†51, T†T5PG
~ l ! , ~18!

where PG
( l ) is a Gutzwiller operator that now acts on link

rather than on sites as follows,

PG
~ l ! :HL P→HL P,

ud,d&→0,

ud,s&→
1

A2
~ ud,s&1us,d&),

us,d&→
1

A2
~ ud,s&1us,d&),

us,s&→us,s&. ~19!

Using the above definitions we can easily obtain
renormalization of the different operators acting inL P,

TcL,sT
†5TcR,sT

†5
1

A2
cM ,s ,

TSLT†5TSRT†5
1

2
SM ,

TnLT†5TnRT†5
1

2
nM . ~20!

Here ci ,s ,Si ,ni are the fermion, spin and number operato
acting at the edges of the link̂L,R& for i 5L,R while for i
5M they act at the effective ‘‘middle’’ point of the link~i.e.,
^L,R&→M ). Of course, the operators and states that are
on the principal diagonal of bothL P andLD are not affected
by the renormalization procedure.

Using Eqs.~15! and~20! we can immediately find that th
renormalized effective Hamiltonian is given by thet-J
Hamiltonian~4!, i.e.,

Heff[THpdT
†5THp~ tp ,Jp!T†5Ht,J , ~21!

with the following values for the coupling constants:
f

e

s

ot

t5
1

A2
tp , J5

1

2
Jp ~necklace ladder!. ~22!

In the derivation of Eq.~22! we are assuming periodi
boundary conditions, along the principal diagonal of t
necklace ladder.

The strong hopping limit studied above is reminiscent
the strong-coupling limit of the Hubbard model, which lea
to the t-J model plus some extra three-site terms that
usually ignored. In the latter case the strong Coulomb rep
sion forces the Gutzwiller on-site constraint. Our case i
‘‘dual version’’ of this mechanism, in the sense that the co
pling constant involved is a hopping parameter, and that
Gutzwiller constraint arises from a link rather than from
site constraint. In the case of thetp-Jp-td model one does no
have to do perturbation theory in order to produce the
change term in the effective Hamiltonian since it is alrea
contained in the plaquette Hamiltonian. Perturbation the
would produce terms of the order 1/td , but they vanish at
td5`. The construction we have performed in this secti
can in principle be generalized to the Hubbard model.25

The analogy between the Hubbard and thetp-Jp-td model
suggests that we may learn something about the strong
ping limit by studying the weak hopping one. This is ce
tainly true if there are no phase transitions between the
regimes.

C. Weak hopping limit of the tp-Jp-td model

In the weak hopping regime, i.e.,td!tp ,Jp , we first di-
agonalize the plaquette HamiltonianHp and treatHd as a
perturbation. The energy levels ofHp are given, to lowest
order in perturbation theory, as tensor products of the eig
states of every plaquette. There will be in general a hu
degeneracy, which will be broken by the effective Ham
tonian derived fromHd using perturbation theory. Befor
going further into the study of the plaquette Hamiltonian w
have to consider the relationship between the filling fact
of the states belonging to lattices with different number
sites.

Let us consider a state inLD with Nh holes andNe elec-
trons. Applying the operatorT†, this state is transformed to
state inL P with Nh

(p) holes andNe
(p) electrons given by

Nh
~p!5 4

3 Nh1 1
3 Ne , Ne

~p!5Ne . ~23!

These equations reflect the fact one gets an extra hole u
going to the enlarged lattice. Equations~23! imply the fol-
lowing relations between the doping factorsx5Nh /(Nh

1Ne) andxp5Nh
(p)/(Nh

(p)1Ne
(p)):

x5 1
3 ~4xp21!, xp5 1

4 ~113x!. ~24!

From Eq.~24! we get the following correspondences:

x50↔xp51/4, ~25!

x51/3↔xp51/2,

which we shall discuss in detail below.
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1. Weak hopping picture of the x51/3 state

Equation~25! implies that the 1/3 doped state of the nec
lace ladder is transformed to a state with two holes and
electrons per plaquette in the expanded necklace lattice.
show in Appendix B that the lowest GS for this filling
given by the coherent superposition of Cooper pairs loc
ized on the plaquettes, i.e.,

uxp51/2,td50&5 )
n51

N

uCooper pair&n ~26!

whereuCooper pair&n is the state given in Eq.~11! with the
parametersa andb given by Eq.~12! for the values oftp ,Jp .

Turning td on, the state~26! will be perturbed mainly
along the principal diagonal. The doubly occupied and a
bonding links will become high-energy states while t
bonding and empty links will remain low in energy. In th
limit when td becomes infinite we expect the GS@Eq. ~26!#
to evolve continuously into thex51/3 GS of the necklace
This suggest that thex51/3 state of the necklace ladder ca
be described as a Gutzwiller projected state, i.e.,

ux51/3&;TPG
~ l !uxp51/2,td50&, ~27!

where we first project out the doubly occupied and antibo
ing states on the links on the principal diagonal of the
panded ladder and then project the resulting state into
Hilbert space of the necklace ladder. Some diagramma
~Fig. 19! shows that the state~27! is basically the same as th
x51/3 RVA state constructed in Sec. VI. This leads us to
conclusion that thex51/3 GS of the necklace ladder can b
seen as the Gutzwiller projection of Cooper pairs localiz
on the plaquettes. In this case the Cooper pairs are locke
a Mott insulating phase and there is an exponential deca
the pair field.

2. Weak hopping picture of the x50 state

The GS of a plaquette with one hole and three electr
for Jp /tp50.5 has spin 1/2 and it belongs to the tw
dimensional irrep labeled byE of the symmetry groupD4
~see Appendix B!. These two states differ in their parit
along the minor diagonal, which can be even or odd. B
states can be thought of as bound states of a Cooper pai
one electron~see Fig. 20!. The fourfold degeneracy on ever
plaquette is broken bytd . The odd-parity plaquettes ar
lower in energy than the even ones and the effective mod
given by a ferromagnetic spin-1/2 chain,

FIG. 19. Ground state for a dopedx51/3 necklace ladder
~down! obtained as the projection of axp51/2 doped state in the
decorated~dual! diagonal ladder~above!.
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Heff5Jeff(
n

Sn
eff
•Sn11

eff . ~28!

HereSn
eff is the overall spin-1/2 operator of the odd plaque

and Jeff;2td
2 is a ferromagnetic exchange coupling co

stant.
Following a reasoning similar to that for the casex51/3

we conjecture that thex50 state can be represented as t
following Gutzwiller projected state,

ux50&;TPG
~ l !uxp51/4,en521,td50&, ~29!

the structure of which is indeed very similar to the ferroma
netic RVA state proposed in Sec. III. See Fig. 21 for
plaquette construction of the Ne´el state of the necklace lad
der starting from thexp51/4, en521 state. The gaples
excitations of the ferromagneticx50 GS correspond, in the
weak-coupling picture, to the magnons of the ferromagne
chain ~29!, while the gapped excitations correspond to
excitation of the plaquette to a state with spin 3/2.

In summary we have been able to obtain a satisfact
picture of both thex50 and 1/3 states in the weak-couplin
limit of the extendedt-J model, which leads us to conclud
that for these dopings there are no phase transition betw
the weak- and strong-coupling regimes. Other dopings
volve the competition of the two elementary plaquette sta
used above and will be considered elsewhere.

VIII. FROM 1D TO 2D THROUGH DIAGONAL LADDERS

The necklace ladder represents the first step in the dia
nal route to the 2D square lattice. In this section we sh
push forward this viewpoint trying to see how much one c
expect from it. This will lead us to ask questions who
solution we do not yet know. In this sense some of the m
terial presented below is conjectural.

Let us first start with a short excursion into graph theo

FIG. 20. A pictorical representation of a bound state formed
a Cooper pair and one electron. Small blank circles represent h
black circles represent electrons and solid lines are valence bo

Here ā,b̄ are relative amplitudes taken as variational parameter

FIG. 21. A Néel-like ground state~down! for an undopedx
50 necklace ladder obtained as the projection~above! of a doped
state in the decorated~dual! diagonal ladder.
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A. Plaquette construction and medial graphs

The plaquette construction of the necklace ladder is
lated to the so-called medial graphs used in the color
problem or in statistical mechanics.27 Before we show this
connection we need to generalize our plaquette construc
to diagonal ladders with more than one plaquette per
cell, i.e.,np.1.

In this section we shall use the following notations:

L nl

R : rectangular ladder withnl legs,

L np

D : diagonal ladder with np plaquettes,

L np

P : ~4,8! lattice with np plaquettes. ~30!

As an example we depict in Fig. 22 the latticesL 2
P ,L 3

D , and
L 2

R. The latticeL np

P consist of 4-gons, i.e., plaquettes, joine

by links, which are associated with the hopping parametetd
while the plaquettes are associated with the parametertp

andJp . Fornp.1 L np

P contains also 8-gons that are forme

by four td links and fourtp links.
As shown in the previous section the limittd→` has the

geometric significance of shrinking the correspondingtd

links into sites, so that the the latticeL np

P ‘‘renormalizes’’

into the diagonal ladderL2np21
D ~see Fig. 22!. In this strong-

coupling limit the number of plaquettes actually increas
and some plaquettes are generated for free. The numb
plaquettes of the diagonal ladder so obtained is odd. T
construction does not produce even plaquette diagonal
ders.

Observe that all the diagonal ladders are bipartite latti
but only whennp is even are the number of sites of the tw
different sublattices the same. This suggests that thenp-even
diagonal AFH ladders belong to the same universality cl

FIG. 22. Several examples of related ladders as explaine
text. ~Above! An example of a (4,8) lattice withnp52 plaquettes.
~Middle! An example of a diagonal ladder withnp53 plaquettes.
~Down! An example of rectangular ladder withn52 legs.
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as thenl-even rectangular ladders, while thenp-odd diagonal
ladders belong to a different universality class characteri
by ferromagnetic GS’s.

The opposite limit, wheretd→0, has the geometrica
meaning of shrinking the plaquettes into sites, so thatL np

P

renormalizes the system to a rectangular ladder withnp legs
~ see Fig. 22!.

We summarize the above geometric RG operations in
following symbolic manner,

L np

P→L2np21
D ~ td→`!,

L np

P→Lnp

R ~ td→0!. ~31!

In this sense the (4,8) lattice is an interpolating struct
between diagonal and rectangular lattices.

There is an interesting connection between this plaqu
construction and the theory of medial graphs. Conside
graphG made of a set of pointsi connected by linkŝi , j &. A
medial graphM(G), associated with the graphG, is ob-
tained by surrounding every sitei of G by a polygonPi ,
such that two polygonsPi and Pj , which correspond to a
link ^ i , j &, meet at a single intersection pointPiùPj , which
lies on the middle of the link̂i , j & ~Ref. 27! ~see Fig. 23 for
a generic example!.

Choosing the polygonsPi to be 4-gons, i.e., plaquettes
one can easily show that a diagonal ladder with an odd n
ber of plaquettes is the medial graph of a rectangular lad
namely,

L 2np21
D 5M~L np

R !. ~32!

Medial graphs are used in statistical mechanics to sh
the equivalence between the Potts model and the six-ve
model.28,27Indeed one can show that the Potts model defin
on a graphG is equivalent, i.e., has the same partition fun
tion after appropriate identification of parameters, to the s
vertex model defined on the medial graphM(G), i.e.,

ZPotts~G!5Zsix-vertex„M~G!…. ~33!

The transformationG→M(G) is a kind of duality map that
relates two seemingly unrelated models and it is in fact
key to solving the 2D critical Potts model in terms of th
six-vertex one.

B. Plaquette construction of the 2D square lattice

In Fig. 24 we apply the plaquette construction to the 2
square lattice. It is a simple generalization of the constr

in

FIG. 23. An example of medial graph construction. Here t
graph G is made by solid lines and blank circles. Its associa
medial graphM(G) is made by dashed lines.
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tion shown in the previous subsection whennp→`. If L `
D is

a square lattice with lattice spacinga, then L `
R is also a

square lattice but with spacingA2a.29

Let x be the doping of at-J model defined onL `
D , andxp

the doping factor of atp-Jp-td model defined onL `
P , then

the relations between these quantities are analogous to
~22! and ~24! for the necklace ladder, namely,

x5~2xp21!, ~34!

t5 1
2 tp , J5 1

4 Jp . ~35!

Equation~34! implies that the undoped systemx50 cor-
responds to dopingxp51/2 in the enlarged lattice. Figure 2
shows a plaquette construction of the Ne´el state from the
xp51/2 state. Notice that the plaquettes have spin 1 and
the parity on their diagonals alternate between (1,21) and
(21,1). In the strong hopping limit the plaquettes have
effective spin 1. The whole set of these effective spin 1’s
coupled antiferromagnetically and form a square lattice w
lattice spacing, which isA2 times larger than the lattice spa
ing of the original spin-1/2 model. In a certain sense
plaquette construction integrates out degrees of freedom
renormalizes the system into an AF Heisenberg model w
spin 1 and lattice spaceA2a. This picture agrees qualita

FIG. 24. Plaquette constrution~small interior squares plus
dashed lines! of the 2D square lattice as explained in the text.

FIG. 25. Plaquette constrution of the 2D Ne´el state in a square
lattice as explained in the text. The corresponding depicted stat
the decorated~dual! lattice has dopingxp51/2 and spin 1 on every
small square plaquette.
qs.
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tively with the RG flow of theO(3) nonlinear sigma mode
in the renormalized classical region at zero temperature.30

In the weak hopping limit, however the GS of the 2
model is given essentially by the coherent superposition
localized Cooper pairs used in the construction of thex
51/3 necklace state. The Gutzwiller projection of this sta
onto the original lattice will produce a spin-Peierls sta
rather than an AFLRO state.

We conclude that, unlike the case of the necklace lad
the tp-Jp-td model in two dimensions must have a pha
transition for some intermediate value oftd . The study of
this model may serve to clarify the relationship between
AFLRO and thed-wave pairing structures observed in th
theoretical models of strongly correlated systems.

IX. CONCLUSIONS

Diagonalt-J ladders provide an alternative route of inte
polating between one and two spatial dimensions. Here
have described a general framework for such an interpola
and introduced a generalizedtp-Jp-td plaquette model in
which the individual plaquettes are linked by a hopping te
td . In the strong hoppingtd@tp ,Jp limit, the generalized
plaquette model was shown to map into the original diago
t-J model with renormalized parameters and filling facto
Thus, the generalizedtp-Jp-td model provides a dual mode
to the original diagonal model. In this sense, it is interest
to study thetp-Jp-td model in the weak hopping limit. If
there is no phase transition between the weak and str
hopping limits, then the weak hopping limit can provide ne
insight into the nature of the originalt-J diagonal ladder. We
believe that this is the case for thenp51 plaquette necklace
ladder and that its ground state for a dopingx5 1

3 can be
understood as the Gutzwiller projection of a product state
Cooper pairs localized on the plaquettes of the quarter-fi
extendedtp-Jp-td model. Alternatively, for thenp→` 2D
limit, we believe that the extendedtp-Jp-td model at a dop-
ing xp5 1

2 , which corresponds to the undoped (x50)t-J
model, will have a phase transition for an intermediate va
of td /tp . In this case, our conjecture is that the stron
coupling limit will have a ground state with long-range A
order while the weak-coupling phase will be a localized sp
Peierls state.

In order to make these ideas more concrete, we have
cused on the single plaquettenp51 necklace ladder. Here
using the results of DMRG and RVA calculations, we ha
studied the necklace ladder for various dopingsx. For x
5 1

3 , the DMRG calculations show that, in the most proba
configuration, the holes occupy the sites along the princ
diagonal of the necklace and the spins form perfect sing
along the minor diagonals. The RVA calculations, starti
from a classical configuration and mixing in local quantu
fluctuations about this state, provide a ground-state energ
good agreement with the DMRG result. Then, as discus
above, a more transparent physical picture of thex5 1

3 state
of the diagonal necklace is provided by the extendedtp-Jp-td
dual model at a filling ofxp5 1

2 in which this state is seen a
a localized Cooper pair state. It will be interesting to und
stand what happens when additional holes are added. In
ticular, will a necklace with a doping ofxp50.51d have
power lawd-wave-like pairing correlations?

on
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For x50, the diagonal necklace is equivalent to an alt
natings51/s5 1

2 spin chain and has a ferromagnetic grou
state with total spinN/2, with N the number of unit cells of
the necklace. There are gapped excitations with spinN/2
11 and gapless excitations with spinN/221. In the weak
hopping limit of thetp-Jp-td model, these excitations corre
spond to local excitations of the plaquettes to a spin-3

2 state
and to magnons of a ferromagnetic spin-1

2 chain, respec-
tively. Thus, in thex50 case, the dual model provides
useful physical picture.

We have also found that when thex5 1
3 state is doped

with holes, the ground-state plaquettes retain the even p
characteristic of thex5 1

3 state. However, when electrons a
added, this parity can be even or odd. Thus, it appears
the x5 1

3 doping separates the system into two distinct
gions. A simple way to understand these results is to c
sider a tight-binding model with nearest-neighbor hopping12

Combining the bonding orbitals with the orbitals in the pri
cipal diagonal one gets a standard 1d band, while the anti-
bonding orbitals produce a flat band. For dopings 1/3<x
<1 the bonding band is filled with electrons while the an
bonding band is empty. For dopingsx,1/3 the bonding band
is half filled and in the antibonding flat band is partial
occupied.

Clearly, the diagonal ladders form a rich class of mod
with properties ranging from ferromagnetic to antiferroma
netic and from localized pair states to possible extended p
ing states. Furthermore, thetp-Jp-td model provides a dua
description that suggests alternative physical pictures and
proximation schemes as well as connections to conc
from statistical mechanics.
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APPENDIX A: RVA APPROACH TO THE NECKLACE
LADDER

The RVA method is a kind of simplified DMRG wher
one retains a single state as the best candidate for the G
the system. As in the DMRG the GS of a given length
constructed recursively from the states defined in previ
steps. This idea can be implemented analytically if the an
is sufficiently simple. Below we shall propose various RV
states for the necklace ladder with dopings 0<x<1/3.

1. Casex50

Let us begin by labelling the sites of the necklace lad
as in Fig. 26. The even sites denote the minor diagonal of
ladder while the odd sites are those on the principal diago
-
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At zero doping there are only two possible states on
odd sites given by

u↑&5c↑
†u0&, u↓&5c↓

†u0&. ~A1!

On the even sites there are a triplet and a singlet state g
by

uS&5D1,2
† u0&,

uT↑&5c1,↑
† c2,↑

† u0&,

uT↓&5c1,↓
† c2,↓

† u0&,

uT0&5
1

A2
~c1,↑

† c2,↓
† 2c1,↓

† c2,↑
† !u0&. ~A2!

The Néel state on the necklace ladder can be written s
ply as

u↓&uT↑&u↓&uT↑&•••u↓&uT↑&u↓&uT↑&. ~A3!

A trivial observation is that the Ne´el state on the necklac
with N sites is generated by the first-order recurrence re
tion,

uNeel,2N11&5u↓& uNeel,2N&, ~A4!

uNeel,2N&5uT↑&uNeel,2N21&.

Quantum fluctuations around the Ne´el state amount to loca
changes of the form~see Fig. 27!

u↓&uT↑&→u~↓,T↑!&[u↑&uT0&,

uT↑&u↓&→u~T↑ ,↓ !&[uT0&u↑&, ~A5!

FIG. 26. A pictorical view of the necklace ladder showing t
labeling convention employed to denote the variational RVA sta
Here the positions along the main~horizontal! diagonal of the lad-
der are odd sites, while the even positions are made up of rung
sudiagonals.

FIG. 27. A pictorical representation of fluctuation states as c
structed in the text for the RVA method in the necklace ladd
HereT1 andT2 stand forT↑ andT↓ , respectively.
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u↓&uT↑&u↓&→u~↓,T↑ ,↓ !&[u↑&uT↓&u↑&.
Hence a globally perturbed Ne´el state is a coherent superp
sition of states of the form

↓~T↑↓ !~T↑↓ !T↑~↓T↑↓ !~T↑↓ !T↑↓~T↑↓ !T↑↓, ~A6!

where the parenthesis denote the quantum fluctuations g
in Eq. ~A5!. The RVA state is a linear superposition of stat
of the type~A6! weighted with probability amplitudes, whic
are the variational parameters.

The RVA state is generated by the following recursi
relations~RR!:

u2N11&5u↓&u2N&1uu~↓,T↑!&u2N21&

1vu~↓,T↑ ,↓ !&u2N22&,

u2N&5uT↑&u2N21&1uu~T↑ ,↓ !&;u2N22& ~A7!

with the initial condition

uN51&[u↓&, uN50&[1. ~A8!

To compute the energy of the stateuN& we define the follow-
ing matrix elements:

ZN5^NuN&, ~A9!

EN5^NuHNuN&,

whereHN is the Hamiltonian of the system withN sites.
The RR’s for the states~A7! imply a set of recursion

relations for the matrix elements~A9!. From the norm we ge

Z2N115Z2N1u2Z2N211v2Z2N22 , ~A10!

Z2N5Z2N211u2Z2N22 .

The initial conditions are

Z05Z151. ~A11!

The RR’s for the energy are

E2N115E2N1u2E2N211v2E2N221JSA2u2
1

2DZ2N21

1J~2A2uv2v2!Z2N221
J

2
v2Z2N23 ,

E2N5E2N211u2E2N221JSA2u2
1

2DZ2N22

1Ju2Z2N23

J

2
v2Z2N24 ,

while in this case the initial data are

E05E150. ~A12!

Minimizing the GS energy in the limitN@1 we find that
the GS per plaquette is given by20.4822 J, which corre-
sponds to an energy per site of the associated spin c
equal to20.7233 J. The values of the variational paramet
are given byu520.3288 andv50.1691.
en
s

in
s

2. Casex51/3

The most probable state for this doping is given by~see
Fig. 7!

us&uS&us&uS&•••us&uS&us&. ~A13!

Analogously to Eq.~A5! we define local fluctuations aroun
Eq. ~A13! in terms of the statesu(s,S)&,u(S,s)& and
u(s,S,s)& depicted in Figs. 27–29. Thex51/3 RVA state
can then be constructed from the following RR’s~see Fig.
17!:

u2N11&5us&u2N&1au~s,S!&u2N21&

1bu~s,S,s !&u2N22&,

u2N&5uS&u2N21&1au~S,s !&u2N22&. ~A14!

The norm ofuN& satisfies the RR’s@Eq. ~A10!# with the
replacementsu→a,v→b. The RR’s for the energy matrix
elements are given by

E2N115E2N1a2E2N211b2E2N22

1~A2~22t !a2Ja2!Z2N211A2~22t !2abZ2N22

1a2~2J/4!~a2Z2N231b2Z2N24!1b2~2J/4!

3~2Z2N231a2Z2N24!, ~A15!

E2N5E2N211a2E2N222~2A2ta1Ja2!Z2N22

1~2J/4!~a2Z2N2312b2Z2N24!1a2~2J/4!

3~2Z2N231a2Z2N24!.

The initial conditions for bothZN andEN are the same as fo
the undoped case. In the limitN→` we find

lim
N→`

E0~N!

N
520.7387, a50.7873, b50.5478,

~A16!

which give the asymptotic values of the curves in Fig. 18

3. Cases 0<x<1/3

In the underdoped region 0,x,1/3 we have observed
with the DMRG that many of the GS’s that one gets, a
particularly those listed in Table II can be understood
quantum fluctuations around a classical stateuc0&. This state
has the generic structure already seen in the casesx50 and
1/3 @see Eqs.~A6! and ~A13!#, namely,

FIG. 28. A pictorical representation of fluctuation states as c
structed in the text for the RVA method in the necklace ladd
HereT1 andT2 stand forT↑ andT↓ , respectively.
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uc0&5u l 2N11&u l 2N&•••u l 2&u l 1&, ~A17!

where the statesu l i&,i 51,2, . . . 2N,2N11, are taken to be

u l odd&5$u0&,u↓&,u↑&%5$1,3,5%, ~A18!

u l even&5$uS&,uT↑&,uT↓&%5$2,4,6%. ~A19!

Notice that we do not allow the holes on the minor diagon
of the classical stateuc0&. They will go there after consider
ing the fluctuations.26 Based on the DMRG results as well a
physical considerations, we shall allow the following pa
u l i&u l i 11& in uc0&:

u0&uS&,u0&uT↑&,u↓&uT↑&,u0&uT↓&,u↑&uT↓&, ~A20!

uS&u0&,uT↑&u0&,uT↑&u↓&,uT↓&u0&,uT↓&u↑&. ~A21!

This connectivity of the states making up a certainuc0& state
can be summarized in a graph in which we place a site
each and every six states in Eqs.~A18! and ~A19!, and join
them by links whenever it is possible to find them next
each other in theuc0& state according to the allowed loc
configurations~A20!,~A21!. This graph is depicted in Fig
30, and coincides with the Dynkin diagram of the exce
tional Lie groupE6 .

FIG. 29. A pictorical representation of fluctuation states as c
structed in the text for the RVA method in the necklace ladd
HereT1 andT2 stand forT↑ andT↓ , respectively.

FIG. 30. Dynkin diagram of the exceptional Lie groupE6 and
its associated site and rung states contributing to the variati
RVA method for the necklace ladder. These six states make
every classical stateuc0& on the underdoped ladder according to t
connectivity of this diagram.
s

r

-

Now we can characterize every admissible classical s
uc0& in a geometrical fashion: eachuc0& is a path in the
so-called Bratelli diagram associated to the Dynkin diagr
of E6 . This Bratelli diagram is shown in Fig. 31. The way
is constructed is apparent in that figure: one starts with
three possible site states~A18! located one on top of eac
other. These states are located by the labell 1 of the first site
of the diagonal ladder. Then we link them to the three p
sible rung states~A19! according to the connectivity pre
scribed in Fig. 30. These rung states are located by the l
l 2 of the second position of the diagonal ladder. Once thi
achieved, the rest of the graph in Fig. 31 is made up
reflecting this basic piece over the rest of the lab
l 3 ,l 4 , . . . ,l 2N ,l 2N11 . Observe that thex50 and x51/3
states discussed previously correspond to straight path
the Bratelli diagram~31!. A similar type of construction is
also used in statistical mechanics in the context of the f
models.27

The quantum fluctuations arounduc0& amounts to consid-
ering the normalized statesu( l i ,l i 11)& and u( l i ,l i 11 ,l i 12)&
depicted in Figs. 27, 28, and 29. An interesting property
these states is that they are orthogonal, i.e.,

^ l j u~ l i ,l i 11 ,l i 12!&50, j 5 i ,i 11,i 12, ~A22!

^~ l j ,l j 11!u~ l i ,l i 11 ,l i 12!&50, j 5 i ,i 11. ~A23!

The RVA state built uponuc0& is generated by the RR’s~see
Fig. 32!,

-
.

al
p

FIG. 31. Bratelli diagram of the exceptional Lie groupE6 . It
serves to classify all the classical statesc0 appearing in the RVA
treatment of the underdoped necklace ladder: every path on
diagram characterizes one of those classical states and provid
quantum numbers. HereT1 and T2 stand forT↑ and T↓ , respec-
tively. Also, S denotes a singlet state andO represents a hole.

FIG. 32. A pictorical representation of the recursion relations
Eq. ~A24! employed to generate the variational states in the R
treatment of the underdoped (0<x<1/3) necklace ladder. Herea, b
andc are local variational parameters. A square denotes a bulk s
on a ladder of a length given by its number inside. The black circ
and solid lines represent generic fluctuation states as explaine
the text.
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u2N11&5u l 2N11&u2N&1aNu~ l 2N11 ,l 2N!&u2N21&

1bNu~ l 2N11 ,l 2N ,l 2N21!&u2N22&,

u2N&5u l 2N&u2N21&1cNu~ l 2N ,l 2N21!&u2N22&,
~A24!

provided with the initial data,

u1&[u l 1&,u0&[1. ~A25!

Using the orthogonality conditions~A22,A23! it is easy to
get the RR’s satisfied by the norm of the RVA state,

Z2N115Z2N1aN
2 Z2N211bN

2 Z2N22 , ~A26!

Z2N5Z2N211cN
2 Z2N22 . ~A27!

The RR’s for the energy are more involved and will be om
ted here.

The results presented in Sec. V have been derived u
the following steps:

~i! Fix the lengthN of the ladder, the number of holesh
and the third component of the spinSz of the whole ladder.

~ii ! Generate all theuc0& configurations with those quan
tum numbersN,h,Sz. Generically the number of configura
tions grows exponentially. For example the seven plaqu
case studied in Sec. V hasN515 and a total of 33104

configurations.
~iii ! Compute the energy of the state associated with

zero-order stateuc0& using the recursion relations and fin
the variational parameters that lead to a minimum ene
For example for the seven plaquette ladder we used 21 i
pendent variational parameters.

~iv! Extract the stateuc0& which has the absolute mini
mum energy for a givenN, h, andSz.

4. Electronic density GS expectation values

Here we derive the general equations to compute the e
tronic density expectation values using the RVA method.
particular, we have plotted in Fig. 8 the results for the dop
casex51/3 in the necklace ladder and compared it with t
DMRG results showing a good agreement.

Let us denote the density electronic operator at the
positionR asdR , namely,

dR5nR,↑1nR,↓ , ~A28!

wherenR,↑ and nR,↓ are the number operators for fermion
with spins up and down, respectively.

For a diagonal ladder of lengthN ~sites1rungs! we need
to compute the vacuum expectation value~VEV! of the den-
sity operatordR in the ground state, which we denote as

dN~R!5^NudRuN&. ~A29!

When the positionR is even we shall need an addition
index k51,2 to locate the upper site (k51) and the lower
site (k52) of the rung.

Notice that these density VEV’s@Eq. ~A29!# are not nor-
malized. We may introduce normalized densities as
-

ng

te

e

y.
e-

c-
n
g

te

d̂N~R!5
^NudRuN&

^NuN&
5

dN~R!

ZN
. ~A30!

The densitiesd̂N(R) takes on values from 0 to 1 depen
ing on whether we find a hole with maximum probabili

@ d̂N(R)50# or one electron@ d̂N(R)51#.
Using the RR’s for the diagonal@Eq. ~A24!# ladder we

may find also RR’s for the unnormalized VEV’s:

d2N11~R!5d2N~R!1aN
2 d2N21~R!1bN

2 d2N22~R!,
~A31!

d2N~R!5d2N21~R!1cN
2 d2N22~R!, ~A32!

whenever the positionR of the insertion is not near the en
of the diagonal ladder state. The derivation of these R
follow closely that of the norm’sZ8s using the orthogonality
relations.

One can similarly determine the boundary or initial co
ditions to feed those RR’s.

APPENDIX B: SPECTRUM OF THE T-J MODEL ON THE
PLAQUETTE

The t-J Hamiltonian on the plaquette has the symme
groupD4 of the square. This implies that the eigenstates
be classified with the irreps ofD4 , together with the numbe
of holesh and the total spinS. D4 has five irreps, four of
which are one-dimensionalA1 ,B1 ,A2 ,B2 and one two-
dimensional irrepE. From the character table of this grou
one sees that the irrepsA1 ,B1 have, in our terminology, even
parity in both diagonals, while the irrepsA2 ,B2 are odd. The

TABLE III. Here h is the number of holes,S the total spin. The
third column denotes the irrep of theD4 group. We give the values
of the energy forJ50 and 0.5 (t51).

h S D4 Energy J50 J50.5

0 0 B2 23J 0 21.5
0 1 A2 22J 0 21
0 0 A1 2J 0 20.5
0 1 E 2J 0 20.5
0 2 B2 0 0 0
1 1/2 E 2J2A3t21J2/4 2A3 22.25
1 1/2 B2 23J/22t 21 21.75
1 1/2 B1 2J/22t 21 21.25
1 1/2 A2 23J/21t 1 0.25
1 1/2 A1 2J/21t 1 0.75
1 1/2 E 2J1A3t21J2/4 A3 1.25
1 3/2 A2 22t 22 22
1 3/2 E 0 0 0
1 3/2 B2 2t 2 2
2 0 A1 2J/22A8t21J2/4 2A8 23.09
2 0 B1 0 0 0
2 0 E,B2 2J 0 20.5
2 0 A1 2J/21A8t21J2/4 A8 2.59
2 1 E 22t 22 22
2 1 A2 ,B1 0 0 0
2 1 E 2t 2 2
3 1/2 A1 22t 22 22
3 1/2 E 0 0 0
3 1/2 B1 2t 2 2
4 0 A1 0 0 0
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FIG. 33. Plot showing the energy levels for atJ model on the 232 plaquette as a function of the couplingJ/t. The energy levels are
classified according theD4 symmetry group of the square as shown in Table III.
s

s
he

r
s
th
iz
in
on

a
n

e

t

tio
in

n
m

al-
ing
f
n-

ette
ou-
sts

the
nds
n in

te
LT

20.
tem,
T
o-

g

-

parity of the states in the irrepE is (1,2) and (2,1) for
the two diagonals. In Table III we show the analytic expre
sion of the energy and the value for the casesJ50 andJ
50.5 (t51). In Fig. 33 we show a plot with all the energie
as functions ofJ/t. Observe the crossover between t
lowest-energy states atJ/t;1.37.

APPENDIX C: PLAQUETTE DERIVATION OF THE
EQUIVALENCE BETWEEN THE HALDANE STATE AND

THE RVB STATE OF THE TWO-LEG SPIN LADDER

There has been some debate in the past as to whethe
Haldane state of the spin-1 chain is in the same phase a
GS of the AFH two-leg ladder. The general consensus is
they both belong to the same universality class character
by a spin gap, finite spin correlation length and nonvanish
string order parameter. The DMRG study of Ref. 31 dem
strated a continuous mapping between these systems,
pointed out the equivalence between a dimer-RVB state o
composite spin model~which is a ladder model with som
extra hopping terms! and the AKLT model.

This suggests that there must be a direct way to relate
valence bond construction of the spin 1 AKLT state22 and the
dimer-RVB picture of the two-leg ladder.32,20We shall show
that this is indeed possible through the plaquette construc
of the two-leg ladder, which is shown diagrammatically
Figs. 34 and 35.

In Fig. 34 the two-leg ladder is split into plaquettes co
nected by two links. We have generalized somewhat the

FIG. 34. Plaquette construction~small interior squares plus
dashed lines! of the rectangular ladder withnl52 legs.
-

the
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dial construction in this case, since two plaquettes are
lowed to have more than one common link. The interest
point is that the filling factorx of the ladder and the one o
the extended model,xp , are related in exactly the same ma
ner as the 2D lattices@see Eq.~34!#. Thusx50 corresponds
to xp51/2. Let us assume for the moment that each plaqu
has spin 1. Then the effective interaction describing the c
pling of these spins will be an AFH model. This sugge
that we can construct a valence bond state to approximate
plaquette ground state by drawing nearest-neighbor bo
among the elementary spins between plaquettes, as show
the upper part of Fig. 35. Now, if we project out of this sta
any S50 components of each plaquette, we get the AK
state, where each plaquette is a pure spinS51. If, instead,
we Gutzwiller project thetd links, as shown in Fig. 35, we
get the dimer-RVB state proposed in references 32 and

Hence, the plaquette model acts as intermediate sys
for which different projections generate either the AKL
state of the spin-1 chain or the dimer-RVB state of the tw
leg ladder.

FIG. 35. ~Bottom! A dimer-RVB state on a rectangular two-le
ladder obtained as the projection~top! of a dopedxp51/2 valence
bond state on the decorated~dual! lattice associated with the rect
angular ladder.
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