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We apply the density matrix renormalization group (DMRG) method to the BCS pairing Hamiltonian
which describes ultrasmall superconducting grains. Our version of the DMRG uses the particle (hole)
states around the Fermi level as the system block (environment). We observed a smooth logarithmic-
like crossover between the few electron regime and the BCS-bulk regime.

PACS numbers: 74.20.Fg, 74.25.Ha, 74.80.Fp
The density matrix renormalization group (DMRG) [1]
has been applied with great success to a large variety
of systems in condensed matter and statistical mechanics
(see [2] for a review). Most of these applications use the
real space formulation although the DMRG can also be
formulated in momentum space [3]. The starting point
of the DMRG method is the breaking of the system into
two pieces, the block and the environment, which are
described by a finite number of states out of which one
can reconstruct the ground state (GS) and the excited
states of the whole system. A correct choice of the block
and the environment is therefore crucial for the DMRG to
work. For example, open chains are divided into left and
right handed pieces linked by a couple of sites. The local
interaction between the left and right pieces of the chains
explains the adequacy of the DMRG in 1D problems.
However, for more complicated systems, or in dimensions
higher than one, there are no general rules dictating the
correct DMRG breaking except the nature of the physical
problem under study.

In this Letter we present a DMRG analysis of the GS
of the BCS Hamiltonian used to describe the supercon-
ducting properties of ultrasmall Al grains, discovered by
Black, Ralph, and Tinkham [4]. We show that the DMRG
gives an accurate approximation to the exact GS if the
block is taken to be the set of particles while the environ-
ment is taken to be the set of holes. This choice does not
satisfy the local interaction rule, which is so effective in
real space, for particles and holes are all coupled by the
BCS Hamiltonian. Nevertheless, the projection of the GS
into the particle and hole subspaces via density matrices
is strongly peaked on a small number of states, which ex-
plains the applicability of the DMRG to this problem. The
BCS pairing Hamiltonian used for small metallic grains is
given by [5–11]
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where i, j � 1, 2, . . . , V label single particle energy levels
whose energies are given for simplicity by ej � jd,
and d is the average level spacing which is inversely
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proportional to the size of the grain. cj,s are electron
destruction operators of time reserved states s � 6.
Finally m is the chemical potential and l is the BCS
coupling constant, whose appropriate value for the Al
grains is 0.224 [8]. Given N electrons they can form P
Cooper pairs and b unpaired states such that N � 2P 1

b. The Hamiltonian (1) decouples the unpaired electrons
and hence b is a conserved quantity. We investigate in
this Letter the GS of even grains �b � 0� and odd grains
�b � 1� at half filling �N � V� using a new version
of the DMRG and compare our results with the exact
Lanczos diagonalization for N � 24 and projected BCS
(PBCS) for larger N.

The Hamiltonian (1) has two regimes depending on the
ratio d�D � 2 sinh�1�l��N , between the level spacing
d and the bulk superconducting gap D [5–11]. In the
weak coupling region �d�D ¿ 1�, which corresponds to
small grains or small coupling constants, the system is in
a regime with strong pairing fluctuations above the Fermi
sea which lead to logarithmic renormalizations [9]. In the
strong coupling regime �d�D ø 1�, which corresponds
to large grains or strong coupling constants, the bulk-
BCS wave function describes correctly the GS properties.
In mean field theory the crossover between the weak
and strong coupling regimes occurs at a critical value
of the level spacing dC

b which is parity dependent. For
even grains one has dC

0 �D � 3.56 while for odd grains
dC

1 �D � 0.89 [6]. It is illustrative to consider the case
where ej � 0, ; j, so that the exact GS for b � 0 and
N � V is given by the PBCS state

jc
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p
ZV�2,V � �Py�V�2 j0� ,
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where j0� is the vacuum of the electron operators and
ZM,N � �M!�2CN ,M �CN ,M � N!�M!�N 2 M�!� is the
norm of the state �Py�M j0�. Notice that (2) is the projec-
tion of the BCS state exp�Py� j0� into the subspace with
V electrons. On the other hand for l � 0 and ej � jd
the GS at half filling is a Fermi sea with all the levels
between i � 1 and i � N�2 occupied. This state can be
© 1999 The American Physical Society

https://core.ac.uk/display/36162699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VOLUME 83, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JULY 1999
written as
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Comparing (2) and (3) it is clear that the PBCS state
(2) can be derived from the state (3) acting with pairs
of particle-hole �p-h� creation operators. With this aim
we split the operator Py as Ay 1 By, where Ay �PV

i�V�211 c
y
i,1c

y
i,2. After some algebra one finds [12]

jc
0
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V�2X
��0

c�j��p ≠ j��h ,

c� � CV�2,��
p

CV,V�2 , (4)

j��p ≠ j��h � 1
Zt,V�2

�AyB�� jFS� .

Performing the p-h transformation B ! By, we deduce
that (2) can be written as a sum over the tensor product
of particle and holes states with amplitude c�, where �
is the associated occupation number. Tracing over the
hole states one obtains from (4) a density matrix whose
eigenstates are the particle states j��p with eigenvalues
w� � c

2
� �� � 0, 1, . . . , V�2�. Tracing over the particle

states yield identical results for the hole states. In both
cases the eigenvalues of the density matrix follow the
hypergeometric distribution w� � C2

V�2,��CV,V�2, which
for large values of V becomes a normal distribution
centered at V�4 with quadratic deviation s �

p
V�2.

This is an interesting result because it implies that the
PBCS state (2) can be approximated to a great accuracy
with a number of particle and hole states of order

p
V�2.

We expect this result to hold for generic PBCS states.
The Gaussian decay of the weights w� of the density

matrix offers an ideal situation for the application of
the DMRG. The DMRG works very well in the cases
where the weights decay exponentially (see [13] for other
types of decays). The p-h breaking allows for a smooth
evolution of the system from a few electron regime into a
superconducting one.

Before we introduce the DMRG it is convenient to
perform the following canonical transformation:

cj,s �

(
b
y
V�2112j,s j � 1, . . . , V�2 ,

aj2V�2,s j � V�2 1 1, V ,
(5)

where the operators a
y
j,s �by

j,s� create particles (holes)
acting on the Fermi sea (3). Choosing the chemical
potential m as

m �
d
2

�V 1 1 2 l� , (6)

the Hamiltonian (1) has the p-h symmetry aj,s $ bj,s ,
and it can be written as
H�d � KA 1 KB 2 l�AyA 1 ByB 1 AB 1 AyBy� ,

(7)
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where ẽj � j 2
1
2 1

l

2 and KB and B can be obtained
from KA and A by the p-h transformation ai,s $ bi,s .
We have subtracted in (7) the constant term 2�V

2 �2,
which is the energy of Fermi sea jFS�, so that the lowest
eigenvalue of H gives directly the condensation energy
for even grains EC

0 � �cjHjc� 2 �FSjHjFS�. For odd
grains the level located at the Fermi sea is blocked and
the condensation energy can be computed following the
same steps as in the even case. From now on we shall
concentrate on the latter case. At half filling the GS of
the Hamiltonian (7) takes the generic form

jc� �
X
a,b

ca,bja�p ≠ jb�h , (9)

where the particle state ja�p must have a number of
particles Np equal to the number of holes Nh of jb�h

for the GS state (9) to be nonvanishing. The DMRG
is an algorithm that gives an optimal choice for the set
of particle and hole states entering in (9). This set is
constructed in successive steps starting from small grains.
We begin with a system with V � 4 energy levels, which
are chosen as the closest two particle and hole states near
eF . This system can be represented as ≤ ≤ ±±, where ≤
stands for a particle level, while ± stands for a hole one.
The Fermi energy lies in between the ≤’s and the ±’s. The
next step is to look for the GS of the Hamiltonian (7) for
V � 4 in the sector Np � Nh. From the knowledge of
ca,b we define the reduced density matrix for the particle
subspace

rA
a,a0 �

X
b

c�
a,bca0b . (10)

The p-h symmetry implies that the corresponding den-
sity matrix in the hole subspace coincides with (10). The
particle states which contribute the most to the GS (9)
are the eigenvectors of the density matrix rA with high-
est eigenvalues wp [1]. For the system ≤ ≤ ±± we can
work with all the eigenstates of rA, but in general we shall
be able to keep only the m most probable ones. With the
information gained previously one builds the system with
V � 6. The general rule is to build the system with V �
2�n 1 1� levels out of the system with V � 2n. This is
achieved by constructing the system with V � 2�n 1 1�
as a superblock of the form ≤AnBn±, where An �Bn� is
the block which gives an effective description of the low-
est n particle (hole) levels in terms of m states, while ≤ and
± represent the �n 1 1�th particle and hole levels added to
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enlarge the system size. The Hamiltonian H≤AB± of the
superblock ≤AnBn± is given by

H≤AB± � HA 1 HB 1 H≤ 1 H±

1 HAB 1 H≤A 1 HA± 1 H≤B 1 HB± 1 H≤± ,
(11)

HA � KA
n 2 lAy
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HAB � 2l�AnBn 1 H.c.� , (12)

H≤± � 2l�an11bn11 1 H.c.� ,
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y
n11 1 H.c.� ,

HA± � 2l�Anbn11 1 H.c.� ,

where a
y
i � a

y
i,1a

y
i,2 and An, KA

n are the operators A and
KA defined in Eqs. (8) but with V�2 replaced by n.
K �B�, bi , and Bn have similar definitions. The terms
HB, H±, H≤B, and HB± can be derived from (12) by the
p-h transformation An $ Bn, ai $ bi . The splitting (11)
of the superblock Hamiltonian H≤AB± recalls the one used
in the momentum space DMRG [3]. However, the latter
reference uses a finite system algorithm which does not
exploit the p-h symmetry. The DMRG provides a many
body description of the blocks An and Bn, which means
that the operators acting on these blocks are represented by
m 3 m matrices. In our case the operators that we need to
keep track are �An�, �Ay

nAn�, and �ay
j,saj,s�. Given these

operators we can construct the superblock Hamiltonian
(11) and look for the GS in the sector Np � Nh using
the Lanczos method. The dimension of this Hilbert space
�dimHV,m� is smaller than 4m2, for the constraint Np �
Nh eliminates the states away from half filling. dimHV,m
is usually much smaller than the exact dimension of the
Hilbert space of states with V levels at half filling which
is given by the combinatorial number CV,V�2.

Given the GS of the superblock we obtain, using
Eq. (10), the density matrix of the particle system ≤An

and diagonalize it keeping the m most probable states
with weight wp . The error of the truncation is measured
by 1 2 Pm �Pm �

Pm
p�1 wp�. The latter states form a

new basis of ≤An denoted as An11, and they give an
effective description of the particle subspace with n 1 1
levels. The hole block Bn11 is a mirror image of the
particle block An11. The DMRG proposed above is
an infinite system algorithm, which is sufficient to study
moderate system sizes �N # 400�. A way to improve
the numerical accuracy of the infinite system method
is to choose an effective value of the coupling constant
ln�bulk� at the nth DMRG step in such a way that the
value of the bulk gap is the one of the final system with
coupling constant l � l�bare�. This is guaranteed by the
equation

sinh
1

ln�bulk�
�

2�n 1 1�
V

sinh
1

l�bare�
, (13)
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where V is the final number of levels to reach and
2�n 1 1� is the number of levels at each step. Let us
now present our results. A DMRG calculation for V � 24
and m � 60 agrees with the exact Lanczos condensation
energy obtained in [10] in the first nine digits. The largest
DMRG superblock matrix involved in the calculation is
3066 to be compared with the Lanczos matrix of dimension
2 704 156. For V # 400 and m � 60 the condensation
energy is computed with a relative error less than 1024.

The numerical improvement achieved by the use of the
effective coupling constant ln�bulk� defined in (13) as
compared with the use of l � l�bare� in the DMRG steps
is illustrated in Table I.

Let us next consider the crossover between the weak
and the strong coupling regimes. The PBCS results of
Ref. [11] suggest a sharp crossover between these two
different regimes at characteristic level spacings dC

0 �
0.5D and dC

1 � 0.25D. For d , dC
b the condensation

energy is an extensive quantity �	1�d� corresponding to
a BCS-like behavior, while for d . dC

b this energy is
an intensive quantity (almost independent of d ) [11]. In
Fig. 1 we plot the DMRG results together with those of
Ref. [11]. From this comparison it is apparent that the
DMRG gives significant lower energies than the PBCS
ansatz. The DMRG is a variational method and in the
region under study we expect our results to coincide
with the exact ones with a relative error less than 1024.
Figure 1 also shows that the crossover between the BCS
and the fluctuation dominated (f.d.) regimes takes place in
a region which is wider than the one predicted by the PBCS
approach and that there is no sign of critical level spacings
dC

b . A more quantitative characterization of this crossover
is obtained by fitting the DMRG results to the formula (see
Fig. 1)

EC
b �D � 2c1�ln�1 1 c2

d
D � 1 c3 1 c4

d
D ,

c1 � 1.48, c2 � 3.05, c3 � 21.98 ,

c4 � 0.08 �b � 0� , (14)

c1 � 0.36, c2 � 0.86, c3 � 21.95 ,

c4 � 0.16 �b � 1� ,

which interpolates between the bulk-BCS-like behav-
ior, given by EC

0 � 2
c1

c2
D2�d �d�D ø 1�, and the

f.d. regime �d�D ¿ 1� characterized by logarithmic

TABLE I. GS condensation energy EC
0 for V � 100 and

l � 0.4 computed using the effective coupling constant and the
bare one. 1 2 Pm is the truncation error of the last iteration
and dimH100,m is the largest dimension of the superblock.

m EC
0 �bare��d EC

0 �bulk��d 1 2 Pm dimH100,m

50 240.446 23 240.500 14 2.0 3 1029 2108
70 240.488 78 240.500 68 7.1 3 10211 3622
90 240.498 15 240.500 74 1.1 3 10211 6306

110 240.499 83 240.500 75 1.5 3 10212 9720
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FIG. 1. GS condensation energies EC
b �b � 0, 1� as a function

of d�D for l � 0.224. V ranges from 22 (23) up to 400 (401)
for even (odd) grains and m � 60. The PBCS results are those
of Ref. [11].

corrections [9]. Indeed from (14) we get c2�c1 � 2.06
for b � 0 and c2�c1 � 2.4 for b � 1, which are both
close to the bulk value given by 2 [8]. The previous
results are consistent with the probabilities of the m states
kept by the DMRG as a function of the number of p-h
states appearing in (9), which we denote as Np-h. Let us
call w�Np-h� the sum of the probabilities of all the states
with the same value of Np-h. Each value of w�Np-h� is
dominated by a single state. In Fig. 2 we plot w�Np-h�
for some cases plotted in Fig. 1. The fast decay of these
weights recalls the Gaussian decay of the eigenvalues of
the density matrix of the PBCS state (2). For V � 22,
100, 180, 270, and 400 the most probable states have
Np-h � 0, 0, 1, 1, 2, respectively, while the next two most
probable states have occupation numbers jNp-h 6 1j.
As V increases the most probable state moves to higher
values of Np-h, becoming eventually commensurable with
V in the extreme BCS regime. It may seem from these
results that the p-h DMRG is not capable to describe the
bulk-BCS regime. This is not so because we have indeed
observed this regime for higher values of l.

In summary, we have proposed in this Letter a new
version of the DMRG which is suitable to study the
GS properties of the BCS pairing Hamiltonian of the
ultrasmall superconducting grains. We believe that
the p-h DMRG formulated in this work can be applied to
a more general variety of fermionic systems in condensed
matter, atomic, molecular [14], and nuclear physics.
Performing a Hartree-Fock transformation we can look
for the best single particle basis to begin the DMRG
procedure.

The main limitation concerns again the amount of
important states which in general will grow with the size
of the system to some power. For example, in the pairing
problem it grows with the square root of the size which
allows us to study large systems.

The comparison of the DMRG and PBCS results [11]
shows no signs of critical level spacings separating qual-
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FIG. 2. DMRG weights for m � 60 and l � 0.224 as a
function of the number of p-h states for different values
of V.

itative different regimes. We rather observe a smooth
logarithmic-like crossover which contradicts the sharp
crossover predicted by the PBCS ansatz. This latter fea-
ture is an artifact of the PBCS method which is unable
to capture the true nature of the crossover. In summary
the fluctuations seem to play a major role for no too small
grains.
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