
VOLUME 83, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 23 AUGUST 1999

1514

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC
Density Matrix Renormalization Group Approach to an Asymptotically Free Model
with Bound States

M. A. Martı́n-Delgado1 and G. Sierra2

1Departamento de Fı́sica Teórica, Universidad Complutense, Madrid, Spain
2Instituto de Matemáticas y Fı́sica Fundamental, C.S.I.C., Madrid, Spain

(Received 16 February 1999)

We apply the density matrix renormalization group (DMRG) method to the two-dimensional delta
function potential which is a simple quantum mechanical model with asymptotic freedom and formation
of bound states. The system block and the environment block of the DMRG contain the low energy and
high energy degrees of freedom, respectively. The ground state energy and the lowest excited states are
obtained with very high accuracy. We compare the DMRG method with the similarity renormalization
group method and propose its generalization to field theoretical models in high energy physics.

PACS numbers: 11.10.Hi, 02.70.–c
A hallmark of an asymptotically free theory such as
QCD is that it contains many degrees of freedom, with very
different energy scales, which are coupled by the interac-
tion Hamiltonian. Perturbative methods are valid for short
distance physics, but they fail for small momentum trans-
fers or for energy scales where the bound states are formed.
The existence of multiple energy scales suggests that the
renormalization group (RG) approach is the correct strat-
egy to attack these nonperturbative problems. In recent
years there have been several proposals to extract effective
low energy Hamiltonians using RG methods. Of particu-
lar interest is the light-front Hamiltonian approach advo-
cated in Refs. [1,2] which uses a similarity RG method
(SRG) [3,4]. In this method, the RG flow is given by a
unitary transformation which diagonalizes the Hamilton-
ian by successive elimination of the off-diagonal matrix
elements. The SRG cutoff can be seen as the width of the
band which contains the nonvanishing off-diagonal matrix
elements of the Hamiltonian. At the end of the SRG flow
the width is zero and the corresponding Hamiltonian con-
tains in its diagonal all the eigenvalues of the original one.

In this Letter we shall propose an alternative RG ap-
proach to study asymptotically free models using the den-
sity matrix renormalization group (DMRG). We shall also
show the relations and differences between the DMRG and
the SRG methods. The DMRG was proposed by White
in 1992 to solve the problems of the old real space RG
methods encountered in the 1970s, which led in those days
to their abandon in favor of Monte Carlo techniques [5].
The DMRG has by now become a standard numerical
RG method applied to many body problems in condensed
matter and other branches of physics (see Refs. [6,7] for
reviews). It is thus challenging to test how the DMRG
handles the subtle dynamics of asymptotically free theo-
ries. To our knowledge, this is the first paper devoted to
the subject. For this reason we have chosen as a theoretical
lab a simple model possessing the essential properties of
asymptotic freedom and formation of bound states, which
are shared by realistic theories like QCD.
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The natural candidate for such a simple model is pro-
vided by a 2D quantum mechanical particle subject to a
delta function potential [8]. The solution of the 2D delta
function Schrödinger equation requires regularization and
renormalization schemes as in an ordinary quantum field
theory. We shall use for our purposes the lattice regu-
larization introduced by Glazek and Wilson in their SRG
study of the problem [9,10]. These authors formulated the
problem in momentum space where the states are labeled
by an integer n that ranges between an infrared cutoff M
and an ultraviolet cutoff N (i.e., M # n # N). The ki-
netic energy En of the state n increases exponentially as
En � b2n, where b is an arbitrary constant greater than
one. For numerical computations we shall take the value
b �

p
2 as in Refs. [9,10]. The interaction Hamiltonian

between the states n and m is given by 2g
p

EnEm, where
g is the coupling constant of the problem. The discrete
lattice Hamiltonian H is defined by the matrix elements

Hnm � dn,mb2n 2 gbn1m, M # n, m # N . (1)

An overall shift of the levels by a constant term, i.e.,
n ! n 1 n0, implies that Hnm scales with the factor b2n0 .
This is a discrete version of scale invariance, which is
broken by the infrared and ultraviolet cutoffs M and N .
The latter symmetry implies that all the scales contribute
to the observables, which makes very hard an accurate
determination of their value by methods other than the
exact one.

The first step in the DMRG method is the partition
of the system in two pieces called the system block and
the environment block [5]. In our case, we shall choose
the system block BL

� to be given by the low energy
levels n which lie between the infrared cutoff M and the
scale � (i.e., M # n # �), while the environment block
BH

� will contain the high energy levels n between the
ultraviolet cutoff N and the scale � (i.e., � # n # N).
The whole system, with energy levels ranging from M to
N , is obtained as the “superblock” BL

� ≤ ± BH
�13, where ≤
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and ± are the n � � 1 1 and n � � 1 2 energy levels,
respectively (see Fig. 1).

The parameter � varies from M to N 2 3 and it labels
the DMRG flow. Let us suppose we want to find the
ground state (GS) of the whole system. We shall choose
a trial GS wave function c��n� as follows:

c��n� �

8>><
>>:

a1L��n� M # n # � ,
a2 n � � 1 1 ,
a3 n � � 1 2 ,
a4R�13�n� � 1 3 # n # N ,

(2)

where L� (resp R�13) is a normalized vector which
describes the contribution of the low (resp high) energy
block BL

� (resp BH
�13) to the GS of the superblock BL

� ≤

± BH
�13. The ansatz (2) is the momentum space version

of the real space DMRG applied by White to study a free
particle in a box [6,7]. Our approach is close in spirit to
the momentum space DMRG method proposed by Xiang
[11]. The energy of the state (2) can be conveniently
written as

�c�jHjc�� � �ajHSB���ja� , (3)

where ja� is the vector �a1, a2, a3, a4� and the superblock
Hamiltonian HSB��� is the 4 3 4 matrix given by

HSB��� �

2
664

hL hL≤ hL± hLH

hL≤ h≤ h≤± hH≤

hL± h≤± h± hH±

hLH hH≤ hH± hH

3
775 , (4)

whose entries read

hL � �L�jHjL��, hH � �R�13jHjR�13� ,

h≤ � H�11,�11, h± � H�12,�12 ,

hL≤ �
P�

n�M Hn,�11L��n�, hL±�
P�

n�M Hn,�12L��n� ,

hH≤ �
PN

n��13 Hn,�11R�13�n�, hLH � �L�jHjR�13� ,

hH± �
PN

n��13 Hn,�12R�13�n� h≤± � H�12,�13 ,

(5)

where Hn,m are the matrix elements given in Eq. (1).
Notice that Eq. (3) takes the form of an eigenvalue
problem in a reduced vector space with only four degrees
of freedom. The GS of the superblock can be found
by looking for the lowest eigenvalue E1��� of the 4 3 4
matrix HSB. The variational nature of the construction
gives an upper bound of the exact GS energy. If the
vectors L� and R�13 coincide with the low energy and

FIG. 1. Superblock decomposition of the energy scales.
high energy pieces of the exact GS wave function then the
DMRG algorithm presented so far would reproduce the
exact result. Of course, this is not in general the case but,
nevertheless, one can actually use the DMRG algorithm to
improve in successive steps the GS energy. The idea is to
apply a continuity argument. Suppose we shift the scale
� to the next high energy level, say � 1 1. Then the new
low energy vector L0

�11 will be related to the previous one
L� by the equation

L0
�11�n� �

8<
:

a0
1L��n� M # n # � ,

a0
2 n � � 1 1 ,

(6)

where �a0
1, a0

2� � �a1, a2��
q

a2
1 1 a2

2 is the normalized
two component vector obtained by the projection of the
ground state of HSB��� into the block BL

�≤. Similarly the
energy h0

L�� 1 1� associated to the latter block is given
by

h0
L�� 1 1� � �a0

1, a0
2�

µ
hL��� hL≤���
hL≤��� h≤���

∂ µ
a0

1
a0

2

∂
. (7)

The data L0
�11 and h0

L�� 1 1� fully characterize the new
block B0L

�11 which can be regarded as the renormalization
of the block BL

�≤. The next step is to construct the
superblock BL

�11 ≤ ± BH
�14 which by the same techniques

leads to the construction of a new block B0L
�12, and so

on. This procedure is iterated until the scale � � N 2 3,
where one reverses the DMRG steps in order to update
the high energy blocks BH

� using the low energy blocks
built in the previous steps. After a few sweeps from low
to high energy and vice versa, the lowest eigenvalue of
the superblock Hamiltonian (4) converges to a fixed value
which gives the DMRG estimation of the GS energy. To
start out the process, one has to grow up the system to its
actual size. This can be done by considering superblocks
of the form BL

M1p ≤ ± BH
N2p where p � 0, . . . , �N 2

M 2 3��2. The last value of p yields a system containing
all the scales from M to N . The low and high energy
blocks constructed in the warm-up are the starting point
for the sweeping procedure explained above (see [6,7] for
details). The previous algorithm has been generalized in
Ref. [12] to find out not only the GS but the low lying
excitations as well.

Let us now present our DMRG results for the case
considered in Refs. [9,10], where M � 221, N � 16 and
g � 0.060 606 000 321 088 66. The latter value of g is
chosen in such a way that the exact ground state energy
of (1) is given exactly by 21. The DMRG algorithm
presented above gives the exact ground state energy with
an error of 10214 (see Table I). Using the extension of
the DMRG proposed in [12], we have also computed the
GS and the lowest 3 excited states of the Hamiltonian (1).
In Table I we compare our DMRG results with the exact
ones in terms of the relative deviation

dEn �
En�DMRG� 2 En�exact�

En�exact�
. (8)
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TABLE I. Relative error dEn of the four lowest eigenstates
of the Hamiltonian (1).

n 1 2 3 4

dEn 7 3 10215 1.04 3 1027 3.36 3 1026 1.41 3 1026

As shown in Table I the accuracy of the excited states
energies is lower than that of the GS. This feature is
peculiar to the delta function Hamiltonian and it does not
arise for the quantum mechanical models studied in [12].

There are several reasons for the very high accuracy
of the DMRG applied to the Hamiltonian (1): (i) the
DMRG gives a variational upper bound to the exact GS
energy which is usually improved in every DMRG step;
(ii) all the matrix elements of the whole Hamiltonian are
used many times to feedback the superblock so that no
information is lost; (iii) the DMRG method focus on the
determination of the GS and the low lying states.

In Fig. 2 we plot the DMRG wave function which after
the third sweep is indistinguishable from the exact one.

It is interesting to investigate the nature of the DMRG
flow as compared with the one of the similarity RG
method. In the SRG the effective Hamiltonian H�s�
evolves as a function of s according to the Wegner
equation [4],

dH�s�
ds

� ����Hd�s�, H�s��, H�s���� , (9)

where Hd�s� is the diagonal part of H�s�. The initial
condition of Eq. (9) is H�0� � H, where H is the original
Hamiltonian of the problem. The parameter s ranges from
0 to `, and it can be identified with the inverse square of
the energy width l, i.e., s � 1�l2. Equation (9) implies
that H�s� is related to H by a unitary transformation, and
therefore they share their eigenvalues. When s increases,
the off diagonal matrix elements of H�s�, located at
distances greater than the width l � 1�

p
s, become very

small. When s � ` the effective Hamiltonian H�`� is
diagonal and all its entries coincide with the eigenvalues
of H. The numerical integration of Eq. (9) requires
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FIG. 2. DMRG vs exact wave function.
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one, of course, to follow the evolution of all the entries
of H. One would like instead to project the effective
Hamiltonians to smaller (“window”) matrices in order to
reproduce the bound state eigenvalue [10]. In a sense,
the superblock 4 3 4 matrices (4) resemble the window
matrices of Ref. [10]. Motivated by the SRG ideas
[10], we have studied the RG flow of the eigenvalues
Ei��� �i � 1, . . . , 4� of the superblock Hamiltonian (4).
In Fig. 3 we plot the lowest eigenvalue E1, together
with the remaining ones scaled down by a factor b2�.
We can clearly see from Fig. 3 that E1 stays constant
through all the DMRG steps while Ei�i � 2, 3, 4� vary
with the energy scale b2� with some deviations depending
on the energy region. The plateaus correspond to low
energy regions while the oscillations and bumps occur
for intermediate and high energies. To a first order
approximation, which is almost exact for the plateaus, the
superblock Hamiltonian (4) can be written as

HSB��� � O�

2
664

E1 0 0 0
0 E0

2b2� 0 0
0 0 E0

3b2� 0
0 0 0 E0

4b2�

3
775O

y
� , (10)

where O� is a unitary matrix. Using Eq. (10) one
can show that the superblock Hamiltonians satisfy the
following second order recursion relation:

HSB��� �
1

b 1 b21

3 �b21U�HSB�� 1 1�Uy
�

1 bU
y
�21HSB�� 2 1�U�21� , (11)

where U� � O�O
y
�11. The continuum limit of Eq. (11)

gives the flow equations

H1 �
dHSB

d�
2 �h, HSB�,

dH1

d�
� �h, H1� , (12)

where h � dO�

d� O
y
� . Equation (13) is a second order

differential equation which is to be compared with the
first order equation Eq. (9). The DMRG flow is a sort of
similarity transformation with some eigenvalues running
with the scale. Using the standard RG terminology the
lowest eigenvalue E1 can be associated with a marginal
operator while the eigenvalues Ei for i � 2, 3, 4 are
associated with infrared irrelevant operators which vanish
at the fixed point Hamiltonian HSB�� � M�. Indeed, all
the entries of HSB�� � M� are very small except for the
entry hH � 20.999 whose value is close to the bound
state energy. These results suggest that the exactness
of the DMRG method is due to a careful treatment of
the irrelevant operators, which in other RG methods are
difficult to control in general.

From a conceptual point of view the DMRG offers a
new way of thinking about cutoffs and RG flows in high
energy physics. Traditional cutoffs remove high energy
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FIG. 3. Plot of the rescaled superblock eigenvalues Ei�b2�

(i � 2, 3, and 4) as a function of the DMRG step L from sweep
2 to 4.

states while the lowering of the cutoff produces effective
operators for lower energies [13]. In the Lagrangian for-
mulation this strategy can be implemented perturbatively
without much difficulty. However, in the Hamiltonian for-
mulation it gives rise to small denominator problems in-
volving energy differences between the states kept and the
states truncated in the RG process [9,14]. This latter prob-
lem does not arise in the DMRG truncation, for it uses a
nonperturbative self-consistent algorithm to find the best
choice of the effective Hilbert spaces and Hamiltonians.

The next step in the application of the DMRG to high
energy physics is, of course, to consider field theoretical
models with asymptotic freedom and bound states.

The most appropriate formalism for this application of
the DMRG is known as discrete light-cone quantization in
momentum space (DLCQ) [15,16]. In the DLCQ approach
the Hilbert space is finite dimensional and the light-front
Hamiltonian HLC acting on it is similar to that of a
many-body Hamiltonian in condensed matter [16]. The
search for bound states amounts to solving the Schrödinger
equation

HLCjc� � M2jc� , (13)

where M2 is the mass of the bound state. Thus, one
can apply to (13) standard diagonalization techniques such
as Lanczos. The DMRG method allows us to study
larger Hilbert spaces than those achieved with the Lanczos
method. This is needed in order to recover the continuum
limit of HLC. At present, it is not known if a construction
of high energy trial states as presented here will solve
all renormalization difficulties encountered in the DLCQ
approach.

The key to making the clever truncation of states in the
RG process is given by the density matrix of the blocks.
In order to reconstruct the lowest lying bound states, the
blocks will be reconstructed in an iterative procedure based
on the trial states and it will have to be found if any
preferred directions in the Hilbert space can be identified.
On the other hand, the DMRG is a numerical method,
unlike the more analytical SRG method [17]. The DMRG
algorithm avoids perturbation theory and the question is
how far the trial states construction can be pushed to
make sweeping up and down still feasible and informative
about the original theory. The basic requirement for the
DMRG method to work is a discretized Hamiltonian acting
on finite dimensional Hilbert spaces. As a first test of
this program we have solved Eq. (13) for the Positronium
state of the massive and massless Schwinger model in the
one-fermion sector with the DMRG. The renormalization
issues of DLCQ using DMRG will require separate studies,
possibly along the SRG program with appropriate changes.

Therefore, we hope that the main ideas presented in this
Letter can be generalized to the DLCQ Hamiltonians—
specifically, the breaking of the system into low energy
and high energy blocks which are constantly updated
through the DMRG process. On the other hand, the
DMRG method combined with the DLCQ approach does
not have the sign problems that emerge in the Monte
Carlo methods used in lattice gauge theories [16]. In
summary, we believe that the power shown in condensed
matter systems by the DMRG method is worthwhile to be
translated into particle physics.
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