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Abstract 18 

 Fusarium ear rot is a common disease of maize that affects food and feed quality 19 

globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty 20 

incorporating polygenic resistance alleles from unadapted donor sources into elite breeding 21 

populations without having a negative impact on agronomic performance. Identification of 22 

specific allele variants contributing to improved resistance may be useful to breeders by allowing 23 

selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. 24 

We report the results of a genome-wide association study (GWAS) to detect allele variants 25 

associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 26 

inbred lines evaluated in two sets of environments. We performed association tests with 47,445 27 

SNPs while controlling for background genomic relationships with a mixed model and identified 28 

three marker loci significantly associated with disease resistance in at least one subset of 29 

environments. Each associated SNP locus had relatively small additive effects on disease 30 

resistance (±1.1% on a 0-100% scale), but nevertheless were associated with 3 to 12% of the 31 

genotypic variation within or across environment subsets. Two of three identified SNPs 32 

colocalized with genes that have been implicated with programmed cell death and were 33 

expressed at highest levels during the onset of disease symptoms. An analysis of associated allele 34 

frequencies within the major maize subpopulations revealed enrichment for resistance alleles in 35 

the tropical/subtropical and popcorn subpopulations compared to other temperate breeding pools. 36 
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Introduction 37 

 The hemibiotrophic fungus Fusarium verticillioides (Sacc) Nirenberg is endemic in most 38 

maize fields in the United States and is present in many arable regions of the world (VAN 39 

EGMOND et al. 2007). This fungus causes Fusarium ear rot disease of maize, especially in low 40 

rainfall high-humidity environments, such as the southern United States and some lowland 41 

tropics (MILLER and TRENHOLM 1994). Infection by F. verticillioides can result in decreased 42 

grain yields, poor grain quality, and contamination by the mycotoxin fumonisin, a suspected 43 

carcinogen associated with various diseases in livestock and humans (MILLER and TRENHOLM 44 

1994; MARASAS 1996; PRESELLO et al. 2008).  45 

 The best strategy for controlling Fusarium ear rot and reducing the incidence of 46 

fumonisin contamination of grain is the development and deployment of maize hybrids with 47 

genetic resistance. Fusarium ear rot resistance is under polygenic control and strongly influenced 48 

by environmental factors; no fully immune genotypes have been discovered (KING and SCOTT 49 

1981; NANKAM and PATAKY 1996; CLEMENTS et al. 2004). The complexity of this resistance 50 

trait has impeded breeding, such that most commercial maize hybrids have lower levels of 51 

resistance than are desirable (BUSH et al. 2004). Linkage-based mapping studies in biparental 52 

populations have shown that Fusarium ear rot resistance QTL have relatively small effects and 53 

are not consistent between populations (PÉREZ-BRITO et al. 2001; ROBERTSON-HOYT et al. 2006; 54 

DING et al. 2008; MESTERHÁZY et al. 2012). 55 

Despite the genetic complexity of resistance to Fusarium ear rot and fumonisin 56 

accumulation, and despite the very low heritability of resistance measured on individual plants, 57 

resistance on the basis of family means from well-replicated studies is moderately to highly 58 

heritable (ROBERTSON et al. 2006; ELLER et al. 2008; BOLDUAN et al. 2009). Robertson et al. 59 
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(2006) and Bolduan et al. (2009) reported genotypic correlations between ear rot resistance and 60 

fumonisin accumulation of 0.87 in North Carolina and 0.92 in Germany, respectively, indicating 61 

that visual selection on Fusarium ear rot resistance should be effective in simultaneously 62 

reducing fumonisin contamination. The heritability estimates predict, and empirical selection 63 

studies demonstrate, that selection for improved ear rot resistance can be effective (ROBERTSON 64 

et al. 2006; BOLDUAN et al. 2009; ELLER et al. 2010). Unfortunately, most sources having high 65 

levels of ear rot resistance are older or exotic unadapted inbreds that lack the agronomic 66 

performance of modern elite maize lines (CLEMENTS et al. 2004; ELLER et al. 2008, 2010). Thus, 67 

breeders are faced with the difficulty of introducing polygenic resistance alleles of generally 68 

small effect linked to inferior polygenic alleles for agronomic performance if they attempt to 69 

incorporate improved genetic resistance from unadapted lines into elite breeding gene pools. 70 

Identification of specific allelic variants that confer improved resistance would permit maize 71 

breeders to select for rare recombinant chromosomes in backcross progeny that have desired 72 

target resistance allele sequences in coupling phase with the favorable elite polygenic 73 

background, facilitating the improvement of disease resistance without decreasing agronomic 74 

performance.  75 

 Resolving small effect QTL to causal genes for traits that are difficult to accurately 76 

measure phenotypically is exceedingly difficult in biparental mapping populations (HOLLAND 77 

2007). Compared to traditional linkage-based analyses, association mapping offers higher 78 

mapping resolution while eliminating the time and cost associated with developing synthetic 79 

mapping populations (FLINT-GARCIA et al. 2005; YU and BUCKLER 2006). Historically, a major 80 

limitation to association mapping in low linkage disequilibrium (LD) species such as maize has 81 

been the large number of genetic markers required to detect marker-trait associations. Limiting 82 
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the search space to predetermined candidate genes allows for association mapping with a smaller 83 

number of markers but requires extensive knowledge of the biochemical pathway contributing to 84 

the trait of interest (REMINGTON and PURUGGANAN 2003). To date, nothing is known about the 85 

pathways contributing to Fusarium ear rot resistance in maize. However, the recent availability 86 

of the maize 50k SNP genotyping array (GANAL et al. 2011) has provided almost 50,000 single 87 

nucleotide polymorphism (SNP) markers scored on 279 of the 302 inbred lines of a commonly 88 

used maize core diversity panel (FLINT-GARCIA et al. 2005; COOK et al. 2012). The maize 89 

diversity panel captures much of the diversity present in public breeding programs worldwide. 90 

The large number of markers available on the diversity panel has enabled genome-wide 91 

association studies (GWAS) for several complex traits in maize including kernel composition 92 

traits (COOK et al. 2012) and the hypersensitive response (OLUKOLU et al. 2013). Olukolu et al. 93 

(2013) identified SNPs associated with the hypersensitive defense response in or adjacent to five 94 

genes not previously known a priori to affect disease resistance, but whose predicted gene 95 

functions all involved the programmed cell death pathway. In this study, we employed GWAS to 96 

identify SNPs associated with Fusarium ear rot resistance in the maize core diversity panel both 97 

within and across two contrasting environments – North Carolina, USA and Galicia, Spain.  98 

 99 

Materials & Methods 100 

Genotypes and experimental design 101 

 The maize core diversity panel (sometimes referred to as the “Goodman” association 102 

panel, because the seed stocks were originally assembled by Major Goodman at North Carolina 103 

State University (FLINT-GARCIA et al. 2005)) was evaluated in several years in both North 104 

Carolina, USA and Galicia, Spain. Only the 279 inbred lines with available genotypic data were 105 
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considered in this study. In the Galicia experiment, a subset of 270 inbred lines from the maize 106 

diversity panel was evaluated for Fusarium ear rot resistance in a randomized 15 × 18 α-lattice 107 

block design with two replicates in 2010 and 2011. Nine lines with insufficient seed were 108 

dropped from the Galicia experiment before randomization. In the North Carolina experiment, 109 

the maize diversity panel was part of an evaluation of the entire USDA maize seed bank 110 

collection of inbred lines in 2010 (ROMAY et al. 2013) and subsets of that collection evaluated in 111 

2011 and 2012. The genotypic data on the maize seed bank collection reported by Romay et al. 112 

(2013) were not available at the time of analysis. The 2010 seed bank collection evaluation 113 

included 2572 inbred line entries and was arranged in an augmented single replicate design. 114 

Experimental entries were divided into 18 sets of differing sizes based on maturity and field 115 

assignment. Each block within each set was augmented with a B73 check plot in a random 116 

assignment, and five other checks (IL14H, Ki11, P39, SA24, and Tx303) were included once per 117 

set in a random position. Romay et al. (2013) reported flowering time evaluations of the entire 118 

collection evaluated at three locations in 2010, including North Carolina. Here we include data 119 

only from North Carolina because it was the only environment used for Fusarium ear rot 120 

evaluation. In 2011 and 2012, the maize core diversity panel was part of a larger sample of 121 

inbreds evaluated. The larger population consisted of 771 diverse entries divided into eight sets 122 

based on maturity and replicated across years. Although disease measurements were collected on 123 

all experimental entries in both years, genotypic data were not available on inbreds outside of the 124 

core diversity panel at the time of analysis. Sets were randomized within the field, and each set 125 

was blocked using an α-lattice design. As with the seed bank collection evaluation, each block 126 

was augmented by a randomly assigned B73 check plot, and five other checks (GE440, NC358, 127 

NK794, PHB47, and Tx303) were included once per set. 128 



8 
 

 The three North Carolina environments were artificially inoculated with local toxigenic 129 

Fusarium verticillioides isolates using the toothpick method (CLEMENTS et al. 2003). 130 

Approximately one week after flowering, a toothpick containing F. verticillioides spores was 131 

inserted directly into the primary ear of five plants in each plot. At maturity, inoculated ears were 132 

harvested and visually scored for Fusarium ear rot symptoms. Scores were assigned to each ear 133 

in increments of 5% from 0% to 100% diseased based on the percentage of the ear presenting 134 

disease symptoms (ROBERTSON et al. 2006; Figure S1). In Galicia, between seven and 14 days 135 

after flowering, five primary ears per plot were inoculated with 2 mL of a spore suspension of 136 

the local toxigenic isolate of F. verticillioides. The spore suspension contained 106 spores mL-1 137 

and was prepared following the protocol established by Reid et al. (1996) with some 138 

modifications. Inoculum was injected into the center of the ear using a four-needle vaccinator 139 

which perforated the husks and injured three to four kernels. Ears from each plot were collected 140 

two months after inoculation and were individually rated for Fusarium ear rot symptoms using a 141 

seven-point scale (1=no visible disease symptoms, 2=1-3%, 3=4-10%, 4=11-25%, 5=26-50%, 142 

6=51-75%, and 7=76-100% of kernels exhibiting visual symptoms of infection, respectively) 143 

devised by Reid and Zhu (2005). Phenotypic data on the seven-point scale from the Galicia 144 

environments were transformed to the 0-100% scale used in North Carolina in the analyses. 145 

Reliable data could not be obtained for some line-environment combinations because seed set for 146 

some plots was limited due to poor adaptation. Raw data are provided in supplemental dataset 147 

File S1. Climate data from on-farm weather stations were obtained from 148 

http://www.climate.ncsu.edu and http://www.mbg.csic.es/eng/index.php. 149 

 150 

Genotypic data 151 
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The genotypic data were 47,445 SNPs from the Illumina maize 50k genotyping array 152 

filtered by Olukolu et al. (2013). The original array consists of 49,585 SNPs designed by Ganal 153 

et al. (2011). Olukolu et al. (2013) filtered the data set to include only those SNP markers that 154 

mapped to defined single locations in the maize genome and had <20% missing data 155 

(http://www.genetics.org/content/suppl/2012/12/05/genetics.112.147595.DC1/genetics.112.1475156 

95-3.txt). 157 

 158 

Statistical Analyses 159 

Estimation of least square means and heritabilities 160 

 The Galicia and North Carolina experiments were analyzed separately and then combined 161 

in a single multi-environment analysis. Each year of data within each experiment was first 162 

analyzed separately by fitting a mixed linear model including line as a fixed effect, silking date 163 

as a fixed linear covariate, and replication (Galicia only), block within replication (Galicia only), 164 

set (North Carolina only), and block within set (North Carolina only) as random effects. The 165 

mixed linear model for the Galicia experiment across years included line as a fixed effect, silking 166 

date as a fixed linear covariate, and year, line×year interaction, replication within year, and block 167 

within replication as random effects. The North Carolina experiment was analyzed across years 168 

with a model including line as a fixed effect, silking date as a fixed linear covariate, and year, 169 

line×year interaction, set within year, and block within set as random effects. In the combined 170 

experiment analysis, each combination of location and year was considered an environment. The 171 

combined analysis model included a fixed line effect, silking date as a fixed covariate nested 172 

within environment, a random line×environment interaction effect, and nested random 173 

experimental design effects (replication within environment and block within replication at 174 
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Galicia and set within environment and block within set at North Carolina). All analyses were 175 

weighted by the number of ears scored within each plot and utilized a heterogeneous error 176 

variance structure. In both experiments, larger predicted ear rot values were associated with 177 

larger residuals, so a natural logarithmic transformation of raw ear rot scores (which largely 178 

eliminated the relationship between residual variance and predicted values) was used for all 179 

analyses. Least square means were estimated for 267 inbred lines within each experiment and 180 

across experiments (File S2) using ASReml version 3 software (GILMOUR et al. 2009). Means 181 

for twelve lines were not estimable due to missing phenotypic observations in all environments 182 

(generally due to poor seed production). 183 

 We conducted a second analysis treating inbred lines as random effects for the purposes 184 

of estimating heritability for Fusarium ear rot resistance in the diversity panel. The same models 185 

as above were used except lines were treated as random effects to obtain estimates of genetic 186 

variance. Line mean-basis heritability was estimated as 187 

��� � 1 � ���	


2��

 

where ���	
  is the average prediction error variance for all pairwise comparisons of lines and ��
 188 

is the estimated genetic variance (CULLIS et al. 2006). We estimated line mean-basis 189 

heritabilities for each environment individually, across the North Carolina environments, across 190 

the Galicia environments, and we also estimated line mean-basis heritability for the combined 191 

data set across all environments. The model used to estimate line mean-basis heritability in the 192 

combined data set was further modified by nesting the random line effect within environment 193 

and modeling the genotype-environment effect (G) matrix as unstructured, thereby allowing 194 

estimation of unique genetic variance within each environment and a unique genetic correlation 195 

between each pair of environments. For the purpose of estimating heritability, the average of the 196 
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ten pair-wise covariance estimates between environments (which are expected to equal the 197 

genotypic variance) was used in the denominator of the above equation. 198 

 Silking date heritabilities were also calculated for each environment and across 199 

environments. The same models used to compute ear rot heritabilities were used to estimate 200 

silking date heritabilites, but silking date was treated as the dependent variable instead of as a 201 

fixed linear covariate. 202 

 203 

Association analyses 204 

 A genetic kinship matrix (K; File S3) based on observed allele frequencies (VANRADEN 205 

2008; method 1) was created using R software version 3.0.0 (R CORE TEAM 2013). A subset of 206 

4000 SNP markers were used to estimate K. Markers were uniformly distributed across the 207 

genome (at least 60 kbp between adjacent markers) and had no missing data after excluding 208 

heterozygous genotypes. Olukolu et al. (2013) used a kinship matrix produced by Tassel 209 

software (BRADBURY et al. 2007), which is appropriate for population structure correction for 210 

GWAS. In addition to population structure correction, we also wanted to estimate the polygenic 211 

background genetic variance component, so we estimated a new K matrix that is scaled 212 

appropriately to represent realized genomic average identity by descent relationships among the 213 

lines (VANRADEN 2008). 214 

 Tassel version 4.1.24 was used for the genome-wide association analyses based on a 215 

mixed linear model (BRADBURY et al. 2007). The least square means for inbred lines were used 216 

as the input phenotypes, and each set of means (North Carolina, Galicia and combined) was 217 

analyzed separately (File S2). The mixed linear model implemented by Tassel was 218 

y � Xβ � Zu � e 
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where y is the vector of ear rot least square means (on the natural-log scale), � is a vector of 219 

fixed effects including SNP marker effects, u is a vector of random additive genetic effects from 220 

background QTL for lines, X and Z are design matrices, and e is a vector of random residuals. 221 

The variance of the u vector was modeled as 222 

Var�u� � Kσ�
 

where K is the n×n matrix of pairwise kinship coefficients ranging 0—2 and σ�
 is the estimated 223 

additive genetic variance (YU et al. 2006). 224 

 Restricted maximum likelihood estimates of variance components were obtained using 225 

the optimum compression level and population parameters previously determined (P3D) options 226 

in Tassel (ZHANG et al. 2010). The optimum compression level option reduces the 227 

dimensionality of K by clustering n lines into s groups, thereby reducing computational time and 228 

potentially improving model fit. The P-values for each of the 47,445 tests of associations 229 

between one SNP and ear rot resistance within each analysis were used to estimate the false 230 

positive discovery rate (FDR) using the QVALUE version 1.0 package in R (STOREY and 231 

TIBSHIRANI 2003). SNPs significant at q < 0.10 in the initial GWAS scan for a particular 232 

environment set were then included together in a joint SNP association model together using the 233 

GLM procedure in SAS software version 9.2 (SAS INSTITUTE INC 2010) to estimate the total 234 

amount of variation explained by the SNPs together and to re-estimate their effects jointly. 235 

Candidate genes either containing or located adjacent to associated SNPs were identified using 236 

the MaizeGDB genome browser (ANDORF et al. 2010).   237 

 238 

Allele frequency analysis 239 
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 Lines were grouped into one of five major maize subpopulations (stiff stalk, non-stiff 240 

stalk, tropical/subtropical, popcorn, and sweet corn) based on the population structure analysis of 241 

the maize core diversity panel reported by Flint-Garcia et al. (2005; 242 

http://panzea.org/db/gateway?file_id=pop_structure_xls). Lines of mixed ancestry (the result of 243 

admixture among the subpopulations) were dropped from the analysis. Based on the results of 244 

the association analyses, the frequencies of alleles that reduced disease severity at significant 245 

SNPs were estimated within each subpopulation using the FREQ procedure using SAS software 246 

version 9.2 (SAS INSTITUTE INC 2010). At each SNP locus, a Fisher’s exact test in R software 247 

version 3.0.0 (R CORE TEAM 2013) was used to test the null hypothesis that frequency of the 248 

allele conferring increased disease resistance was the same across all five subpopulations. 249 

 250 

Results 251 

Line means and heritability 252 

 Significant (P < 0.001) genotypic variation for ear rot resistance was observed in both the 253 

North Carolina and Galicia experiments. The mean ear rot observed among 267 inbred lines of 254 

the association panel ranged from 4.4% to 100% with an overall mean of 41.1% in North 255 

Carolina and from 0% to 89.3% with an overall mean of 7.4% in Galicia (File S2; Table S1). In 256 

the combined analysis, mean ear rot ranged from 1.6% to 79.6% with an overall mean of 22.1%. 257 

The silking date covariate was highly heritable (��� = 0.98 in the combined analysis) and was 258 

significantly associated with ear rot resistance in the North Carolina and combined analyses (P < 259 

0.001), but not in the Galicia analysis (P = 0.099; Table S1).  260 

A significant (P < 0.001) line×environment interaction was detected in the combined 261 

analysis. Results of the mixed model analysis that estimate unique genotypic covariances for 262 



14 
 

each pair of environments indicated that the two Galicia environments had a much stronger 263 

genotypic correlation (r = 0.93; Table 1 and Figure S2) than did any other pair of environments 264 

(range, r = 0.28 to 0.51; Table 1 and Figure S2). Thus, there was little genotype×environment 265 

interaction between the two Galicia environments, and the heritability of line means across the 266 

two years in Galicia was 0.71. In contrast, pair-wise genotypic correlations were much lower 267 

among the North Carolina environments and between North Carolina and Galicia environments 268 

(Table 1 and Figure S2), generating much of the observed genotype×environment interaction in 269 

the combined analysis. Despite the strong genotype×environment interaction among North 270 

Carolina environments, heritability of genotype means across the three years in North Carolina 271 

(0.73) was higher than within any single North Carolina environment (Table S1). In addition, 272 

heritability of line means across all five environments was 0.75, higher than within any single 273 

environment or group of environments (Table S1). Therefore, we conducted separate association 274 

analyses on three different sets of genotypic mean values for ear rot: (1) means from three North 275 

Carolina environments, (2) means from two Galicia environments, and (3) means from the 276 

combined analysis of all five environments.  277 

 278 

Association mapping of Fusarium ear rot resistance  279 

 The optimum compression option in Tassel clustered the 267 lines into 229 groups in the 280 

Galicia analysis and 197 groups in the North Carolina and combined analyses (Table 2). 281 

Background genetic effects modeled by K accounted for 31% of the total variation among line 282 

means in the North Carolina analysis, 57% of the total phenotypic variation in the Galicia 283 

analysis, and 48% of the total phenotypic variation in the combined analysis (Table 2). In the 284 

analysis of means from North Carolina environments, two SNPs were identified as significantly 285 
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associated with ear rot resistance at q ≤ 0.05 (raw P-value = 2.4×10-7), and one additional SNP 286 

was identified at q ≤ 0.10 (Table 3 and Figure 1). In the combined analysis, one SNP was 287 

identified as significantly associated with ear rot resistance at q ≤ 0.05 and coincided with one of 288 

the SNPs identified in the North Carolina analysis. No SNPs significant at q ≤ 0.10 were 289 

identified in the Galicia analysis, where the minimum raw P-value among SNP association tests 290 

was 2.1×10-4. 291 

 292 

Candidate genes colocalized with associated SNPs 293 

 Genes containing or nearby SNPs significantly associated with ear rot resistance were 294 

characterized using the filtered predicted gene set from the annotated B73 reference maize 295 

genome (SCHNABLE et al. 2009). Two of the three genes identified in the North Carolina analysis 296 

have predicted functions that have been implicated in disease response pathways in other plant 297 

species (TSUNEZUKA et al. 2005; HÉMATY et al. 2009). The SNP at physical position 298 

151,295,233 bp on chromosome 9, which was identified in both the North Carolina and 299 

combined analyses, is located in an intronic region of a cellulose synthase-like family A/mannan 300 

synthase gene (Table 3). Mean LD r2 between the chromosome 9 SNP and other SNPs dropped 301 

below 0.1 within approximately 100 kbp (Figure 2). The other two SNPs identified in the North 302 

Carolina analysis on chromosomes 1 and 5 were located inside of a gene of unknown function 303 

and nearby a heat-shock 60-kDa protein (HSP60), respectively. Mean LD r2 between the 304 

chromosome 1 and chromosome 5 SNPs and other SNPs dropped below 0.1 within 305 

approximately 10 kbp and 100 kbp, respectively (Figure 2). Although the chromosome 1 and 9 306 

SNPs were not significantly associated with ear rot resistance in Galicia, the allele effects at 307 

these loci were consistent between North Carolina and Galicia (Table 3). However, the allele 308 
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effect at the chromosome 5 SNP locus showed a change in direction between North Carolina 309 

(+1.149%, Table 3) and Galicia (-0.017%). 310 

 311 

Allele frequencies at candidate genes 312 

 We estimated the allele frequency at the three SNPs significantly associated with ear rot 313 

resistance in five of the major maize subpopulations – stiff stalk temperate (SS), non-stiff stalk 314 

temperate (NSS), tropical/sub-tropical (TS), popcorn (PC), and sweet corn (SC) (FLINT-GARCIA 315 

et al. 2005). European flint types are poorly represented in this maize core diversity panel and 316 

thus were not considered. Popcorn and sweet corn types were considered in the analysis, but 317 

comparisons to either of these two subpopulations may be less reliable than comparisons to other 318 

subpopulations due to smaller sample size (Table 4). The allele that reduced disease severity at 319 

the chromosome 1 SNP locus is only present in the NSS and TS subpopulations but not at high 320 

enough frequencies to be considered significantly different from the other three subpopulations 321 

(P=0.15, Table 4). The allele with reduced disease severity at the chromosome 5 SNP locus is 322 

significantly (P=6.2×10-6) over-represented in TS and PC lines relative to other temperate (SS, 323 

NSS, and SC) lines. At the chromosome 9 SNP locus, the allele associated with reduced disease 324 

severity is significantly (P=3.846×10-4) overrepresented in PC lines compared to the other four 325 

subpopulations (Table 4). Averaging least square means from the combined analysis across 326 

members of each subpopulation, the SS, NSS, TS, PC, and SC subpopulations had average ear 327 

rot scores of 24.0%, 24.3%, 14.6%, 17.9%, and 46.5% respectively (Table 4). 328 

 329 

Discussion 330 

Heritability and false discovery rate estimation 331 
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The mean ear rot severity observed across experimental entries was 41.1% in North 332 

Carolina and 7.4% in Galicia (Table S1). Mean ear rot in North Carolina 2012 was particularly 333 

high (55%; Table S1). The very strong genotypic correlation between Galician environments 334 

(Table 1 and Figure S2) justified their grouping as one environmental set in the analysis. 335 

Genotypic effects were significantly correlated between each pair of North Carolina 336 

environments, but at much lower magnitude (Table 1 and Figure S2). Genotypic values in North 337 

Carolina 2010 had slightly higher correlations with the genotypic values in Galicia than in other 338 

years of North Carolina (Table 1), so grouping the three North Carolina environments has little 339 

justification based on genotype-by-environment patterns. Nevertheless, this environment 340 

grouping has a natural interpretation in terms of geography and adaptation, and the heritability of 341 

line means across these environments was higher than any individual environment, such that 342 

analysis of the three years as a group simplified interpretation of results.  343 

The relationship between the F. verticillioides isolates used in each location is unknown; 344 

as such, it is possible that differences in pathogen aggressiveness could have contributed to the 345 

disparity in mean ear rot values across environments. In addition, differences in inoculation 346 

methods, as well as variation in temperature and precipitation levels, may have allowed for more 347 

favorable disease development in North Carolina as compared to Galicia. Although precipitation 348 

levels varied across all five environments, average daily temperatures (both pre- and post-349 

flowering) were higher in all three North Carolina environments compared to the two Galicia 350 

environments (Table S2).  351 

Heritabilities observed across environments in this study (��� � 0.71) are consistent with 352 

estimates from biparental populations (ROBERTSON et al. 2006) and a small sample of North 353 

American and European public inbred lines (BOLDUAN et al. 2009). These heritability estimates 354 
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were obtained with a model that assumed each line is a random sample from the reference 355 

population of global maize inbreds, modeled by a genotypic variance-covariance structure equal 356 

to the genotypic variance component multiplied by an identity matrix. For the purpose of 357 

controlling population structure in association analysis, adjusted line means from the original 358 

model were then used as observations in a mixed model analysis that modeled the genotypic 359 

variance-covariance structure as proportional to the realized genomic relationship matrix, thus 360 

incorporating the different pairwise relationships among the lines. This mixed model was 361 

simplified by the compression method of ZHANG et al. (2010), which clusters lines according to 362 

genetic similarity and replaces the full pair-wise realized genomic relationship matrix with a 363 

reduced matrix of average relationships among the groups. The optimal level of clustering or 364 

compression is determined empirically based on model fit to the observed phenotypic data. A 365 

compressed relationship matrix can have better model fit than the original matrix when the 366 

empirically observed covariance relationships among lines follow the group relationship 367 

averages better than the individual pairwise relationships. Typically, this can happen when 368 

closely related lines are grouped and estimate of the group phenotypes and their relationships 369 

with other group phenotypes are improved. The optimal compression level can vary among 370 

phenotypes for the same set of lines, as observed in this study. 371 

Among environment groups, the proportion of phenotypic variance explained by 372 

background genetic effects (K) was much smaller in North Carolina (31%, Table 2) compared to 373 

Galicia (57%). Besides the small polygenic additive effects captured by the kinship matrix, rare 374 

allele variants (minor allele frequency < 0.05) with larger effects, as well as epistatic 375 

interactions, may explain some of the genotypic variation not captured by either K or the 376 

significantly associated SNPs (MANOLIO et al. 2009).  377 
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Analyzing the Galicia environments separately from the North Carolina environments 378 

revealed no significant SNPs, whereas the North Carolina analysis identified three SNPs 379 

significantly associated with Fusarium ear rot resistance (Table 3). Examination of the empirical 380 

distribution of P-values for the Galicia analysis revealed a slight skew toward higher P-values, 381 

whereas the North Carolina and combined analyses exhibited excesses of small P-values (Figure 382 

S3, Figure S4, and Figure S5). The Storey and Tibshirani (2003) method used to compute the 383 

false discovery rate assumes that the distribution of P-value for truly null tests follows a flat 384 

distribution, such that if the observed proportion of very low P-values is lower than expected 385 

based on the flat distribution, the false discovery rate will be high even for the lowest P-values, 386 

as we observed in the Galicia analysis. Whereas a few significant SNPs were identified in the 387 

North Carolina and combined analyses at q < 0.10, no SNP had a q-value of less than 0.9 in the 388 

Galicia analysis (Figure S3, Figure S4, and Figure S5). The disparity between the two individual 389 

experiment analyses highlights the importance of conducting individual environment association 390 

analyses in the presence of significant genotype by environment (G×E) interaction. It should be 391 

noted, however, that the appropriate threshold proportion of variation due to G×E interaction to 392 

warrant individual location analyses instead of an overall combined analysis is not clear. 393 

One possible mode of G×E interaction is the relative increase or decrease of additive 394 

allelic effects among different loci between environments (FALCONER and MACKAY 1996). 395 

Comparison of the absolute value of the allele effect at each of the identified SNP loci between 396 

North Carolina and Galicia revealed that allele effects were larger in North Carolina across all 397 

three loci (Table 3), congruent with the higher mean ear rot values in North Carolina (Table S1). 398 

The largest proportion of phenotypic variance explained by K was in Galicia (Table 2), and 399 

when combined with comparatively smaller allele effects, suggested that more loci may have 400 
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contributed to ear rot resistance in Galicia than North Carolina, and on average each locus had a 401 

smaller additive effect on disease phenotype in Galicia. Collectively, these two points may 402 

explain the deficiency of SNPs significantly associated with ear rot resistance in the Galicia 403 

analysis. 404 

 405 

Association analyses 406 

 Three SNPs significantly associated with ear rot resistance were identified in the North 407 

Carolina analysis (Table 3), and all localized to separate chromosomes. One of these three SNPs, 408 

located on chromosome 9, was also identified in the combined analysis. None of the three SNPs 409 

localized to any of the linkage map bins containing resistance QTL reported by Robertson et al. 410 

(2006) and Ding et al. (2008). However, the proportion of phenotypic variance explained by each 411 

SNP is consistent with individual QTL r2 values reported by each of the two aforementioned 412 

mapping studies. The chromosome 9 SNP explained the largest proportion of the variation in line 413 

mean values for ear rot resistance (R2=11.5% in NC and R2=9.6% in the combined analysis, 414 

Table 3), while the chromosome 1 and chromosome 5 SNPs explained 8.8% and 9.6% of the 415 

variation in line mean values for ear rot resistance in North Carolina, respectively. Modeling all 416 

three SNPs together collectively explained 26% of the line mean variation in ear rot resistance in 417 

North Carolina. 418 

 Although all three SNPs explained a relatively large portion of the total variation in line 419 

means, each SNP had a relatively small additive effect on ear rot resistance (±1.1 percentage 420 

points ear rot severity on the back-transformed scale, Table 3). Additive genetic variance 421 

estimates for each SNP was computed based on allele effects and frequencies (Table 3), and 422 

when scaled to the total line mean variance coincided with the SNP R2 values computed by 423 



21 
 

Tassel (Table 3). In every case, an increase in disease resistance (decrease in ear rot severity) 424 

was associated with the rare allele at each locus. Resistance alleles at the chromosome 1 and 5 425 

SNP loci were overrepresented in the tropical subpopulation relative to the other temperate 426 

subpopulations (Table 3), consistent with enriched disease resistance observed in tropical maize 427 

for some foliar diseases of maize (WISSER et al. 2011; OLUKOLU et al. 2013) and the lower level 428 

of ear rot disease observed in tropical lines in this study. 429 

 Using the same association panel and marker set as this study, Olukolu et al. (2013) 430 

reported that LD in the maize core diversity panel is variable across chromosomes and 431 

subpopulations. The authors also reported that marker pairs separated by more than 10 kbp had 432 

r2<0.1 on average, which is consistent with estimates of r2<0.1 between marker pairs separated 433 

by 5-10 kbp on average in tropical subpopulations and 10-100 kbp on average in temperature 434 

subpopulations (LU et al. 2011). Increased marker coverage, such as the genotype-by-sequencing 435 

(GBS) data (ELSHIRE et al. 2011) used in Romay et al. (2013), in conjunction with a larger 436 

association panel, may be able to uncover more SNPs in higher LD with ear rot resistance loci. 437 

Assuming an association panel of between 350 and 400 inbred lines, Van Inghelandt et al. (2011) 438 

indicated that as few as 4,000 markers would be necessary in a GWAS to detect individual QTL 439 

explaining greater than 10% of the total phenotypic variation for a complex trait within the stiff 440 

stalk subpopulation, whereas 65,000 markers would be required to detect QTL at the same 441 

threshold within European flint types. In a sample of 2,815 inbred lines from the National Plant 442 

Germplasm System (USA) representing the same heterotic groups described in this study, 443 

Romay et al. (2013) reported that the utilization of over 680,000 GBS markers was sufficient to 444 

detect most known candidate genes associated with flowering time in maize. Even so, 445 

polymorphisms that strongly associated with the lower LD tropical/subtropical subpopulation 446 
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(such as ZmCTT) were more difficult to detect compared to polymorphisms that more frequently 447 

associated with higher LD temperate subpopulations (such as Vgt1). The results of Romay et al. 448 

(2013) indicate that although increased marker coverage and association panel size can improve 449 

the power of a GWAS, special care needs to be given to ensure that lower LD subpopulations, 450 

such as the tropical/subtropical subpopulation, are adequately represented in an association panel 451 

in order to capture rare allele variants associated with those subpopulations. 452 

 453 

Candidate genes 454 

 We used the B73 maize genome reference sequence to identify genes that either included 455 

or were nearby SNPs significantly associated with ear rot resistance. The chromosome 9 gene 456 

(GRMZM2G178880) that was identified in both the North Carolina and combined analyses 457 

belongs to the cellulose synthase-like family A (CslA) protein family. Given that the associated 458 

SNP localized to an intron segment within this gene, it is likely that this SNP is in LD with the 459 

causal variant and not the causal variant itself. The expression of this gene is highest in the 460 

endosperm of the developing seed kernel between 20 and 24 days after flowering during the 461 

growing season (SEKHON et al. 2011; http://www.plexdb.org). Peak expression of this gene 462 

coincides with the initial onset of Fusarium ear rot symptoms, which occurs approximately 28 463 

days after flowering (BUSH et al. 2004). Genes in the CslA family encode for non-cellulose 464 

polysaccharides (such as mannan polymers) that form part of the wall matrix in plant cells 465 

(DHUGGA 2005; LIEPMAN et al. 2005). In the model grass species Brachypodium distachyon, 466 

mannan polymers make up a significant portion of the seed endosperm (GUILLON et al. 2011). 467 

Dismantling of mannan-rich cell walls may play an important role in programmed cell death 468 

(PCD) in host-pathogen interactions (GADJEV et al. 2008; RODRÍGUEZ-GACIO et al. 2012). 469 



23 
 

Although the interaction between Fusarium verticillioides and maize is complex, cell wall 470 

structure and PCD may play a role in quantitative resistant to the disease (CHIVASA et al. 2005).  471 

 The SNP on chromosome 5 is located downstream of an HSP60 gene 472 

(GRMZM2G111477). Expression levels of this gene are highest in the developing endosperm 12 473 

days after flowering (SEKHON et al. 2011; http://www.plexdb.org). HSP60s are chaperonins that 474 

are involved with protein folding under plant stress primarily in the mitochondria and 475 

cholorplasts (WANG et al. 2004). The role of HSP60s in programmed cell death has been 476 

demonstrated in mutants of both rice and Arabidopsis (ISHIKAWA et al. 2003; TSUNEZUKA et al. 477 

2005). The SNP on chromosome 1 is contained within the coding region of GRMZM2G703598. 478 

Unfortunately, this gene has no predicted function and has no sequence orthology with related 479 

grass species. 480 

 In conclusion, we have utilized a GWAS approach to identify three novel loci associated 481 

with improved resistance to Fusarium ear rot in maize. The identified loci each explain a 482 

relatively small proportion of the overall phenotypic variance for ear rot, and each locus has a 483 

very small additive genetic effect on resistance, consistent with the highly quantitative nature of 484 

the F. verticillioides-maize pathosystem. The large amount of variation captured by the kinship 485 

matrix, in combination with high false discovery rates, suggests that additive polygenic variation 486 

across many loci underlies resistance to Fusarium ear rot. Given the rapid decay of LD along the 487 

chromosomes in the maize core diversity panel (OLUKOLU et al. 2013), future studies employing 488 

increased marker density and larger association panels may be able to identify other novel loci 489 

associated with ear rot resistance. Maize breeders can employ targeted allele selection for these 490 

three resistance alleles, but may need to also select for recombinations near them as they are 491 

introgressed into elite maize from unadapted or undesirable genotypes (such as the tropical 492 
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maize or popcorn germplasm pools that appear to be enriched for resistance alleles). In addition, 493 

given the substantial additive polygenic variation for ear rot resistance, phenotypic and genomic 494 

selection approaches should be effective as long as high quality phenotypic evaluations of 495 

resistance can be performed to permit direct selection or provide training data for genomic 496 

selection models.  497 
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Table 1. Genotypic covariance/variance/correlation matrix for Fusarium ear rot from the combined analysis of a maize diversity panel evaluated in five 
environments. The diagonal (bold) is an estimate of genetic variance (��
) plus the genotype by environment interaction (��	
 ) within each environment. 
Estimates of genetic variance (covariance between pairs of environments) are shown below the diagonal, and genetic correlations between inbred lines in each 
pair of environments are shown above the diagonal.  

Environment NC 2010 NC 2011 NC 2012 Galicia 2010 Galicia 2011 

NC 2010 0.27 0.42 0.44 0.51 0.44 
NC 2011 0.15 0.45 0.38 0.33 0.28 
NC 2012 0.19 0.21 0.68 0.36 0.35 
Galicia 2010 0.15 0.12 0.17 0.32 0.93 
Galicia 2011 0.11 0.09 0.14 0.25 0.23 
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Table 2. Number of lines, number of groups, compression level, polygenic additive background genetic variance component, residual genotypic variance 
component, and proportion of total line mean variance explained by additive relationship matrix from the three mixed-linear model (MLM) analyses. 

 N
a 

Groups
b 

Compression
c 

(��
)
d
 (��
)

d " #$%&
#$%& '#$&(e 

North Carolina 247 197 1.25 0.09 0.20 0.31 
Galicia 254 229 1.11 0.18 0.14 0.57 
Combined 267 197 1.36 0.10 0.11 0.48 
a
 Total number of lines included in the analysis. 

b Number of groups determined by optimum compression. 
c
 Compression level is the average number of individuals per group. 

d
 Polygenic additive background genetic variance and residual genotypic variance components are estimated in Tassel by fitting the kinship matrix (K) in the 

mixed linear model without any SNP marker effects. 
e
 Background genetic variance divided by total phenotypic variance. 
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Table 3. Chromosome locations (AGP v2 coordinates), allele effect estimates, genes containing or adjacent to SNP, and other summary statistics for the three 
SNPs significantly associated with Fusarium ear rot resistance in the North Carolina analysis and the single SNP associated with resistance in the combined 
analysis. Statistics from environments in which the SNPs were not significantly associated with ear rot are also shown for comparison. 

Chromosome SNP physical 
position (bp) 

P-value q-value Allele Na Allele 
effect 
(%)

b 

Additive 
variance 
estimate

c 

(R2)d Gene containing or adjacent to 
SNP 

North Carolina 

analysis 

  
 

      

1 63,540,590 5.5×10
-6

 0.084 A 224 +0.945 0.036 8.8 GRMZM2G703598 
     G 22 0.0   

5 30,997,717 2.2×10
-6

 0.050 G 225 +1.149 0.042 9.6 GRMZM2G111477 
     A 19 0.0   

9 151,295,233 2.4×10
-7

 0.011 A 67 -0.365 0.041 11.5 GRMZM2G178880 
     G 176 0.0   

Galicia analysis          
1 63,540,590 0.826NS 1.000 A 231 +0.035 9.55×10-5 1.9×10-2 GRMZM2G703598 

     G 22 0.0   
5 30,997,717 0.918

NS 
1.000 G 228 -0.017 2.49×10

-5
 4.2×10

-3
 GRMZM2G111477 

     A 23 0.0   
9 151,295,233 0.198NS 1.000 A 71 -0.115 0.003 0.7 GRMZM2G178880 

     G 179 0.0   
Combined 

analysis 

  
 

   
 

  

1 63,540,590 4.5×10-3 0.689 A 244 +0.425 0.010 3.1 GRMZM2G703598 
     G 22 0.0   

5 30,997,717 2.6×10
-3

 0.689 G 240 +0.428 0.011 3.5 GRMZM2G111477 
     A 24 0.0   

9 151,295,233 9.1×10
-7

 0.042 A 74 -0.292 0.024 9.6 GRMZM2G178880 
     G 189 0.0   

a
 N, total number of lines with the specific SNP genotype. 

b
 Allele effects are reported back-transformed to the original 0-100% disease severity scale. 

c
 Additive variance for an inbred population was computed as two times the product of the separate allele frequencies times the genotypic value from Tassel 

squared using the formula 2pqa
2
 from Bernardo (2002). 

d
 R

2
, proportion of total line mean variance explained by SNP as computed by Tassel.  
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Table 4. Allele frequencies of significantly associated SNPs in the five major maize subpopulations. 

   Allele frequency (%) 

 

 Nb 

 

Ear rot mean (%)c 

 
Chromo-
some 

SNP physical 
position (bp) 

Allele 
increasing 
resistance 

SS
a 

NSS TS PC SC P-value SS NSS TS PC SC SS NSS TS PC SC 

1 63,540,590 G 0.0 8.4 15.4 0.0 0.0 0.1488 28 107 65 8 6 24.0 24.3 14.6 17.9 46.5 
5 30,997,717 A 0.0 3.8 26.6 37.5 0.0 6.193×10

-6
 28 106 64 8 6      

9 151,295,233 A 14.3 34.9 26.6 100.0 33.3 3.846×10
-4

 28 106 64 7 6      
a SS, Stiff Stalk; NSS, non-Stiff Stalk; TS, tropical/sub-tropical; PC, popcorn; SC, sweet corn. 
b
 N, total number of lines within each subpopulation. 

c
 Overall phenotypic ear rot means are the average of least square means from the combined analysis across members of each subpopulation.
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Figure 1. Results of the three GWAS showing significant associations (points above red FDR = 0.10 threshold lines) 
in the North Carolina (A), Galicia (B), and combined (C) analyses. The vertical axis indicates –log10 of P-value scores, 
and the horizontal axis indicates chromosomes and physical positions of SNPs. 
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Figure 2. LD heatmaps showing LD measure (r
2
) calculated for each pairwise combination of SNPs in an 

approximately ±1 Mbp region surrounding each SNP significantly associated with ear rot resistance in the North 
Carolina analysis. (A) LD around chromosome 1 SNP. (B) LD around chromosome 5 SNP. (C) LD around 
chromosome 9 SNP. The significant SNP on each chromosome is highlighted by the perpendicular black lines within 
each heatmap. Colors indicate the magnitude of each pairwise r

2
 measure (r

2
=1 is red to r

2
=0 is white). 


