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Unidirectional direct current in coupled nanomechanical resonators by tunable symmetry breaking
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We investigate theoretically the nonlinear dynamics of the most fundamental component of a bistable coupled
oscillator. Under a weak radio frequency excitation, the resonator is parametrically tuned into self-sustained
oscillatory regimes. The transfer of electrons from one contact to the other is then mechanically assisted,
generating a rectified current. The direction of the rectified current is, in general, determined by the phase
shift between the mechanical oscillations and the signal. However, we locate intriguing parametrical regions
of unidirectional rectified current, resulting from spontaneous parity-symmetry breaking. In these regions,
a dynamical symmetry breaking is induced by the nonlinear coupling of the mechanical and electrical
degrees of freedom. The achieved unstable regime favors then a unidirectional response, resulting in a
direct, positive electric current. When operating within the Coulomb blockade limit, the charge balance in
the oscillators perturbs drastically the mechanical motion, causing large accelerations that further enhance the
shuttle response. Our results suggest a practical scheme for the realization of a self-powered device in the
nanoscale.
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Bifurcations are closely linked to catastrophes in systems
operating in a nonlinear regime. In general terms, a system
experiences a catastrophe when a smooth change in the value
of a parameter results in a sudden change in the response
of the system. The response is then termed as parametrically
driven. Interest in parametrically driven nonlinear dynamics
of nanoelectromechanical systems (NEMS) has grown rapidly
over the last few years [1–3]. NEMS offer the possibil-
ity to realize nanomechanical switches [4], circuits [5–9],
electronic transducers [10,11], current rectifiers [12,13], or
high-sensitive charge [14], spin [15–17], and mass sensors
[18–20], as well as the general study of nonlinear dynamics
of oscillators and resonators [21–26]. In these systems charge
transport is mechanically assisted and typically driven by an
rf excitation of tunable intensity and frequency. When the
mechanical degrees of freedom couple to the rf excitation,
the system may enter a regime of strong nonlinear response
as the frequency and the intensity of the excitation are
slowly varied, hence, parametrically driven. Understanding
behavior of these devices in the nonlinear regime can thus
point to strategies for engineering self-powered NEMS-based
devices [27].

Back in 1998 Gorelik et al. [28] proposed a nanomechanical
transistor based on a vibrating shuttle between two contacts.
The mechanical motion of the shuttle perturbs the charge
balance, causing accelerations that could further enhance the
response of the shuttle. Scheible et al. [14] experimentally
realized such an electron shuttle in the form of a single nanopil-
lar vibrating in a flexural mode, and observed a frequency
dependent ratchet behavior. Following these experimental
results, Pistolesi et al. [13] showed theoretically that the single
electron shuttle can indeed act as a rectifier. More recently,
Kim et al. [29–31] realized a nanomechanical shuttle capable
of transferring electrons mechanically at room temperature in
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the Coulomb blockade regime. Their prototype consisted of
two coupled Si nanopillars with a metallic island on top, as
depicted in Fig. 1(a). The nanopillars are placed between two
electrodes operating at high frequencies (∼0.1 GHz). One of
the great advantages of this system is that co-tunneling events
are dramatically suppressed in a flexural oscillatory mode
where the center of mass is at rest [see Fig. 1(a)]. Another is the
obtention of a rectified dc signal resulting from spontaneous
symmetry breaking [12,29].

In this paper we investigate the dynamics of the most
fundamental component for the realization of bistable os-
cillators: a double coupled shuttle NEMS. In previous work
by Ahn et al. [12], the symmetry on the phase portraits of
the solutions prevented a preferred direction for the current.
However, we report here on spontaneous parity-symmetry
breaking due to the nonlinear coupling of the mechanical and
electrical degrees of freedom. The parity-symmetry breaking
results in the obtention of unidirectional direct currents. We
demonstrate that parametrically controlled current flow and
largely amplified response excel the double shuttle as an
optimal device. We explore the parametric excitations within
the Coulomb blockade limit, where abrupt, almost instanta-
neous increments and decrements of the charge difference
in the nano-islands cause the average electrostatic force to
change periodically in a square-wave fashion. Corresponding
electromechanical instabilities open access to regimes of
efficient charge pumping.

We start with a purely classical description of the circuit
depicted in Fig. 1(b), as commonly found in literature
[12,13,28]. The mechanical degree of freedom (see Fig. 1)
is described in terms of the relative displacement of two
islands x = x1 − x2. The dynamics within the quasiadia-
batic limit [12,32] is governed by the force exerted by an
average electric field −V (t)/L on the coupled oscillators,
yielding

ẍ + γ

ω0
ẋ + x = eV (t)

kL
n(t), (1)
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FIG. 1. (Color online) (a) Sketch showing mechanically assisted
electronic transport in Si nanopillars with a metallic island on top.
The black dot represents the transferred electron. The flexural mode
which originates an efficient dc current has the center of mass at
rest. (b) Circuit representation: Two metallic islands are capacitively
coupled to each other and to both electrodes, L and R.

where n(t) = −(Q1 − Q2)/e, Q1,2 denotes the charge in the
nano-islands, with Qi = qi − qi+1, qi being the charge in
the ith junction [see Fig. 1(b)], k = mω2

0, with m being the
mass of a pillar and ω0 is the oscillator eigenfrequency, γ

denotes the dynamic damping, and L is the distance between
the electrodes. When the flexural modes of the nanopillars are
excited, the resistances and mutual capacitances of each junc-
tion become sensitive to the displacements: Ci � C0

i /(1 + xi)
and Ri = R0

i exp (xi/λ), where λ is the phenomenologically
introduced tunneling length. We take R0

1 = R0
3 = R0

2/2 = R

and C0
1 = C0

3 = 2C0
2 = C, consistent with previous results

[30]. Classical circuit analysis for the doubly charged shuttle
gives V (t) = ∑

i qi/Ci , i = 1,3, qi/RiCi = qj/RjCj , j �= i,
allowing us to express the charge on each island in terms of
the relative displacement x [33],

Q1 = −Q2 � CV (t)

2

[
tanh

3x

4
− λ

d
xe

3x
2

]
, (2)

with d being the distance at rest between the shuttles. For
small oscillations, x � 1, we expand Eq. (2) to third order.
Equation (1) becomes a modified Mathieu equation,

ẍ + x + γ

ω0
ẋ + α(sin ωt + β)2

[
x − 2λ

d
x2 − 3

16
x3

]
= 0.

(3)

The dimensionless parameter α = 3CV 2
0 /4mLλω2

0 quantifies
the strength of the rf excitation, being the ratio of the electric
(∼CV 2

0 /L) and mechanical forces (∼mλω2
0 = kλ), with k

being the spring constant. V0 and β relate to the applied
voltage V (t) = V0(sin ωt + β). Throughout this work we take
typical experimental values for λ/d = 0.1 and γ /ω0 = 10−2.
Within the weak electromechanical coupling limit we
parametrize the damping and the excitation strength with an
arbitrarily small ε, γ ∼ εγ1 and α ∼ εα1. We consider the
resonant modes of the system, ω � ω0(p + εδω), where δω

indicates the deviation from the natural resonance and p is
the winding number [28,29]. This defines two time scales,
the “stretched” time z = ωt , and the “slow” time η = εt . We
seek for steady oscillatory solutions x(η,z) = A(η) cos z/p −
B(η) sin z/p. Note that the mechanical oscillations can
be alternatively expressed as x(η) = r0(η) cos [ωt − ϕ(η)],
with r2

0 = A2 + B2, and ϕ = arctan B/A defining the phase

FIG. 2. (Color online) (a) Phase portraits for the fundamental
mode p = 1. Inset: Magnification around the origin. (b) Corre-
sponding bifurcation diagram in parameter space. The rectangle
marks a band of unidirectional current. Insets: Phase portraits where
symmetry breaking occurs.

between the mechanical oscillations and the voltage. Fol-
lowing the Poincaré-Lindstedt method, we find linearized
differential equations for the coefficients A and B [33]. Phase
portraits and bifurcation diagrams are finally computed using
evaluation routines [34].

The phase portraits in the first unstable region are shown
in Fig. 2(a), with the corresponding bifurcation diagram in
Fig. 2(b). We chose six representing points along the paramet-
ric region of multiple stability. The associated phase portraits
for each point are depicted in the insets [from Fig. 2(a)]. For
these, the initial conditions were set near equilibrium, B0 = b0

(B0 = −b0) for the solid (broken) traces, with arbitrarily
small b0. The stable solutions are either attractor points P ±

i

or cycles Ci , i = 0, . . . ,4. This results in electromechanical
instabilities, in the sense that even if the pillars are initially
nearly at rest, the electrostatic field will cause them to
oscillate.

A pitchfork bifurcation is observed as we move from the left
in the unstable region. The origin undergoes a transition, from
a stable spiral to a saddle, where two nontrivial quasisymmetric
attractors appear (red traces, P ±

0 ). A supercritical Andronov-
Hopf bifurcation causes one of the attractors to become an
asymptotic curve (C1). Under further parametric variations
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FIG. 3. (Color online) Computed Idc at the stable solutions
(arbitrary units). The solid (open) dots are associated to the solid
(broken) trajectories of the insets of Fig. 2(b) with the corresponding
color code. In the shaded region the direct current occurs only left to
right. Right insets: Sketch of the movement of the pillars. For B > 0
(<0), the mechanical oscillation is in (out of) phase with the applied
rf signal (see sign on the contacts), and hence, Idc results positive
(negative).

a homoclinic bifurcation results in the birth of an unique
limit cycle (C2, C3). The asymmetry of the cycles results in
an unique unidirectional current (see below). The rectangle
marks the parametric region where unidirectional current is
obtained.

The time-average direct current is then obtained for each
asymptotic solution (Pi , Ci) by integrating over a period the
current across a junction,

Idc = ω

4πR

∫ t0+T

t0

dt
V (t)ex

1 + e3x/2 cosh
(

X
2

) . (4)

Here X is the center of mass displacement, which in most
of the cases remains at rest [12]. The results are summarized
in Fig. 3. An intuitive picture is sketched in the right insets
of Fig. 3: For B > 0, the mechanical oscillations are always
in phase with the voltage and electrons are flowing from left
to right. However, for B < 0, the oscillators are out of phase,
resulting in a negative rectified current. Outside the unstable re-
gion [black square of Fig. 2(b)] the trivial solution (A = B = 0)
is an attractor, and no direct current is observed. The sign of
the current in typical bistable regions is then determined by
the initial conditions ±b0. This occurs in the red, green, blue,
and black traces of Fig. 2(a), where the sign of the phase is
preserved, or, in other words, the trajectory remains in one
semiplane (B > 0 or B < 0). The corresponding stroboscopic
plot is nearly symmetric in these bistable regions, so a positive
or negative current can occur. On the contrary, for the magenta
and yellow traces of Fig. 2(a), only one stable asymptotic
orbit is found (C2 and C3). The lack of symmetry of the
stable phase portrait result in a positive (left to right) net
current independently of the initial conditions. This occurs
throughout the shaded region of Fig. 3. We note that the term
in x2 of Eq. (3) breaks the parity symmetry of the system:
For a given solution x(t), −x(t) is no longer a solution.
This term results from relative variation of the individual
capacitances and resistances with the positions of the islands.
Hence, we conclude that a dynamical symmetry breaking
occurs due to the nonlinear coupling of the mechanical
and electrical degrees of freedom. We stress that the sign
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FIG. 4. Bifurcation diagram showing regions with multiple sta-
bility in the areas where the origin is unstable (horizontally hatched,
p = 1,2) or stable (vertically hatched, p = 3/2, 3). The dark region
in p = 1 corresponds to Fig. 2(b).

of the current is then parametrically controlled, suggesting
an energy harvester for self-powered nanosystems [35], or
a nanobattery.

We now study the response on the relevant higher excitation
frequency regions, i.e., p = 3/2,2,3 in Eq. (4). For these,
nontrivial solutions are found in the hatched areas indicated in
Fig. 4. The case p = 2 is of particular interest, as there exists a
region in parameter space for which the origin becomes unsta-
ble. We then have a situation similar to the one of Fig. 2, within
a different region of parameter space (see Fig. 3). For the cases
p = 3/2,3, the origin of the phase plane is always an attractor,
and hence, solutions with initial conditions in its proximity will
vanish. However, another three attractors exist around a small
area of the phase plane. Only when the initial conditions are
close to these attractors, self-sustained oscillations are possible
for this mode, but no electromechanical instabilities are
found.

Next, we evaluate the dynamics of the islands within the
Coulomb blockade limit, for which CV � e. In such a picture,
abrupt increments and decrements of charge in the metallic
islands occur almost instantaneously, separated by periodic
time intervals [36]. We use the master equation in terms of the
excess electrons in the islands n1,2,

Ṗn1,n2 =
∑

n1,n2;k

�k
n′

1,n
′
2→n1,n2

Pn′
1,n

′
2
− �k

n1,n2→n′
1,n

′
2
Pn1,n2 , (5)

where the tunneling rate at the kth junction is given, ac-
cording to the orthodox theory, by �k

i→j = μij (t)/e2Rk(t)
[1 − e−μij (t)/kBT ], with μij being the decrease of free energy
when the tunneling event occurs. We solve Eq. (5) by
direct integration and get the occupation on each island
〈ni(t)〉. Figure 5(a) shows the steady state solution for
〈n(t)〉. As it can be seen, charge transfer occurs in the
points of maximal deflection. The relative charge is nearly
a square wave, 〈n(t)〉 ∼ nav + 4n0(cos ω0t − cos 3ω0t)/π . In-
serting this expression into Eq. (1), we find, as before, lin-
earized equations for the coefficients A and B of the oscillatory
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FIG. 5. (Color online) (a) n(t) calculated using the master equation (solid curve), square-wave fit f (t) = nav + 4n0(cos ω0t − cos 3ω0t)/π
(broken curve), and normalized relative displacement x0(t)/r0 (dotted curve). The insets mark the points of maximal displacement for the pillars.
(b) Averaged dc current per period for four different charge oscillations. Lower-left inset: The corresponding charge oscillations. Lower-right
inset: n(t) (solid black curve) and rf signal (blue trace). The resulting direct current per period is then proportional to the green shaded areas
minus the pink ones.

solutions,

2
dA

dη
= −Aγ1 − 2δω

p
B + α′

1navδp,1 − α′
1

6
(2δp,2 + δp,4),

2
dB

dη
= −Bγ1 + 2δω

p
A + α′βn0, (6)

with α′ = eV0/Lkλ and α′
1 = εα′. It is straightforward to see

that Eq. (6) has one nontrivial attractor in the phase plane:
In the absence of Vdc (β = 0), stable points are found only
around subharmonics with p = 1, 2, or 4, (Ap, Bp) =
ap(γ,γp), with γp = 2δω/p, a1 = α′nav/(γ 2 + γ 2

1 ), a2 =
−α′n0/3(γ 2 + γ 2

2 ), and a4 = −α′n0/6(γ 2 + γ 2
4 ). In contrast,

under a finite dc bias, the left-right symmetry is broken,
and oscillatory solutions are found for any frequency at
(Ap, Bp) =αβn0(γp, − γ )/(γ 2 + γ 2

p ). Let us focus now on the
existence of a self-sustained oscillation. In an oscillatory mode
x ∼ r0 cos (ω0t + ϕ), the absorbed power by the oscillator per
unit cycle is obtained by averaging over a period the last term
of Eq. (1):

〈Wa〉 � 〈α′n(t)ẋ(t)(sin ωt + β)〉,
whereas the dissipated power is given by the damping term
〈Wdis〉 = 〈ẋ2〉γ /ω0. If this amount is larger than the dissipated
power, 〈Wa〉 � 〈Wdis〉, self-sustained oscillations [37] are
expected. This occurs when max{α′nav,0,α

′n0β} � r0γ /ω0,
with the appropriate phase ϕ. The amplitude of the oscillations
could then be large enough to reach the Fowler-Nordheim
tunneling limit [38], with a subsequent enhancement of the
direct current due to field emission. Hence, under a finite
dc bias, bands of instabilities occur for a particular value of
the applied rf power α. Recent experimental data confirm the
existence of such bands [31].

To illustrate the importance of the phase between the me-
chanical oscillations and the rf signal, we compute the current
for a few fictitious charge oscillations n(t). Figure 5(b) shows
the average direct current (number of transferred electrons

per cycle) as a function of the phase ϕ = arctan {B/A} for
four different charge oscillations, sketched in the lower-left
inset. The function has the same period as the signal (solid
traces) or twice (broken traces), and is a square wave (black)
or a sinusoidal (red). It is evident from the figure that the
square-wave function with a periodicity twice the signal
one (broken black traces) shows the most effective current
on a broad relative phase range. A square-wave fashion
variation is indeed known to pump energy more effectively
than a sinusoidal variation [39]. This results in a rapid and
enhanced response of the system, a very feature desired
for industrial applications. The current is then negative for
(2n − 1)π/3 � ϕ � 2nπ/3 and positive elsewhere. We stress
that the unidirectional current flow translates from the classical
limit to the Coulomb blockade regime. The lower-right inset
represents the rf signal (blue) and the corresponding n(t)
(black). The averaged current per period is then proportional
to the shaded areas, which is, for this particular choice of phase
(ϕ = 0), nonzero and positive.

In summary, we have theoretically studied a weakly ac
driven coupled electron shuttle. We find multiple stability
regions in parameter space with subsequent self-sustained
oscillations generating a finite observable direct current. In the
bistable regions, the sign of the current is bound to the relative
phase of the mechanical oscillators and the signal. Subsequent
dynamical symmetry breaking results in the obtention of
unidirectional direct currents, a key feature in the implemen-
tation of a nanobattery. Within the Coulomb blockade regime,
electromechanical instabilities are observed, which occur at
any frequency in the presence of a dc bias. The tunability of
the self-sustained oscillations and the unidirectionality of the
current suggest a vast number of potential applications.
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discussions. This work was supported by the program
SB2009-0071, MAT 2011-24331, ITN Grant 234970, and
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