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veo, soy yo el que se adorna con ella. Tienes muchas ganas de vivir y lo haces 

intensa y contagiosamente, con un punto de locura. Me encandilas, chachi girl! 
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o Julián, el auténtico. La proteína del grupo. Tu fingido endoesqueleto de 

Terminator no consigue ocultar del todo que, en realidad, eres un buenazo. Y, 

quizá, más débil de lo que aparentas. Te sales de lo común, te gusta la polémica y 

eres exigente contigo mismo. Y te haces querer. 

o Perceval, leyenda. Eres de esas personas que llaman la atención por su especial 

encanto y posees un toque que te distingue de la masa, al igual que el peso…que se 

distingue de la masa. Con un porte que hace honor a tu caballeresco nombre, 

inyectas optimismo a raudales. Locuaz cual dirigente latinoamericano, das más 

chapa que un rumano. 

o Marzia, la dolcezza italiana. Tu mirada y tus gestos reflejan una dulzura e 

inocencia que la mayoría hace tiempo que perdimos. Eres risueña y transmites 

serenidad, hablar contigo alegra el día y enfadarte debe ser un logro al alcance de 

muy pocos. Me gusta cómo soy cuando hablo contigo, sacas mi lado más bueno.  

 

- A. Mathias Lunde, la sonrisa latina. Mi ex-vecino favorito, eres pura simpatía…y un poco 

freaky. Te agradezco que hayas venido a “darme la lata” tantas veces al laboratorio, a 

buscar colas, a contarme historias graciosas con tu aún más gracioso español y hacerme 

pasar grandes momentos. Y gracias por haberme traído un poquito de tu país y tu civilizado 

punto de vista; en algunos aspectos, te has convertido en un referente para mí.  

 

- Zu Sarinha, auch als Sara Correia Carreira gekannt, der Wendepunkt. Ja, es ist schon eine 

weile her, dass ich einen Teil meines Leben mit dir verteilt habe. Allerdings, ein kleines 

bißchen schuldig bist du doch, dass dieser Manuskript heute geschrieben wird und noch 

weiter und ja wichtiger dass Osquiñar heute ein lächelnder “Jung” ist. Mein größeres 

Vorbild. Das verzaubernde Licht, das den Anfang des nicht mehr dunkles Weges 

beleuchtet hat und woraus diese Fliege nie entkommen konnte. 

 

- A Danai, mi mito griego. Muy pocas personas han dejado su huella tan profundamente 

marcada en mi interior como tú. Dulce y risueña como una niña, de mirada suave y 

ligeramente melancólica, eres extrañamente cautivadora y escuchas como muy poca gente 

lo hace. Me sorprendiste desde los primeros segundos en los que hablamos con tu precisa 

selección de palabras en español, cada una de las cuales llenabas de significado y 

desnudabas de retórica. Me conectas con otro mundo, más espiritual, al cual me habría 

aproximado, posiblemente, en una de esas vidas hipotéticas que el devenir del destino nos 

lleva a no vivir. Todavía hoy, esporádicamente, nos salpicamos con una mezcla de realidad 

y sueño que nos hace volar al mundo al que debes pertenecer, con tus colegas mitad 

humanos, mitad dioses. 
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- A Kleine Ana. Me enriqueciste mucho y me ayudaste enormemente a intentar plantarle 

cara al temible monstruo de mi interior, me enseñaste mis grandes taras y sufriste los daños 

colaterales de las escaramuzas. Pero a los bravos soldados se les hacen grandes 

monumentos, aunque a veces no lleguen a verlos. Sufridora de mi adicción al trabajo y 

emprendedora, con ganas de vivir la vida y con gran auto-confianza, mi intuición me 

susurró al oído que el camino que tus pies ya están enfrentando desciende hacia un 

maravilloso y fértil valle, espero que sus habitantes disfruten de tu fantástica risa. 

 

- A Patri Arcas. Posees una gran humildad y eres frágil y preciosa, como el buen cristal. 

Tienes una coqueta timidez que te da un cierto encanto. Eres comprensiva y un tanto 

soñadora y te deseo mucho ánimo; tienes mucho potencial y seguro que encuentras la 

mejor manera de aprovecharlo. Me gustó verte dar algunos pasos inéditos… 
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Descripción de la tesis 

 
La piedra angular sobre la que se basa esta tesis es la microscopía de fuerza magnética y su uso 

para extraer información añadida del estudio de muestras ferromagnéticas. A lo largo del 

manuscrito, se ha estudiado una extensa variedad de materiales. Éste está dividido en cinco 

capítulos, cada uno de los cuales se centra en una temática diferente. Si bien aconsejamos seguir el 

orden establecido, el manuscrito está escrito de tal forma que el lector pueda leer cada capítulo de 

manera independiente. En algunas partes específicas se hace referencia a otros capítulos, en los 

que se comenta en más detalle algún asunto en particular. 

El primer capítulo, a modo de introducción, repasa conceptos básicos que serán utilizados con 

frecuencia durante la descripción de los resultados experimentales. En primer lugar, se da una 

visión general sobre la situación actual en la que se encuentra el campo del nanomagnetismo, así 

como las principales razones que han motivado la realización de esta tesis. En segundo lugar, se 

recuerdan fundamentos básicos de magnetismo clásico y se introducen algunas de sus ecuaciones 

básicas. Después, se presentan las bases de la microscopía de fuerza atómica en modo dinámico, 

poniendo particular énfasis en la microscopía de fuerza magnética (MFM). Por último, se da una 

breve guía sobre la interpretación de las imágenes de MFM. Asimismo, al principio de cada 

capítulo se realiza una breve introducción específica a cada temática en él tratada. 

 

El segundo capítulo, y el más extenso de esta tesis, versa sobre procesos de inversión de la 

imanación observados en diferentes muestras, bajo la influencia de un campo magnético externo. 

Está separado en dos partes, en función de si el comportamiento magnético está gobernado 

puramente por la forma de las nanoestructuras o si, en cambio, la estructura cristalina juega un 

papel importante. En el capítulo 2.2 se introduce un modo de medida particular basado en el MFM 

que permite la cuantificación de campos críticos en elementos nanoscópicos individuales. Este 

modo será usado con frecuencia en los capítulos restantes. 

 

El capítulo tercero se centra en el solapamiento de información derivada de interacciones 

electrostática y magnetostática, que tiene lugar entre la punta sensora y muestras con marcados 

efectos de acumulación de carga. Se describe un método para separar, exitosamente, ambas 

contribuciones mediante el uso del llamado Kelvin Probe Force Microscopy durante los 

experimentos de MFM. Finalmente, se presentan dos aplicaciones de este método combinado en 

nanohilos planos de cobalto y en experimentos de Scanning gate microscopy. 

 

El cuarto capítulo describe la fabricación y caracterización de sensores de MFM en nuestro 

laboratorio, obtenidos de una manera rápida, sencilla y económica. Estas puntas sensoras muestran 
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un rendimiento destacable en términos de resolución espacial, reducida influencia sobre el estado 

magnético de muestras blandas y sensibilidad química. Se muestra una comparación con diversas 

puntas comerciales, así como algunas aplicaciones prácticas. En particular, se presentan imágenes 

de MFM de alta resolución de diversas paredes de dominio. Estas puntas han sido utilizadas en los 

capítulos 2 y 3. 

 

Por último, el quinto capítulo representa la parte más innovadora y original de esta tesis. Hace uso 

de la disipación de energía provocada por el campo magnético alterno al que está sujeta la punta 

de MFM, para extraer información de las propiedades magnéticas de la muestra. Bajo ciertas 

circunstancias, se observa una disminución de la disipación conforme la punta se aproxima a la 

muestra, y se da una explicación para este efecto. Asimismo, en el último apartado de esta tesis se 

describe una potencial aplicación de este fenómeno para la obtención de mapas tridimensionales 

del campo magnético que emerge de una muestra. 

 

Al final del manuscrito, se resumen las principales conclusiones y se listan todos los artículos 

publicados en los que he participado.  

 

En todos los trabajos descritos, se han realizado simulaciones micromagnéticas para apoyar y 

ayudar con la interpretación de los resultados experimentales; en cualquier caso, se consideran una 

herramienta complementaria para la explicación de los datos de MFM. La mayoría de las 

simulaciones han sido desarrolladas por nosotros, con las únicas excepciones de los capítulos 2.4 y 

5.2. Para ello, se ha hecho uso del código OOMMF, de libre acceso, para simular cada muestra 

específica. Cabe mencionar que no se ha procedido a modificar ni desarrollar el código original. 

 

Las referencias a otros trabajos publicados en libros o revistas de investigación se cuentan de 

manera independiente en cada capítulo y se encuentran listadas en la parte inferior de aquellas 

páginas en las que son mencionadas. De igual manera, el conteo de las figuras se reinicia al 

comenzar cada capítulo. Esta tesis ha sido escrita en lengua inglesa. 
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Outline of the thesis 

 

The cornerstone of this thesis is the use of magnetic force microscopy to extract added information 

from ferromagnetic samples. An extensive variety of materials has been studied and is reported 

throughout the manuscript. It is divided in five chapters, each of which is devoted to a different 

subject. Although we recommend following the established order, the manuscript is written in such 

a way that the reader can read any chapter independently. At some specific points, reference to 

other chapters is pointed out, where more detail about a particular issue is given. 

 

The first introductory chapter recalls basic concepts that will be often used when describing the 

experimental results. First, a short overview about state-of-the-art research in nanomagnetism is 

given, together with the main reasons that motivated the realization of this thesis. Then, 

fundaments on classical magnetism are presented and some of the basic equations are introduced. 

Third, basics of dynamic atomic force microscopy are reminded, with particular emphasis on 

magnetic force microscopy (MFM). Last, a brief guide on the interpretation of MFM images is 

given. In addition, a brief and more specific introduction is also given in the beginning of each 

chapter, focusing on the particular topic discussed. 

 

The second chapter – and the longest one of this thesis – deals with magnetization reversal 

processes observed in different samples under the influence of an external magnetic field. It is 

separated in two parts, depending on whether the magnetic behavior is purely governed by the 

shape of the nanostructures or if the crystalline structure plays an important role. A particular 

MFM-based mode is presented in chapter 2.2, which allows for the quantification of critical fields 

in individual nanoscopic elements. This mode will be often used in the remaining chapters. 

 

The third chapter focuses on the overlap of information of electrostatic and magnetostatic 

interactions taking place between the sensing tip and samples with strong charging effects. A 

successful separation of both contributions is then demonstrated by making use of the so-called 

Kelvin Probe Force Microscopy. Finally, applications of this combined method to cobalt stripes and 

scanning gate microscopy experiments are shown. 

 

The fourth chapter describes the fabrication and characterization of homemade MFM sensors 

obtained in a fast, simple and low cost way. These MFM tips show a remarkable performance, in 

terms of spatial resolution, reduced influence in the magnetic state of soft samples and chemical 

sensitivity. A comparison with commercial probes is given and practical applications are shown. In 
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particular, high resolution MFM images of different kinds of domain walls are presented. These 

homemade probes have been used in chapters 2 and 3. 

 

Last, the fifth chapter represents the most innovative and original part of this thesis. It makes use 

of the energy dissipation caused by the oscillating stray field sensed by the tip to extract 

information from the magnetic properties of the sample. Under certain circumstances, a 

counterintuitive decrease of dissipation is observed as the probe approaches the sample and an 

explanation for this effect is given. In addition, a potential application of this phenomenon for 

obtaining 3D maps of the sample stray field is given in the very last section of this thesis. 

 

At the end of this thesis, the main conclusions are summarized and all my published articles are 

listed.  

 

In all the works reported, micromagnetic simulations have been used to support and help to 

interpret the experimental results. Nevertheless, they are considered to be a complementary tool in 

this thesis to explain MFM data. I carried out most of the presented simulations, with the only 

exceptions of chapters 2.4 and 5.2. For doing so, I made use of the free source OOMMF code for 

simulating each specific sample; however, I did not modified nor extended the original code. 

 

References to other works published in books or research journals are counted in each chapter 

independently and are listed at the bottom of those pages where they are mentioned. In the same 

way, figure’s count is reset in the beginning of every chapter. The language in which this thesis 

was written is the English language. 
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Chapter 1: Introduction 
 

 

In this first chapter we introduce general concepts that will be repeatedly used throughout the 

manuscript, including fundamental ideas of magnetism and atomic force microscopy (AFM). Such 

basic concepts will be necessary to understand the results shown hereafter. More specific details 

will be given in the introductory part of each chapter, regarding further knowledge required to 

understand the studied phenomena, such as the use of advanced measuring modes (chapters 2 and 

3) or basic theory for extracting dissipated energy from AFM measurements (chapter 5). We will 

start by briefly reviewing the main interests, achievements and ambitions of such an exciting topic 

as nanomagnetism and the motivation that gave rise to the realization of this thesis. Secondly, we 

will write the main equations of classical magnetism and shortly describe the energetic terms that 

are present in magnetic samples and are responsible for the different domain structures observed at 

the nanoscale. We will also introduce the use of micromagnetic simulations to predict spin 

configurations under specified conditions, which will be often used in the work shown in the 

following chapters. Then, we will give a general idea of the working procedure in atomic force 

microscopes and deduce basic equations that help to understand the underlying mechanisms, 

through which information about the sample properties is extracted. In particular, the case of 

magnetostatic interactions in magnetic force microscopy (MFM) will be commented to help with 

the interpretation of MFM images.  

 

1. Nanomagnetism 
 

Nanoscience and nanotechnology have already become one of the main pillars in nowadays 

research and these words are not odd anymore to the general audience. News about cutting-edge 

advances are often found on the front pages of the main newspapers and the society is aware of 

their potential for improving the quality of life and solving major problems it currently faces, as it 

is destined to become the new industrial revolution. Commercial developments are already 

available in sectors such as medicine, electronics, automotive industry, cosmetics, etc., which 

highlights one of the main added values of nanotechnology: its multidisciplinarity. Advances on 

nanotechnology have been possible mainly due to improvements in experimental techniques that 

allow fabricating and characterizing materials at the atomic and molecular scales. Such control 

promotes a much deeper understanding of the new phenomena that arise at this small scale, when 

the geometrical dimensions are in the order of some characteristic length. Figure 1. shows a 

diagram with the size scales of known elements: 
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Figure 1.1: Length scale of well known objects. 

 

Among all fields embraced by nanoscience, nanomagnetism is one of the most relevant elements. 

Nanomagnetism can be regarded as the area of research that deals with the magnetic properties of 

objects with at least one dimension in the nanoscopic range. Although the existence of permanent 

magnets has been known since ancient times, the origin of ferromagnetism is complex and requires 

the use of advanced physics involving quantum mechanics to explain such phenomenon. This 

quantum origin yields an opportunity to explore new physical phenomena and develop novel 

applications and devices. During the 20
th
 century, magnetism became a central topic in condensed 

matter physics and, at the same time, remarkable progress was achieved in industrial applications. 

The exploration of fundamental phenomena in magnetic nanostructures enabled a tremendous 

development of computer industry, especially in the last three decades, that has had an 

imponderable impact in our ways of life. The benchmark corresponds to the discovery of giant 

magnetoresistance (GMR) in 1988 
1,2

, considered the most outstanding breakthrough in 

nanomagnetism during the last quarter of the 20
th
 century and for whose merits Albert Fert and 

Peter Grünberg were awarded the Nobel Prize in physics in 2007. These were the first experiments 

to reveal the spin dependence of the electric conductance, which gave birth to the field nowadays 

known as spintronics. In 1997, only 8 years later, modern hard disk drive systems based on GMR 

spin valves 
3
 were successfully implemented by Stuart S. P. Parkin at the IBM and allowed further 

miniaturizing and significant increase in storage density. Today, they are built in every computer 

and we make constant use of this technology. However, a physical limitation has already been 

reached in which thermal effects impede further miniaturization of conventional hard disks. This 

has driven the research on the field towards new sorts of logic devices in which information would 

be stored in domain walls of ferromagnetic elements such as domain wall logic 
4
, racetrack 

                                                 
1 M. N. Baibich, J. M. Broto, A. Fert, F. N. van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friedrich and J. Chazelas, 

Physical Review Letters 61 (1988) 2472-2475 
2 G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn, Physical Review B 39 (1989) 4828-4830 
3 B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit and D. Mauri, Physical Review B 43 (1991) 1297 
4 D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit and R. P. Cowburn, Science 309 (2005) 1688-1692 
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memories 
5
 or magnetic vortices 

6,7
. In addition to magnetic data storage, there have been seminal 

advances in earth sciences 
8
 and other promising applications that are being developed in areas 

such as ferrofluids 
9
 or magnetic sensors 

10
. Remarkable is the potential that magnetic nanoparticles 

have shown in biology and medicine 
11

, either for biomolecule sorting and separation , drug 

delivery 
12

 or magnetic hyperthermia 
13

.  

 

Bulk magnetometry techniques, such as vibrating sample magnetometry (VSM) and 

superconducting quantum interference devices (SQUID), allow extracting averaged information 

about the magnetization reversal processes and turn out to be very useful when dealing with 

macroscopic samples or very large numbers of similar nanostructures. This gives complementary 

information but, in the case of nanomagnetism, a precise understanding of the properties of 

magnetic nanostructures becomes a necessary step on the way to future technologies. On this step, 

experimental techniques with high enough resolution and sensitivity are essential for the detailed 

study of magnetic processes at the nanoscale.  

 

There are many available techniques for analyzing magnetic nanostructures, each of them having 

its strength and drawback. Some, such as circular and linear dichroism, are based on the use of 

synchrotron radiation for elemental resolution and can yield quantitative information. The 

application of short laser pulses is converted into images through the magneto optical Kerr effect 

with high temporal resolution, allowing magnetization reversal processes to be studied in detail. 

Electron microscopes can also be used to extract useful information from magnetic samples in 

techniques such as Lorentz microscopy, electron holography, spin polarized low energy electron 

microscopy (SPLEEM) and scanning electron microscope with polarization analysis (SEMPA). 

 

Especially relevant is the family of scanning probe microscopies, where spin polarized scanning 

tunnelling microscopy (SP-STM) is the only technique capable of truly atomic resolution 
14,15

. In 

particular, magnetic force microscopy is probably the most extended magnetic imaging technique, 

also in the industrial sector, due to its versatility to achieve very high lateral resolution under most 

                                                 
5 S. S. P. Parkin, M. Hayashi and L. Thomas, Science 320 (2008) 190-194 
6 Y. Gaidei, D. D. Sheka, F. G. Mertens, Applied Physics Letters 92 (2008) 012503 
7 R. Moriya, L. Thomas, M. Hayashi, Y. B. Bazaliy, C. Rettner and S. S. P. Parkin, Nature Physics 4 (2008) 368-372 
8 J. M. D. Coey, “Magnetism and Magnetic Materials” (Cambridge University Press, Cambridge 2009) 
9 S. Odenbach, “Ferrofluids” (Handbook of Magnetic Materials, vol. 16, Elsevier, Amsterdam 2006) 
10 M. Vázquez, A. Asenjo, M. P. Morales, K. R. Pirota, G. Badini-Confalonieri and M. Hernández-Vélez, “Sensors based 

on nanostructured materials” (Springer Science Business Medida, Berlin 2009) 
11 Q. A. Pankhurst, J. Conolly, S. K. Jones and J. Dobson, Journal of Physics D: Applied Physics 36 (2003) R167-R181 
12 C. Alexious and R. Jurgons, “Magnetic Drug Targeting” (Magnetism in Medicine: A Handbook, Wiley, Weinheim 

2007) 
13 R. Hergt and W. Andrä, “Magnetic Hyperthermia and Thermoablation” (Magnetism in Medicine: A Handbook, Wiley, 

Weinheim 2007) 
14 R. Wiesendanger, Reviews of Modern Physics 81 (2009) 1495 
15 H. Hopster and H. P. Oepen, “Magnetic Microscopy of Nanostructures” (Springer, Berlin 2005) 
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possible conditions without sophisticated sample preparation. The first reports on MFM 
16,17

 date to 

1987 and emerged as a variant of the atomic force microscope invented one year earlier 
18

. Its 

lateral resolution reaches 10-15 nm with scan sizes up to around 100 μm, thus covering samples in 

the nanoscopic and mesoscopic regimes. It has already been widely used for imaging magnetic 

domain structures on a variety of magnetic materials, such as high density recording media 
19

, 

ultrathin films 
20

, patterned elements 
21

, nanoparticles 
22

, multilayers 
23

, nanowires 
24

, etc. Thus, 

MFM systems give the opportunity to work with a large variety of materials and study multiple 

domain structures. 

 

2. Fundamentals of magnetism 
 

Since the discovery in 1820 by Hans Christian Oersted of the true connection between electricity 

and magnetism and the invention by William Sturgeon of the electromagnet in 1824, a 

technological revolution was launched. However, despite the technical and theoretical triumphs of 

the electromagnetic revolution during the 19
th
 century, the problem of explaining how a solid could 

possibly be ferromagnetic remained unsolved until the development of quantum mechanics. From 

the classical point of view, the magnetization of iron, M=1.76∙10
6
 A/m, implies a perpetually 

circulating macroscopic current density of the same magnitude, which appears to be a wildly 

implausible proposition. According to modern physics, the magnetic properties of solids arise 

essentially from the magnetic moments of their atomic electrons. The interactions responsible for 

ferromagnetism were shown by Werner Heisenberg 
25

 in 1928 to be electrostatic in nature, 

originating from the quantum mechanical Coulomb repulsion of two nearby electrons, acting in 

conjunction with the Pauli principle. 

 

In ferromagnetic materials, the direction along which electron spins point is a result of the 

competition between different energy terms that have diverse physical origins. The exchange 

energy is responsible for the existence in ferri- and ferromagnetic materials of a macroscopic net 

                                                 
16 Y. Martin and H. K. Wickramasinghe, Applied Physics Letters 50 (1987) 1455 
17 J. J. Saenz, N. Garcia, P. Gruetter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H. R. Hidberg and H. 

J. Guentherodt, Journal of Applied Physics 62 (1987) 4293 
18 G. Binnig, C. F. Quate and C. Gerber, Physical Review Letters 56 (1986) 930 
19 H. Mamin, D. Rugar, J. Stern, B. Teris and S. Lambert, Applied Physics Letters 53 (1988) 1563 
20 H. Mamin, D. Rugar, J. Stern, R. Fontana and P. Kasiraj, Applied Physics Letters 55 (1989) 318 
21 A. Wadas, P. Grütter and H. Guntherodt, Journal of Vaccuum Science Technology A8 (1990) 416 
22 M. Lederman, S. Schultz and M. Ozaki, Physical Review Letters 73 (1994) 1986 
23 H. Hug, B. Stiefel, A. Moser, I. Parashikov, A. Klieznik, D. Lipp, H. Guntherodt, G. Bochi, D. Paul and R. O’Handley, 

Journal of Applied Physics 79 (1996) 5609 
24 L. Billiard, J. Miltat, A. Thiaville, S. Dubois, J. Duvail and L. Piraux, Journal of Magnetism and Magnetic Materials 

190 (1998) 1 
25 W. Heisenberg, Zeitschrift für Physik 49 (1928) 619-636 
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magnetization in the absence of external fields. Heisenberg described the quantum mechanical 

energy splitting between pairs of interacting neighboring electrons by the famous Hamiltonian: 

 

              
   

   
    

  (1.1) 

 

Positive values of the exchange constant (J > 0) indicate a ferromagnetic interaction, which tends to 

align the two spins parallel to each other. Normally, exchange interactions are very short-ranged, 

confined to electrons in orbitals on the same atom (intra-atomic exchange) or nearest neighbor 

atoms (direct exchange) but longer-ranged interactions can occur via intermediary atoms and this is 

termed superexchange. When calculating numerically the exchange energy term, the following 

expression is commonly used (see appendix A.1): 

 

 
         

 
 

 

  
                 

 
       

   (1.2) 

 

where A is the exchange stiffness and MS the saturation magnetization. 

 

A second energy term in solids is related to the anisotropic character of crystalline lattices. A 

ferromagnetic material is said to have magneto-crystalline anisotropy if it takes more energy to 

magnetize it in certain crystalline directions than in others. The orbital motion described by the 

electrons around the nuclei couples with the electric crystalline field and gives rise to the first order 

contribution to magneto-crystalline anisotropy due to the spin-orbit coupling. A second order arises 

due to the mutual interaction of the magnetic dipoles but is often neglected. This effect is weak 

compared to the exchange interaction but of great relevance since materials with high magnetic 

anisotropy are usually hard to demagnetize; these are called hard ferromagnetic materials 
26

. For 

example, the high anisotropy of rare earth metals (elements that present a strong spin-orbit 

coupling) is mainly responsible for the hardness of rare earth based magnets. On the other hand, 

materials with low magnetic anisotropy are usually called soft ferromagnets and their 

magnetization is easy to change. Analytical expressions for estimating the anisotropy energies, as 

well as the easy axis orientations in different crystal systems can be found in the literature 
27

, the 

most common formulae being: 

 

                                                 
26 From J. M. D. Coey, “Magnetism and Magnetic Materials” (Cambridge University Press, Cambridge 2009): “The 

terms hard and soft for magnets originated from the mechanical properties of the corresponding magnetic steels” 
27 G. H. O. Daalderop, P. J. Kelly and M. F. H. Schuumans, Physical Review B 41 (1990) 11919-11937 
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  (1.3) 

 

The first and second order magneto-crystalline anisotropy constants K1 and K2 have units of energy 

density, vary with temperature and are determined experimentally.  

 

Third, whenever an external magnetic field is applied, a magnetic torque is exerted in misaligned 

magnetic moments that try to minimize their energy by orienting with the field. This term is called 

the Zeeman energy and has an analytical expression of the form 
28

: 

 

 
       

 
                    (1.4) 

 

Last, there is an interaction between the spins themselves. The magnetostatic or dipolar energy can 

be considered as the interaction of the magnetic moments present in the sample with the field 

generated by the sample itself. It gives rise to coupling between neighboring nanostructures (if the 

field considered is generated by a neighboring object) or to the so-called demagnetizing energy (if 

the field arises from the same magnetized object). This energy term is commonly written in the 

following way: 

 

         
  

 
                      (1.5) 

 

where the integration is carried out over the whole volume of the ferromagnetic object, taken as a 

continuum.  Note that the factor ½, as compared to the expression for the Zeeman energy, appears 

from the reciprocity principle, since the magnetic field emerges from spins within the sample. Due 

to its long range character, the magnetostatic energy depends on the shape of the system and leads 

to the commonly called shape anisotropy. The proper calculation of the magnetostatic energy 

belongs to the area of micromagnetism and is computationally costly. Deriving an expression for 

           one gets (see appendix A.2): 

 

 
      

 
 

  

  
                            

          

            
                         

          

            
        (1.6) 

 

                                                 
28 L. D. Landau and E. M. Lifshitz, “Dynamics of continuous media” (Pergamon Press, 1981) 
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Nevertheless, a simple approximation can be made if the sample is considered to be a 

homogeneously magnetized ellipsoid, defining the demagnetizing factor N as: 

 

                                      
  

 
     

    

 

with    being a unit vector along the direction of the uniform magnetization. 

 

For a specific sample, the competition between all these energy terms results in a stable 

configuration that minimizes the overall energy. Very small samples will be governed by the 

exchange energy, which is intrinsically short range and strong, resulting in a single domain 

configuration along the magneto-crystalline easy axis. However, as the size is increased the long 

range influence between all the magnetic moments present in the sample becomes relevant and 

spins diverge at the borders of the nanostructure. For large enough size, the magnetization will 

break into domains. The domain structure consists of quasi-uniformly magnetized regions pointing 

to different directions and separated by narrow boundaries. The first experimental observations of 

domains were reported in 1931 
29,30

, soon after that Bloch 
31

 described the concept of domain walls 

and later Landau and Lifshitz introduced the modern domain theory in 1935 
32

. The narrow 

boundaries between neighboring domains (or domain walls) are usually regions with large stray 

fields as opposed to domains, in which the spins are rather parallel. The width of a domain wall 

depends on the exchange stiffness A and the magnetocrystalline anisotropy energy K1 of the 

material in such a way that large anisotropy favors the formation of narrow domain walls (in the 

order of 5 nm for hard magnetic materials), whereas in samples with a stronger relevance of the 

exchange interactions thicker domain walls are observed (around 100 nm for soft materials). 

 

2.1. Micromagnetism 

 

Micromagnetism, formulated by William Fuller Brown Jr. in 1963 
33

, is the continuous theory for 

magnetic structures and is suitable for the study of magnetic phenomena at the micrometer and 

nanometer scales. In micromagnetism, the sample is divided or discretized into elements that are 

sufficiently small for the magnetization to be considered constant inside but large enough for the 

continuum approximation to be used; the specific atomic structure is thus ignored. An effective 

spin of modulus MS is assigned to each cell and its orientation will depend on an effective field that 

                                                 
29 L. Hámos and P. Thiessen, Zeitschrift der Physik 71 (1931) 442-444 
30 F. Bitter, Physical Review 38 (1931) 1903-1905 
31 F. Bloch, Zeitschrift der Physik 74 (1932) 295 
32 L. Landau and E. Lifshitz, Physikaliche Zeitschrift der Sowjetunion 8 (1935) 153 
33 W. F. Brown Jr., “Micromagnetics” (Wiley, New York 1963) 
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takes into account the four energy terms described above, making use of equations (1.2), (1.3), 

(1.4) and (1.6): 

  

                                         
  

  

 
         

  
 

 

         
                                    

 
 

 

The time evolution of the magnetization is calculated using the Landau-Lifshitz-Gilbert equation: 

 

 
      

  
                      

      

  
  (1.7) 

 

where η is the damping parameter, which is characteristic of the material. The first term on the 

right side of equation (1.7) describes the precession of the magnetization around the effective field 

at each point. The second one accounts for a phenomenological damping that has not yet been 

derived theoretically. 

 

 

 

Figure 1.2: LLG equation. Dynamic evolution of the magnetization under the influence of an effective field (Heff), 

according to the Landau-Lifshitz-Gilbert equation. 

 

There are two physically relevant parameters that need to be taken into account when choosing the 

size of the discretized cells (or cell size): the exchange correlation length (lex) and the domain wall 

width parameter (δw). 

 

M

-γ∙M x Heff

(γ∙η)∙M x (dM/dt)

Heff
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Essentially, the cell size must be smaller than these characteristic lengths but include enough atoms 

to ensure the validity of the continuum approximation. 

 

Throughout this thesis, micromagnetic simulations have been frequently performed using an 

extended free source code labelled Object Oriented MicroMagnetic Framework (OOMMF) 
34

. In 

chapter 2.4, our collaborating group made use of a finite element code labelled MAGPAR 
35

. 

 

3. Fundamentals of dynamic atomic force microscopy 
 

The atomic force microcope (AFM) makes use of a cantilever with a sharp tip (probe) at its end that 

is used to scan the sample surface. The cantilever is typically silicon or silicon nitride, with a tip 

radius of curvature in the order of few to tens of nanometers. When the tip is brought into 

proximity of a surface, forces between the tip and the sample lead to a measurable deflection of the 

cantilever according to Hooke's law.  

 

 

 

Figure 1.3: Model of the cantilever as a spring obeying Hook’s law. 

 

A variety of forces may be measured in AFM, including mechanical contact force, van der Waals 

forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces, Casimir forces, 

solvation forces, etc. Along with force, additional quantities may simultaneously be measured 

through the use of specialized types of probes. The AFM can be operated in a number of modes and 

under different environments, depending on the application. Our case of interest involves dynamic 

                                                 
34 http://math.nist.gov/oommf 
35 http://magnet.atp.tuwien.ac.at 
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modes, where the cantilever is vibrated at least at one of its resonance modes. In general, theory of 

dynamic atomic force microscopy is rather complex and tricky. Nevertheless, some assumptions 

are often made that ease its physical understanding. The most common one is the use of a point 

mass model to explain the dynamics of the oscillating probe and we will focus on it. 

 

3.1. Point mass model 

 

This model assumes the oscillating probe to be a point mass that oscillates harmonically subject to 

an elastic force characterized by an effective spring constant (k), which is different from the real 

spring constant of the lever. The effective mass of the model (m) is chosen so that equations of 

motion describe the real oscillation in the experiment and differs from the real tip mass. In addition, 

dissipative restoring forces damp the harmonic oscillation, with a damping coefficient μ. 

 

- Dynamic AFM 

 

In dynamic AFM, cantilevers are subject to a periodic driving force                     that 

keep them oscillating at a specific frequency  . In the point mass model and in the absence of an 

interacting sample, the effective work done by Fexc (t) during the motion of the point mass z(t) must 

equal the work done by external forces on the entire real cantilever when the tip undergoes the 

identical motion. The equation of motion can thus be described as: 

 

                                   

 

The homogeneous solution for this second order differential equation corresponds to the transient 

motion of a static cantilever that is pinged out of its equilibrium position. The equation of such a 

system, dividing by the spring constant, is described by: 

 

     

 
 

 
     

 
 

          
     

  
 

 
     

    
        

 

where the natural resonance frequency and quality factor of the system have been defined: 

 

           
 

 
         

    

 
 (1.8) 

 

Full derivation of the solution to the former equation is presented in appendix B.1 and yields: 
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 (1.9) 

 

This damped sinusoidal function describes the oscillating motion of cantilevers that are perturbed 

from their equilibrium position. Notice the important role that the quality factor Q plays, not just 

altering the oscillation frequency as seen in equation (1.9), but also in the damping as it determines 

the settling time in transient oscillations. The oscillation amplitude decays by a factor of   when: 

 

     
    

 
    

  
    
    

     
  

  
       

       
     

  

  
       

      
  

  

 

Thus, high quality factors are not suitable when one seeks fast scanning speeds. In a sense, the 

quality factor is a measure of the number of periods or oscillation cycles necessary for the 

perturbed oscillation to die off. 

 

After having calculated the homogeneous solution, we now assume a particular solution of the 

form                   . The following expressions are derived for the amplitude transfer 

function and phase shift: 

 

 
 

 

 
  

 
 
  

 

     
 
  

 
 

 
 

  
 

    
 

 

 
(1.10) 

 

         

 
  

      
 
  

 
 

 
  (1.11) 

 

Derivation is detailed in appendix B.2. The general solution for dynamic AFM is the sum of the 

homogeneous and particular ones. This implies the combination of a sinusoidal motion with a 

damped oscillation; nevertheless, after a time of 2Q/ω0 the transient oscillation resulting from the 

homogeneous solution becomes irrelevant, whereas the steady state solution describes a cantilever 
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oscillating at the same frequency of the driving force with an amplitude and a phase lag as 

specified by equations (1.10) and (1.11), respectively. Both parameters are plotted in figure 1.4 
36

.  

 

 

 

Figure 1.4: Point mass model. (a) Oscillation amplitude and (b) phase shift of a directly excited cantilever, according to 

equations (1.10) and (1.11). 

 

When excited at the natural frequency ω=ω0, the cantilever oscillates with an amplitude Q times 

larger than the driving displacement [A=Q∙(F0/k)] and a phase shift of ϕ=90º, regardless of the Q. 

Note that a direct excitation system has been considered, in which the driving force is not exerted 

mechanically. However, the most widespread method of cantilever driving – and the one used in all 

experiments presented in this thesis – is the piezoacoustic excitation, in which a piezoelectric 

element is used to vibrate the base of the cantilever. In this case, the equation of motion is slightly 

different since the cantilever base does not remain fixed. Nevertheless, for experiments in air or 

high vacuum in which the cantilever is driven at its natural resonance frequency, the base motion is 

so small (relative to tip displacement) that it can be neglected 
37

. 

 

- Tip-sample interactions 

 

If an interacting force comes into play, the equation of motion becomes difficult to solve and 

several approximations are usually made. The tip-sample interaction will depend on the absolute 

tip-sample distance d(t)=Z0+z(t), where Z0 denotes the cantilever equilibrium position, and its 

velocity      : 

 

                                                    

 

                                                 
36 The identity tan-1(x) = tan-1(x+π) has been used for the phase shift plot. 
37 D. Kiracofe and A. Raman, Nanotechnology 22 (2011) 485502 
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If the tip-sample interaction is small enough to be considered a perturbation of the cantilever 

motion and one assumes the probe to vibrate with very small oscillation amplitudes, a Taylor 

expansion of the interaction around the equilibrium position yields: 

 

                                                
     

  
  

   
       

                     
     

  
  

   
                             

 

The steady state solution of former equation is the same as the one given by equations (1.10) and 

(1.11), with the following effective parameters: 

          
     

  
  

   
            

    

 
 

 
    

     

  
  

   

 
    

 
  

  
     

  
  

   

 
 

 

Considering the force gradient to be a perturbation of the periodic motion of the lever, so that 

  
     

  
  

   
  , the root square can be again expanded as a first order Taylor polynomial: 

 

              

  
     

  
  

   

   
         

  

   
   

     

  
  

   
 (1.12) 

 

The force gradient   
     

  
  

   
 has been implicitly assumed to remain constant during each 

oscillation cycle, which is equivalent to assume linear tip-sample forces. This approximation only 

remains valid for very small oscillations. In addition, it ignores higher oscillation modes and often 

does not directly compare to experimental observations 
38

. However, a good insight into how the 

dynamics of the cantilever is affected by interactions with the sample can be extracted by this linear 

harmonic approximation. Thorough and more accurate analysis of the cantilever dynamics can be 

found in the literature 
39

 and will not be commented here. 

 

 

 

 

 

                                                 
38 R. García and R. Pérez, Surface Science Reports 47 (2002) 197-301 
39 Y. Song and B. Bhushan, Journal of Physics: Condensed Matter 20 (2008) 225012 
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3.2. Experimental set up 

 

All the MFM experiments shown throughout this manuscript were performed using Nanotec 

Electrónica systems and data acquisition was carried out using the WSxM software 
40

, with the only 

exception presented in section 5.3, in which experiments were made using a home built system 
41

 in 

Prof. Peter Grütter’s group at the McGill University of Montreal during one research stay I 

performed in 2011.  

 

Figure 1.5 shows the experimental set-up used for the MFM measurements. It is based on a 

piezoacoustic excitation system, in which a small dither piezo integrated in the cantilever holder is 

driven by a sinusoidal voltage to mechanically excite the base of the cantilever at the desired 

frequency. A piezoelectric tube scanner is used for raster scanning the sample surface. The first 

model of tube scanner was developed in 1986 for use in STM 
42

 and is broadly extended in AFM 

nowadays. It can move the sample in the three spatial directions using a tubular piezo with a single 

interior contact and four external contacts. An advantage of the tube scanner is a better vibrational 

isolation, resulting from the higher resonant frequency of the single-crystal construction. Its main 

drawback is that the in-plane motion causes unwanted z motion, the so-called bow distortion. 

 

 

 

Figure 1.5: The AFM setup. Schematics of the microscope used throughout this thesis. 

 

For the detection system, a laser spot is focalized into the oscillating cantilever and the reflection of 

the beam is detected by a four quadrant photodiode. Each quadrant generates a voltage proportional 

                                                 
40 I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero and A. M. Baro, Review of Scientific 

Instruments 78 (2007) 013705 
41 Y. Liu, Ph. D. dissertation, McGill University (Montreal, 1997) 
42 G. Binnig and D. P. E. Smith, Review of Scientific Instruments 57 (1986) 1688 

AFM head
Cantilever holder

Piezotube

Control unit

Sample

Cantilever

Photodetector

Laser



Chapter 1: Introduction 

35 

 

to the intensity of the incident beam, in such a way that normal and lateral deflections of the 

cantilever from the equilibrium position can be precisely determined by subtracting the signals 

between different quadrants. At room temperature, the thermal energy excites the resonant modes 

of the cantilever; the oscillation amplitude at the first eigenmode due to thermal noise is in the 

order of tens of pm for the spring constant values dealt with in our experiments and becomes the 

limitant factor in the detection of the oscillation.  

 

In the experimental set-up, magnetization reversal processes can be studied in detail by applying 

variable fields in-situ. For doing so, a controlled current is made to flow through two 

electromagnets that allow for the application of fields up to ±100 mT along the out-of-plane 

direction (OOP) and ±125 mT in the sample plane (IP). A remarkable mechanical stabilitiy has 

been achieved by substitution of magnetostrictive components by materials with a negligible 

magnetoelastic response 
43

. 

 

All the results shown here were acquired using dynamic AFM and making the cantilever oscillate at 

the first resonance eigenmode. In dynamic AFM, the normal force (which is the photodiode output 

signal accounting for the vertical deflection of the lever) is fed into the key electronic component of 

an atomic force microscope: the lock-in amplifier. 

 

- Lock-in amplifiers 

 

Lock-in amplifiers are used to detect and measure very small AC signals, all the way down to a few 

nanovolts, and provide accurate measurements even when the small signal is obscured by noise 

sources many thousands of times larger. In essence, it multiplies the input signal (in our case, the 

oscillating motion of the cantilever detected by the photodiode) by a reference signal (the 

excitation signal used to mechanically excite the base of the lever). Noise signals at frequencies 

other than the reference frequency are rejected and do not affect the measurement. The mechanical 

response of the cantilever will be at the same frequency than the driving voltage, delayed by Δϕ, so 

that: 

 

                                                         

                                                                             
 

 

and one can derive the so-called in-phase component of the input signal by multiplying them: 

 

                                                   

                                                 
43 M. Jaafar, J. Gómez-Herrero, A. Gil, P. Ares, M. Vázquez and A. Asenjo, Ultramicroscopy 109 (2009) 693 
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In the derivation of former expression, only trigonometrical identities have been used (see appendix 

C). Two terms are obtained, the first one being a DC term and the second one being modulated at a 

high frequency in the order of 2ω ≈ 150 kHz. Both of them contain the amplitude (Aosc) and phase 

lag (Δϕ) of the input signal, which are the quantities one is willing to extract. A low pass filter is 

then used to filter out the time varying voltages so the second term is attenuated. Thus, the lock-in 

amplifier outputs a DC signal that contains information about the amplitude and phase lag of the 

cantilever oscillation: 

  
         

 
         

 

If the same operation is repeated with the reference signal shifted by π/2 radians: 

 

              
                                        

         

 
         

 

where a low pass filter is again considered to attenuate AC outputs. The Y output is called the 

quadrature component. Therefore, the oscillation amplitude and phase shift can be 

straightforwardly obtained by a simple operation: 

 

           

         
 

 
 

 

 

This is how the intrinsic parameters of the oscillation are extracted experimentally. Note that 

signals whose frequencies are very close to the lock-in reference frequency may also be detected. 

The low pass filter bandwidth determines the bandwidth of detection. A narrower bandwidth will 

remove noise sources very close to the reference frequency, a wider bandwidth allows these signals 

to pass. Thus, cleaner values of Aosc and Δϕ can be obtained by using narrower bandwidths at the 

expense of integrating over longer times. However, longer integration times imply slower scan 

speeds and delayed response of the feedback controllers, so a balance has to be found. In our 

experimental setups, two lock-in amplifiers are integrated in the control unit shown in figure 1.5. 

Typical low pass filter bandwidths used in the experiments are in the range of 700-8000 Hz. In 

particular, very long measurements shown in chapter 2.3 were carried out using bandwidths of 60 

Hz to obtain very low noisy MFM images. 
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- Phase-locked loop (PLL) 

 

In all the measurements shown throughout this manuscript, a phase-locked loop (PLL) was used. A 

PLL tracks the resonance frequency of the cantilever, even in the presence of hydrodynamic 

damping effects or tip-sample interactions that shift ω0 as described by equations (1.8) and (1.12). 

 

Taking a look back at figure 1.4, it can be seen that a phase shift of 90º takes place between the 

driving force and the real cantilever oscillation, when the frequency is at the center of the 

resonance peak. This corresponds to the maximum power transfer. A phase-locked loop is a control 

system with a variable frequency oscillator that generates an output, which is related to the phase of 

an input signal. In our case, the PLL compares the phase of the cantilever oscillation (provided by 

the lock-in amplifier) with the phase of the periodic signal – generated by the internal frequency 

oscillator – and adjusts the oscillator to keep both phases with a 90º delay; the output signal 

generated by the oscillator is then used to excite the cantilever again. This is called a feedback 

loop. 

 

3.3. Fundamentals of magnetic force microscopy 

 

Dynamic magnetic force microscopy relies on relation (1.12) to measure magnetic force gradients 

from the experimental frequency shifts in the oscillating cantilever. If a magnetic coating is present 

in the sensing probe, the interaction between the stray field emerging from the sample and the 

magnetization distribution within the tip will give rise to a force gradient that can be mapped. 

Neglecting mutual influence between tip and sample, the magnetostatic 
44

 force arising from such 

interaction has the form: 

 

                                                   
 

  
                  

       

       (1.13) 

 

where    is the unit vector along Z and it has been assumed that the cantilever lies on the XY plane, 

so that the normal force is exerted in the Z direction. In general, obtaining an expression for the 

stray field emerging from the magnetization distribution within the sample involves using equation 

(A.2.1) (see appendix A.2). This is a complex problem and different approaches have been 

addressed in the literature 
45

. If the tip is small enough, one can approximate it to an effective point 

                                                 
44 The magnetostatic and Zeeman terms are the same in essence; here both analytical expressions become equal since 

only the tip volumen is integrated, so that the ½ term in equation (1.5) is not necessary. 
45 P. Grütter, H. J. Marmin and D. Rugar, “Scanning Tunneling Microscopy II” (Springer, Berlin 1992) 
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dipole that accounts for the total magnetization                        and get rid of the integral in 

former equation: 

             
          

  
    

          

  
    

          

  
  

 

so that the frequency shift is: 

 

    
     

   
     

           

   
    

           

   
    

           

   
  

 

If the point dipole is oriented along the vertical (out of plane) direction: 

 

     
          

   
 
           

   
 (1.14) 

 

In the dipole approximation, the measured frequency shift depends on the second derivative of the 

stray field. Already in 1988, Marmin and co-workers 
46

 modeled the tip as a point dipole and could 

use the so gained information to qualitatively understand the measured data. In order to achieve 

good agreement with experimental data, the dipole should be located at a specific position within 

the effective magnetic tip volume 
47

; knowing about the dipole moment and its position can be 

achieved by calibration with well-known stray fields 
48

. The dipolar approximation can be 

applicable for hard tips whose interacting region is small compared to the length over which the 

field varies significantly. 

 

Another point probe approach models the MFM tip as a monopole moment and is suitable for long 

and elongated sensors. In this case, the magnetization is considered homogeneous along the Z 

direction, so from equation (1.13): 

 

             
 

  
                                     

 

  
                                 

 

The frequency shift is then: 

 

     
          

   
 
        

  
 (1.15) 

 

                                                 
46 H. J. Marmin, D. Rugar, J. E. Stern, B. D. Terris and S. E. Lambert, Applied Physics Letters 53 (1988) 1563 
47 U. Hartmann, Physical Review A 137 (1989) 475 
48 L. Kong and S. Y. Chou, Applied Physics Letters 70 (1997) 2043 
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In the monopole approximation, the frequency shift depends on the first derivative of the sample 

stray field. This approximation is valid for long and narrow tips, in which only the magnetic 

charges at the bottom side of the probe contribute to the signal. 

 

- Interpretation of MFM images 

 

MFM images correspond to frequency shift maps (as long as a PLL is enabled, as is the case here) 

obtained at relatively large tip-sample distances, where the magnetostatic coupling is dominant. As 

sketched in figure 1.6, depending on the relative tip-sample separation distance interactions of 

diverse origins are dominant. Short range interactions, such as Pauli repulsion and chemical 

bonding, are responsible for the atomic contrast observed in AFM experiments in ultra high 

vacuum conditions. Under ambient conditions, adhesion and capillarity effects are important when 

the tip comes close to the surface, whereas van der Waals forces are typically responsible for 

changes in the cantilever dynamics used to track the topography, at separations of few nanometers. 

In order to extract information from magnetostatic and electrostatic interactions, it usually becomes 

necessary to withdraw the tip by few tens of nanometers until these interactions dominate. As a 

consequence, lower resolution can be achieved in magnetic force microscopy experiments. 

 

 

 

Figure 1.6: Dominant forces as a function of distance. Schematics of the interactions that govern the cantilever 

dynamics, depending on the separation distance. Typically, van der Waals forces are used to track the topography at 

distances of few nanometers, from which the cantilever is then lifted by 20-50 nm to obtain the MFM image. 

 

In the most widespread operating procedure, called the lift-mode or retrace-mode, the tip scans 

twice over the sample surface at two different separations. A first scan is performed at distances of 

few nm to extract the topographic profile. Then, the tip is retracted by some tens of nanometers 

and, instead of scanning parallel to the sample plane, the system repeats the same profile obtained 
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during the first pass. This allows for higher resolution because eventual crosstalk with topographic 

features (caused by protuberances in the sample surface) is minimized. Frequency shifts in the 

cantilever oscillation during this retrace scan form the MFM image. 

 

The interpretation of MFM images can be complex and even different domain structures present in 

the sample may yield similar contrast. Assuming the sensing magnetization at the tip apex to be 

oriented perpendicular to the sample plane (Z direction), it is deduced from equations (1.12) and 

(1.13) that contrast in MFM images arises from the variation along Z of the vertical component of 

the interaction, i.e. ∂FZ/∂z; therefore, the relevant parameter is the decay of HZ with distance. 

 

 

 

Figure 1.7: Interpretation of MFM images. (left) Contrast observed when imaging samples with an OOP magnetization 

accounts for magnetic domains. (right) In the case of IP magnetization, it highlights the presence of domain walls. 

 

But how does that relate to the domain structure in the sample? As depicted in figure 1.7, when 

imaging samples with the magnetization pointing perpendicular to the sample plane (OOP) contrast 

corresponds to the domains themselves (left column). On the contrary, if the magnetic moments lay 

in-plane (IP) contrast accounts for domain walls (right column); in general, wherever the 

magnetization diverges. Therefore, a practical way of interpreting MFM images is considering 

them as maps of magnetic charges, whose sources are local divergences of the magnetization. 

  

Magnetization OOP Magnetization IP
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Appendix A: Exchange and magnetostatic energies in micromagnetic 
simulations 
 

- A.1: Exchange energy 

 

From the Heisenberg Hamiltonian introduced in equation (1.1), considering a constant exchange 

constant and including the numerical values within J: 

 

                
    

 

   

             

   

 

where ϕij is the angle between neighboring spins Si and Sj, which in ferromagnetic materials is very 

small (|ϕij|<<1) so we can expand the cosine to a first order as: 

 

                    
 

 
    

  

   

          
  

    

 
      

  

   

 

The first term corresponds to a ferromagnet with all spins aligned parallel to each other and can be 

disregarded by redefining the zero energy level. For the second term, since Si and Sj are unit 

vectors: 

   
    

  
 

    
  

 
    

  
 

      
      

                          
  

 

Expanding the variable in a Fourier series: 

         
    

         
 

  
     

 

  
     

 

  
                     

Substitution in the equation yields: 

          
    

 
                 

  

 

   

 

In this expression, the first summation runs over every spin, whereas the second one only over first 

neighbors. Changing the summatory to an integral over the whole ferromagnetic body, in cubic 

crystals we have 
49

: 

                          
 

      
      

 

where A is the exchange stiffness constant defined by: 

 

  
    

 
   

                                                 
49 A. Aharoni, “Introduction to the theory of ferromagnetism” (Oxford University Press, 1996) 
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with a being the lattice constant and c=1, 2 or 4 corresponds to the base atoms in a simple cubic, 

body centered cubic and face centered cubic lattice, respectively. 

 

- A.2: Magnetostatic energy 

 

The demagnetizing or dipolar field can be derived from the magnetostatic Maxwell’s equations for 

a body with no electric currents. These are Ampère’s and Gauss’s laws: 

 

                                                                     

 

The general solution of Ampère’s law can be expressed as the gradient of a scalar potential: 

 

                   

 

This yields: 

         
                            

                       
  

The boundary conditions require that: 

 

                 

        

  
 

         

  
            

 

Here n is the surface normal and (∂/∂n) is the derivative with respect to distance from the surface. 

The general solution for the magnetic scalar potential is: 

 

        
 

  
  

                    

            
      

 

  
  

                

            
      

 

So that making use of equation (1.5), the magnetostatic energy turns out to be: 

 

        
  

 
                      

  

 
                   

 

   
      

 
 

  

  
                            

          

            
                         

          

            
        (A.2.1) 
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Appendix B: Solutions for the equation of motion of oscillating 
cantilevers 
 

- B.1: Perturbed static cantilevers 

 

The equation of motion to solve is: 

 

     

  
 

 
     

    
        

 

We propose a solution of the form:              . Substituting: 

 

    
  

  
 

 
 

    
             

  

  
 

 
 

    
          

  

  
            

 

Thus: 

        
  

    
  

           
    

  
    
  

           
 

 

Two different cases must be considered, depending on the radicand’s sign: 

 

(i)             
   

 

This is called overdamped oscillation and will not be considered here. Essentially, an overdamped 

cantilever reaches the equilibrium position without completing a full oscillation cycle. 

 

(ii)             
   

 

The underdamped oscillation is the case of interest for atomic force microscopy. It yields following 

solution: 

 

      
  

    
       

    
    
  

       
    

  
    
  

       
    

        
  

    
              

    

  
                     

    

  
          

 

Let us define the new constants         and          , 
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that are determined by the initial conditions: 

 

               
      

  

  
     

  

  
       

 

 

If we assume that the probe was in its equilibrium position when it was perturbed, the final solution 

is obtained: 

 

        
  

    
    

     
  

  
       

      
    

  
         

 

where the frequency of the oscillating term can be defined as:  

 

   
  

  
              

 

   
 

 

Finally: 

      
  

    
    

     

  
            

 
- B.2: Directly excited cantilevers 

 

The equation of motion to solve now is: 

 

     

  
 

 
     

    
      

  

 
          

 

The particular solution is assumed to be of the form:                    , yielding: 

 

  
 

  

 
 

              
 

    
                           

  

 
          

 

rearranging terms: 
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Both parameters A and ϕ are defined as constants, as long as the driving signal remains unchanged 

and no additional perturbation takes place. Thus, we can obtain their expressions by choosing 

proper times: 

 

      

    
 

  

 
 

          
 

    
             

      
 

  

 
 

         
 

    
                 

 
  

      
 
  

 
 

 
  

    
 

 
 

 

    
 

  

 
 

        
 

 
    

 

    
       

 

 
    

 
  

 
 

 
       

 

 
    

 

  
 

 
  

 
 

 
    

 
        

 

Using the following identity among inverse trigonometric functions:  

 

               
 

     
                  

 

     
 

 

we can operate further, so: 

 

 
  

 
 

 
    

 
           

 
  

      
 
  

 
 

 
   

    

 
 

 
  

      
 
  

 
 

 

    

 
  

      
 
  

 
 

 
 

 

 

Simplifying terms: 
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Appendix C: Signal multiplication in lock-in amplifiers 
 

Having the following signals: 

 

                                                         

                                                                             
 

 

the lock-in amplifier multiplies one by the other to extract Aosc and Δϕ.  

 

                                                                  

 

Using the trigonometrical identity                             , one gets: 

 

                                                

 
           

 
                                       

 
           

 
                                                 

 

Adding the term                         does not modify the result; doing that and 

rearranging terms: 

 

  
           

 
                                                           

        

 

Making use of the identities                         and                        , we 

get: 

 

  
           

 
                                   

 

Equivalently: 
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Chapter 2: Magnetization reversal processes by Variable 

Field-Magnetic Force Microscopy 

 

 

In this chapter, we present the most relevant works carried out throughout my thesis in 

collaboration with different research groups, in which magnetic domains and magnetization 

reversal processes were studied by making use of our variable field magnetic force microscope 

(VF-MFM). It is divided in two parts, each of which is dedicated to materials whose magnetic 

behavior is governed by their shape (first part) or is strongly influenced by the magneto-

crystalline anisotropy (second part). The samples described cover a set of different materials 

(permalloy, polycrystalline and epitaxial cobalt, an alloy of iron cobalt copper and lanthanum 

strontium manganite) processed through a variety of fabrication methods (electron beam 

lithography and lift-off techniques, focused electron beam induced deposition, electrochemical 

deposition into alumina templates, molecular beam epitaxy, focused ion beam and chemical vapour 

deposition). Four of the studies described in this chapter have already given rise to articles 

published in international journals. In addition, the remaining one is currently being reported and 

will be sent for peer reviewing within the next weeks. 

 

The first part of current chapter focuses on polycrystalline samples whose magnetic configuration 

is determined by their shape anisotropy and includes three sections, each one is dedicated to a 

different sample. The first section presents the study of magnetostatic coupling between 

neighboring permalloy nanostripes and has been recently published 
1
. The sample was fabricated 

by Dr. L. Pérez and Dr. Ó. de Abril from the Universidad Complutense de Madrid (UCM) and the 

magnetic characterization was carried out by means of our VF-MFM system. Plenty of literature 

can be found regarding domain wall pinning and propagation 
2,3,4

 and magnetization switching 

processes 
5,6,7

 of permalloy nanowires and nanostripes. Up to now, almost all the studies have 

focused on the behavior of a single nanostripe or in a small collection of them whereas, in real 

devices, high density of nanowires should be used in order to reach high storage density. When 

stripes are placed close to each other, magnetostatic coupling between them can affect their 

magnetic behavior. Some studies can be found on interactions between neighboring stripes in 

                                                 
1 Ó. Iglesias-Freire, M. Jaafar, L. Pérez, Ó. de Abril, M. Vázquez and A. Asenjo, Journal of Magnetism and Magnetic 

Materials 355 (2014) 152-157 
2 D. Atkinson, D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner and R. P. Cowburn, Nature Materials 2 (2003) 85 
3 Y. Nakatani, A. Thiaville and J. Miltat, Nature Materials 2 (2003) 521 
4 D. Petit, A-V. Jausovec, H. T. Zeng, E. Lewis, L. O’Brien, D. Read and R. P. Cowburn, Physical Review B 79 (2009) 

214405 
5 D. Atkinson, D. S. Eastwood and L. K.Bogart, Applied Physics Letters 92 (2008) 022510 
6 M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang and S. S. P. Parkin, Physical Review Letters 97 (2006) 207205 
7 L. K. Bogart, D. Atkinson, K. O’Shea, D. McGrouther and S. McVitie, Physical Review B 79 (2009) 054414 
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different materials, such as cobalt 
8,9,10

, nickel 
11,12

, iron 
13

 or Fe3Pt 
14

, but cylindrical wires 

embedded in alumina membranes are mostly studied and conclusions are extracted from bulk 

magnetometry measurements (VSM or SQUID). These yield averaged information over 

macroscopic regions, making measurements encompass multitude of elements and making it harder 

to reach a full understanding of the magnetization reversal process of each element individually. 

Magneto-optical Kerr effect (MOKE) magnetometry can alternatively be used as a local technique 

but its resolution is limited to the micrometric range. In our study, we present MFM data and 

micromagnetic simulations of the magnetic behavior of high aspect ratio nanostripes and, in 

particular, magnetostatic coupling between them. 

 

In the second section, a particular methodology for obtaining MFM images is introduced. This was 

developed in our group during the first year of my PhD and published in 2011 
15

. In that article, this 

procedure is used to obtain hysteresis loops of individual polycrystalline cobalt planar wires or 

stripes, fabricated in Prof. J. M. de Teresa’s group at the University of Zaragoza. Critical fields in 

magnetic nanostripes are important parameters when dealing with single domain structures, as they 

are valuable candidates for the development of different applications such as high density and high 

speed magnetic information storage, magnetic random access memories, magnetic sensors and 

logic devices. Such nanostructures present different magnetic behavior depending on their shape, 

size, aspect ratio and distance between adjacent elements. This particular operating mode has been 

used in different parts of this thesis and its results will not only be shown in current chapter. 

 

The last section of this first part introduces an ongoing work in collaboration with the group of 

Prof. Manuel Vázquez at the Material Science Institute of Madrid. It focuses on the study of the 

domain structures happening in modulated cylindrical Fe28Co67Cu5 nanowires grown by 

electrodeposition into aluminium oxide membranes that serve as templates. In the last years, 

ferromagnetic-nonmagnetic multilayer nanowire arrays and binary systems, including Co and Fe 

alloys, have been reported to show appealing magnetic and magnetotransport properties 
16,17,18,19

. In 

                                                 
8 J. M. García, A. Asenjo, J. Velázquez, D. García and M. Vázquez, Journal of Applied Physics 85 (1999) 5480 
9 H. Cao, Z. Xu, H. Sang, D. Sheng and C. Tie, Advanced Materials 13 (2001) 121 
10 J. Bao, C. Tie, Z. Xu, Q. Ma, J. Hong, H. Sang and D. Sheng, Advanced Materials 14 (2002) 44 
11 J. Bao, D. Xu, Q. Zhou, Z. Xu, Y. Feng and Y. Zhou, Chemistry of Materials 14 (2002) 4709 
12 I. Z. Rahman, A. Boboc, K. M. Razeeb and M. A. Rahman, Journal of Magnetism and Magnetic Materials 290 (2005) 

246 
13 Q-F. Zhan, J-H. Gao, Y-Q. Liang, N-L. Di and Z-H. Cheng, Physical Review B 72 (2005) 024428 
14 D-L. Sun, J-H. Gao, X-Q. Zhang, Q-F. Zhan, W. He, Y. Sun and Z-H. Cheng, Journal of Magnetism and Magnetic 

Materials 321 (2009) 2737 
15 M. Jaafar, L. Serrano-Ramón, O. Iglesias-Freire, A. Fernández-Pacheco, M. R. Ibarra, J. M. de Teresa and A. Asenjo, 

Nanoscale Research Letters 6 (2011) 407 
16 H. J. Blythe, V. M. Fedosyuk, O. I. Kasyutich and W. Schwarzacher, Journal of Magnetism and Magnetic Materials 

208 (2000) 201 
17 Y. W. Wang, L. D. Zhang, G. W. Meng, X. S. Peng, Y. X. Jin and J. Zhang, Journal of Physical Chemistry B 106 

(2002) 2502 
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particular, the family of FeCo nanowires exhibit the necessary capability to be employed in novel 

generation of rare-earth-free permanent magnets due to their high Curie temperature, large 

saturation magnetization and high shape anisotropy. Their magnetic properties can be tuned by 

adjusting the alloy composition, adding other elements 
20,21,22 

or by suitable thermal treatments 
23

. In 

particular, the presence of copper atoms has been attributed to enhance the magnetic hardness 
24

. In 

this work, we study the domain distribution in single Fe28Co67Cu5 cylindrical nanowires with a 

modulated diameter, both experimentally by using our magnetic force microscope and numerically 

with the support of micromagnetic simulations. A report embracing these results is currently in 

preparation. 

 

In addition to the influence that the shape of the sample has in its magnetic behavior, the magneto-

crystalline anisotropy can also play a key role in the magnetic configuration. Finding ways to tune 

the magneto-crystalline anisotropy is of great interest as, in order to increase the efficiency of the 

spin torque transfer effect in magnetic nanowires, it is necessary to use materials with strong 

crystalline anisotropy 
25

. The second part of current chapter comprises two additional sections in 

which the crystalline anisotropy becomes relevant. The first of them – fourth in the overall account 

– deals with epitaxial cobalt stripes with competing anisotropies, a work resulting from a 

collaboration with Dr. O. Chubykalo-Fesenko that yielded a paper published in 2013 
26

. Different 

configurations have been found in samples with competing anisotropies, including longitudinal or 

transversal single domains and more complex domain structures with closure domains 
27,28,29

. 

However, the exact structure of domain walls (DWs) and their evolution during reversal processes 

have not been discussed and remain open. A detailed description of the distribution of spins in DWs 

unveils the mechanisms involved in the magnetization reversal. Furthermore, it affects the nature 

and strength of pinning effects 
30

, which are particularly relevant for devices based on controlled 

domain wall motion or relying on domain wall stray fields 
31,32,33

. In our work, we characterize the 

                                                                                                                                                    
18 Y. Dahmane, L. Cagnon, J. Voiron, S. Pairis, M. Bacia, L. Ortega, N. Benbrahim and A. Kadri, Journal of Physics D: 

Applied Physics 39 (2006) 4523 
19 V. Vega, J. García, W. O. Rosa, L. G. Vivas, V. M. Prida, B. Hernando and M. Vázquez, Journal of Nanoscience and 

Nanotechnology 12 (2012) 7501 
20 P. S. Fodor, G. M. Tsoi and L. E. Wenger, Journal of Applied Physics 91 (2002) 8186 
21 R. L. Wang, S. L. Tang, Y. G. Shi, X. L. Fei, B. Nie and Y. W. Du, Journal of Applied Physics 103 (2008) 07D507 
22 L. Q. Liu, B. Xiang, X. Z. Zhang, Y. Zhang and D. P. Yua, Applied Physics Letters 88 (2006) 063104 
23 D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang and H.-L. Li, Chemical Physics Letters 
24 C. Bran, Yu. P. Ivanov, J. García, R. P. del Real, V. M. Prida, O. Chubykalo-Fesenko and M. Vázquez, Journal of 

Applied Physics 114 (2013) 043908 
25 A. D. Kent, J. Yu, U. Rudiger and S. S. P. Parkin, Journal of Physics: Condensed Matter 13 (2001) R461 
26 Yu. P. Ivanov, O. Iglesias-Freire, E. V. Pustovalov, O. Chubykalo-Fesenko and A. Asenjo, Physical Review B 87 

(2013) 184410 
27 C. L. Dennis, R. P. Borges, L. D. Buda, U. Ebels, J. F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I. L. 

Prejbeanu and M. J. Thornton, Journal of Physics: Condensed Matter 14 (2002) R1175 
28 C. Hassel, F. M. Römer, R. Meckenstock, G. Dumpich and J. Lindner, Physical Review B 77 (2008) 224439 
29 A. Biehler, M. Kläui, M. Fonin, C. König, G. Güntherodt and U. Rüdiger, Physical Review B 75 (2007) 184427 
30 E. R. Lewis, D. Petit, A-V. Jausovec, L. O’Brien, D. E. Read, H. T. Zeng and R. P. Cowburn, Physical Review Letters 

102 (2009) 057209 
31 D. A. Allwood, T. Schrefl, G. Hrkac, I. G. Hughes and C. S. Adams, Applied Physics Letters 89 (2006) 014102 
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domain structures and DWs experimentally within these stripes with competing anisotropies and 

give theoretical support to our statements. 

 

In the fifth overall section, we present a study on domain structures in manganite nanoislands, a 

work done in collaboration with Prof. X. Obradors’ group from the Material Science Institute of 

Barcelona (ICMAB) that gave rise to a publication in the beginning of 2012 
34

. Magnetic oxides 

have become an intense area of research in recent years and, among them, the mixed valence 

perovskite manganite La1-xSrxMnO3 (LSMO) has triggered plenty of interest due to the physical 

phenomena that it exhibits, such as colossal magnetoresistance 
35,36

. In particular, LSMO with 

strontium doping of x=0.3 displays ferromagnetic and metallic behavior at room temperature and 

hence results especially appealing from its potential applicability. In most cases, these LSMO 

nanostructures are obtained by patterning continuous films into islands using optical and electron 

beam lithography or by combining EBL with ion milling 
37,38,39

. However, it is in general difficult 

to process oxides in such manner and to accomplish lateral sizes below 0.5 μm without radiation 

damage or ion implantation 
37

. In this context, the bottom-up self-assembly approach based on 

chemical solution deposition (CSD) used in this work offers an effective route to overcome the 

shortcomings of lithography based techniques, while uniformly covering large areas (in the order of 

cm
2
) without requirements of vacuum environment 

40,41,42
. 

 

 

  

                                                                                                                                                    
32 P. Vavassori, V. Metlushko, B. Ilic, M. Gobbi, M. Donolato, M. Cantoni and R. Bertacco, Applied Physics Letters 93 

(2008) 203502 
33 A. Torti, V. Mondiali, A. Cattoni, M. Donolato, E. Albisetti, A. M. Haghiri-Gosnet, P. Vavassori and R. Bertacco, 

Applied Physics Letters 101 (2012) 142405 
34 J. Zabaleta, M. Jaafar, P. Abellán, C. Montón, O. Iglesias-Freire, F. Sandiumenge, C. A. Ramos, R. D. Zysler, T. 

Puig, A. Asenjo, N. Mestres and X. Obradors, Journal of Applied Physics 111 (2012) 024307 
35 J. M. D. Coey, M. Viret and S. von Molnar, Advanced Physics 48 (1999) 167 
36 A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura, Physical Review B 51 (1995) 14103 
37 Y. Takamura, R. V. Chopdekar, A. Scholl, A. Doran, J. A. Liddle, B. Harteneck and Y. Suzuki, Nano Letters 6 (2006) 

1287 
38 M. Mathews, R. Jansen, G. Rijnders, J. C. Lodder and D. H. A. Blank, Physical Review B 80 (2009) 064408 
39 E. J. Kim, J. L. R. Watts, B. Harteneck, A. Scholl, A. Young, A. Doran and S. Yuri, Journal of Applied Physics 109 

(2011) 07D712 
40 M. Gibert, T. Puig, X. Obradors, A. Benedetti, F. Sandiumenge and R. Huhne, Advanced Materials 19 (2007) 3937 
41 C. Moreno, P. Abellán, A. Hassini, A. Ruyter, A. Pérez del Pino, F. Sandiumenge, M. J. Casanove, J. Santiso, T. Puig 

and X. Obradors, Advanced Functional Materials 19 (2009) 2139 
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I. Samples with magnetic configurations governed by shape 
anisotropy 
 

1. Magnetization reversal in permalloy stripes 

 

An array of permalloy nanostripes was grown by a combination of electron beam lithography 

(EBL), sputtering and lift-off processes, using silicon wafers as substrates. The nanostripes are 25 

nm thick, 100 nm wide and 5 μm long. Both lateral and longitudinal separation distances between 

neighboring stripes are 500 nm. The MFM characterization was performed under in plane magnetic 

fields applied either parallel or perpendicular to the main axis of the nanostructures, as indicated in 

each case. The same commercial Nanosensors PPP-LM-MFMR probe (k≈2.8 N/m, f≈75 kHz) was 

used throughout the experiments shown here. Micromagnetic simulations were carried out using 

the OOMMF code, using standard Permalloy parameters (MS=8.6∙10
5
 A/m, A=13∙10

-12
 J/m, k1=0). 

The black/white background contrast in the simulations stands for a negative/positive divergence of 

the magnetization. This should yield analogous information compared to an MFM image, where the 

contrast actually arises from the axial field lines emerging wherever the sample magnetization 

diverges locally. Colored arrows are also plotted, representing the mean local orientation of the 

magnetization. In this case, red/blue colored arrows stand for a negative/positive z-component of 

the local magnetization. 

 

 

  

Figure 2.1: The Py nanostripes. (a) Topography and (b) MFM image in the remanent state after saturation along the 

main axis of the stripes. Images size 10 µm × 7 µm. (c) Zoom in on (b), image size 1.6 µm × 2.4 µm. 
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The high aspect ratio of the nanostripes is observed in the topographic image shown in figure 2.1.a. 

The MFM picture in figure 2.1.b was obtained in the remanent state, after saturating the sample 

parallel to the easy axis. A weak contrast is recorded along the stripes due to the single domain 

configuration, whereas the large divergence of the magnetization at the stripe ends causes a 

stronger interaction with the MFM tip (figure 2.1.c). MFM images in this figure show all the stripes 

with their magnetization pointing along the shape-induced easy axis, parallel to each other, 

suggesting that a low magnetostatic coupling between neighboring stripes is present, since no 

influence in the magnetic state of the surrounding nanostructures is seen. In order to gain insight 

into such coupling, series of MFM experiments were carried out under external fields applied either 

along the easy (longitudinal) or the hard (transversal to the longitudinal one) axis. 

 

The magnetization reversal process along the in-plane hard axis is presented next. Figure 2.2.a 

shows the remanent state after ex-situ saturation with 1 Tesla along the vertical direction in the 

images (see black arrow). The strong shape anisotropy causes the magnetization at remanence to 

point along the easy axis direction, forming a single domain configuration. In the case of perfectly 

symmetric stripes, there would be no preferential polarity for the single domains at remanence. 

However, every single misalignment of the external field will break the symmetry of the energy 

landscape and cause most of the domains to point along the same direction. We believe this is the 

reason why most of the stripes in figure 2.2.a have a parallel magnetization. In addition, a small 

misalignment of the in-situ magnetic field applied during the experiment is expected. 

 

The contrast at the ends of the nanostructures becomes asymmetric under applied fields due to the 

development of closure domains (see fig. 2.2.c). Furthermore, as the field is increased this contrast 

decreases significantly (see fig. 2.2.d). Gradually, the magnetization rotates away from the 

longitudinal axis and a dipolar contrast can be observed across the stripes for large magnetic fields 

(fig. 2.2.e-f). For a proper interpretation of the magnetization reversal process, we should be aware 

that the contrast in the images can also be influenced by eventual changes in the magnetization of 

the MFM sensing tip at high fields. In particular, when imaging at relatively high fields it is crucial 

to rule out eventual contrast contributions caused by changes in the magnetization orientation of the 

tip. The hysteresis loop of the MFM probe used throughout these experiments was performed by 

imaging a hard disk sample while sweeping the external field. No significant change was found in 

the magnetic configuration at the tip apex, apart from a slight tilt of its magnetization, under the 

maximum field used in the experiments.   
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Figure 2.2: The hard axis. Sequence of (3 µm × 3 µm) MFM images obtained under different magnetic fields applied 

along the hard-axis.  

 

In order to clarify the evolution of the contrast observed in the MFM pictures, we simulated the 

magnetic behavior of a single nanostripe with similar dimensions to the experimental case. Figure 

2.3 shows the equilibrium magnetization distribution under different fields applied either along its 

hard or easy axis. In the first case (hard axis, fig. 2.3.a), the initial saturating field was slightly 

misaligned from the hard axis, in order to break the symmetry of the system. A field component of 

0.1 mT was applied along the easy axis when saturating the stripe and removed thereafter. As a 

result, switching off the field lets the spins turn back to their easy axis (with a polarity determined 

by this previous 0.1 mT component), giving rise to an intense contrast at the ends of the stripes 

caused by closure domains. This behaviour yields a close to zero magnetization along the hard axis 

in the remanent state, as observed in the hysteresis loop shown in figure 2.3.c. As the external field 
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increases, the closure domains evolve to a dipolar contrast observable along the transversal 

direction. Due to the considerable energy expense that is required to get magnetized along the hard 

axis direction, just a weak contrast is observed experimentally for the maximum applied fields (fig. 

2.2.e-f), since they are not large enough to completely reorientate the spins. 

  

 

 

Figure 2.3: Micromagnetic simulations. A single Py nanostripe (5 μm x 100 nm x 25 nm) was simulated; for clarity 

reasons, both ends of the same stripe are shown for each case. (a) When large external fields are applied along its hard 

axis, a transversal dipolar contrast is observed across the stripe (I). For small fields, closure domains are seen at both 

ends (II)-(III). (b) Closure domains are also formed at the ends, when an external field close to the switching field is 

applied along the easy axis (C). (c) Simulated hysteresis loops along the easy and hard axis, for the single stripe. 

 

In the case of magnetic fields applied along the easy axis (fig. 2.3.b), the nanostructure presents a 

single domain configuration for a large range of fields, including remanence, with the characteristic 

dark-bright contrast at the ends of the stripe. However, closure domains are formed close to the 

switching field, before two 180º domain walls nucleate at both ends and propagate along the stripe. 
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Thus, these nanostripes reverse their magnetization abruptly by means of domain wall nucleation-

propagation-annihilation processes, which are much faster than the scan speed of force 

microscopes and, therefore, out of our present scope. In figure 2.4, a series of MFM images 

obtained under magnetic fields applied along the easy axis is presented. A particular nanostructure 

has been highlighted as a guide for the eye in order to follow the collective evolution of the 

magnetic configuration of the whole array. Remarkably, no correlation was found between the 

magnetic state of one nanostructure and the one of its neighbors. On the one hand, the adjacent 

elements of a nanostripe can have their magnetization pointing parallel or antiparallel to itself, with 

no apparent preference. On the other hand, the elements placed in front of a stripe can also be 

magnetized parallel or antiparallel, as seen in figure 2.4.   

 

 

 

Figure 2.4: The easy axis. Sequence of (7 µm × 13 µm) MFM images obtained at different magnetic fields applied along 

the easy-axis of the nanostripes. A particular stripe has been highlighted, as a guide for the eye. 

 

As seen above, experimental results are in good agreement with the simulated images in both 

situations, when fields are applied along the hard and easy axis. Next, we will focus on the 

magnetostatic coupling between neighboring nanostructures. In order to estimate what the critical 

distance might be, for which the interaction between neighbors becomes relevant and influence the 

magnetic behavior of the single elements, arrays of permalloy planar wires with variable separation 

distances were simulated. To achieve reasonable computing times, the length of these nanostripes 

has been reduced down to 1 μm, whereas both width and thickness were kept constant at 100 nm 
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and 25 nm, respectively. Nevertheless, no significant difference on the magnetic behavior of 

individual nanostripes is expected, provided that we still keep a large aspect ratio. Both 

longitudinal and transversal separation distances among neighboring wires were varied, in order to 

estimate the critical length for which the dipole-dipole interaction becomes negligible. 

 

For large enough distances, magnetization reversal processes taking place in each wire should be 

analogous to those of an isolated single stripe. This is the case for stripes whose separation distance 

is larger than around 500 nm, where two 180º walls are nucleated at both stripe ends and propagate 

until they annihilate in the central region of every magnetic nanostructure (fig. 2.5).  

 

 

 

Figure 2.5: Arrays of nanostripes (I). Simulated evolution of the magnetization for an array of permalloy nanostripes, 

placed longitudinally 1100 nm and transversally 500 nm apart from each other. This set of images corresponds to the 

reversal process taking place at the switching field, applied along the easy axis. Two 180º domain walls are nucleated in 

both sides of the stripes and propagate fast. Nanostripes highlighted with a blue cross are magnified and shown next to 

the simulation image. 

 

By decreasing the transversal separation (perpendicular to the stripe long axis) below this critical 

value, stripes are not independent anymore and prefer reversing their magnetization in groups. The 

first elements to switch their polarity are those placed at the ends of the array and once this process 

has started, it gradually spreads out to the neighboring nanostructures, as can be observed in the 

sequence in figure 2.6. Stripes within each row reverse its magnetization one at a time, being those 

placed at the center of the image the last ones to do it. 
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Figure 2.6: Transversal proximity. Magnetization switching process for an array of stripes with longitudinal and 

transversal separation distances of 1100 nm and 250 nm, respectively. A magnetic field of 89 mT was applied along the 

easy axis in every image. Stripes within a row reverse their magnetization gradually. 

 

In addition, the magnetostatic coupling along the longitudinal axis was checked. Stripes placed far 

enough from each other act as independent structures until the longitudinal separation decreases 

below 500 nm, where they start behaving as single elements with domain walls “jumping” between 

neighboring wires (fig. 2.7.a). In this case, domain walls nucleate at the free ends of the outermost 

stripes and propagate inwards all along the wires until they annihilate at the opposite stripe side, 

inducing the formation of a domain wall in the contiguous end of the neighboring nanostructure. 

Thus, domain walls “jump” from stripe to stripe, yielding every column of wires a single-element-

like behavior. 

 

Interestingly, the experimental case shown in the previous section lies in the boundary of an 

eventual magnetostatic coupling, as predicted by the simulations. The weakness of this coupling is 

reflected in figure 2.7.b, where a mixture of the explained scenarios can be observed. On the one 

hand, domain walls originate at the outermost edges, propagating and inducing the switching in the 

neighboring structures. On the other hand, these walls do not “jump” between stripes since, close 

before they reach the opposite end of the stripe, a second series of domain walls originates right 

there and start propagating to the opposite direction. This second set of walls is responsible for 

inducing the switching process in the neighboring wires. As a result, simulations suggest that 500 

nm is the critical separation distance for the permalloy stripes to be magnetostatically coupled, both 

in the longitudinal and transverse directions. 
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Figure 2.7: Arrays of nanostripes (II). Simulated evolution over time of the reversal process for an applied field of (a) -

92 mT and (b) -82 mT, along the easy axis. (a) Longitudinal (transversal) separation distances between stripes are 50 nm 

(1100 nm). Columns of stripes behave as single structures, with domain walls nucleating at the free ends of the outermost 

stripes, propagating along them and “jumping” into neighboring nanostructures. (b) Both longitudinal and transversal 

separations are 500 nm, equivalent to the experimental case. A mixed behavior (see text) suggests that 500 nm is the 

critical length for the magnetostatic coupling between stripes. 

 

As conclusions, the magnetization reversal process in arrays of high aspect ratio Py nanostripes 

was investigated in parallel by magnetic force microscopy imaging and micromagnetic simulations. 

As expected from the dominant shape anisotropy, the stable remanent magnetic state of the stripes 

consists of a single domain structure. Applying external fields allows observing the formation of 

closure domains and micromagnetic simulations helped us to unveil its structure in detail. The 

separation distances between neighboring stripes (500 nm) is enough to overcome the 

magnetostatic coupling and avoid a multistripe character of the whole array. In fact, micromagnetic 

simulations predict the critical distance for the onset of magnetostatic coupling between 

neighboring elements to be around this distance, i.e. 500 nm. Remarkably, simulations predict 

stripes with a small longitudinal separation to behave as quasi-single elements, with domain walls 

nucleating at the outermost ends of the array, propagating and “jumping” between stripes.  

(a)

(b)



Chapter 2: Magnetization reversal processes by VF-MFM 

59 

 

2. MFM as a function of magnetic field: 3D Modes 

 

A number of different modes has been developed to measure topographies with scanning force 

microscopes, such as amplitude modulation, frequency modulation, jumping mode 
43

 and pulsed 

force microscopy 
44

. In addition, advanced operating modes – such as force volume 
45

 and the so-

called 3D modes 
46

 – are intended for different purposes and allow varying different parameters 

during the measurement. In this section, we use a particular variant of the 3D modes for studying 

magnetization reversal processes. When measuring with a scanning probe microscope, one usually 

records all parameters of the cantilever oscillation (deflection, oscillation amplitude and phase or 

frequency shifts) while the tip scans two-dimensional areas of the sample. Such parameters are then 

related to the interactions present between the tip and the sample, so that physical properties can be 

unveiled from them. Consequently, three-dimensional images are obtained in which two of the 

variables correspond to spatial directions. The same oscillation parameters are recorded in 3D 

modes imaging; however, the other two variables are defined by the user and do not necessarily 

involve spatial directions. For instance, one can study variations of the tip-sample interaction while 

changing the electric biasing, the driving force, the tip-sample distance or any external parameter 

one might think of, such as the ambient pressure or temperature. In our case, we will choose a 

particular spatial direction along which the tip will be continuously moving (X axis) while the 

magnetic field (Y axis) is gradually changed. As a result, we obtain MFM images – corresponding 

to the frequency shift maps – along a specific profile as a function of the applied magnetic field.  

 

We have applied these 3D modes to quantify critical magnetic fields in different sorts of magnetic 

nanostructures. This procedure allows observing the evolution of magnetic states of individual 

nanostructures with the external field. In previous works 
47,48

, the evolution of the frequency shift – 

or phase shift – against the magnetic field was measured at a single position of the nanostructures. 

However, changes in the relative tip-sample position during the measurement – caused, for 

example, by thermal drift – can have drastic effects on the measurement. Moreover, when applying 

magnetic fields magnetostrictive responses of some microscope components can provoke relatively 

large displacements. Recording the frequency shift of the oscillating cantilever along a specific 

profile has the advantage of yielding magnetization changes in different regions of the 

nanostructure and, in addition, minimizes the effect of eventual spurious variations in the tip-

sample position during the experiment. As in standard AFM, the cantilever deflection and the 

                                                 
43 P. J. de Pablo, J. Colchero, J. Gómez-Herrero and A. M. Baró, Applied Physics Letters 73 (1998) 3300 
44 A. Rosa, E. Weilandt, S. Hild and O. Marti, Meas. Sci. Technol. 1 (1997) 
45 O. van der Werf, C. A. J. Putman, B. G. Groth and J. Greve, Applied Physics Letters 65 (1994) 1195 
46 C. Gómez-Navarro, A. Gil, M. Álvarez, P. J. de Pablo, F. Moreno-Herrero, I. Horcas, R. Fernández-Sánchez, J. 

Colchero, J. Gómez-Herrero and A. M. Baró, Nanotechnology 13 (2002) 314-317 
47 X. Zhu, P. Grütter, V. Metlushko and B. Ilic, Applied Physics Letters 80 (2002) 2676 
48 Y. Endo, H. Fujimoto, S. Kumano, Y. Matsumura, I. Sasaki, Y. Kawamura, M. Yamamoto and R. Nakatani, Journal of 

Applied Physics 103 (2008) O7D918 
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oscillation amplitude are simultaneously recorded, in order to assure optimum feedback conditions. 

Thus, we believe this MFM based operating mode to be a versatile method for characterizing 

magnetic nanostructures, the typical measuring time being around 1 minute. It can also be used to 

quantify switching fields of MFM probes by using hard magnetic samples and recording contrast 

inversions in the images. This was done prior to the experiments shown here and, in order to avoid 

unexpected changes of contrast, the applied fields were below the switching field of the probe. 

 

Hysteresis loops of individual cobalt stripes 

 

Here, we will introduce the usefulness of this method by characterizing polycrystalline cobalt 

stripes that were grown by focused electron beam induced deposition in the group of Prof. J. M. de 

Teresa and R. Ibarra, at the University of Zaragoza. The sample fabrication was carried out in a 

commercial FEI dual-beam equipment using a field emission scanning electron microscope with 

Co2(CO)8 as gas precursor, Si substrates and electron-beam conditions of 2.1 nA beam current, 10 

keV beam energy, and 1 μs dwell time. A suitable set of growth parameters produce Co 

nanodeposits with high Co content (95%), magnetotransport properties similar to those of pure Co 

49
 and good domain wall conduit behavior 

50
. Notice that, due to the polycrystalline character of the 

Co deposits, its magnetic behaviour is controlled by the shape anisotropy instead of by magneto-

crystalline anisotropy. All probes used in this set of experiments were commercial Si cantilevers 

(Nanosensors PPP-FMR, k=1.5 N/m and f0= 75 kHz) home coated in our lab with a 25 nm thick Co 

film and a 2 nm Cr capping layer. As will be explained in chapter 4, these specifications were 

selected in order to prevent the influence of the tip stray field in the magnetic state of the sample. 

 

As can be seen in the topographic image in figure 2.8.a, the length of the grown planar wires is 

found to be roughly constant (5.3 ± 0.1 μm), whereas their width and thickness range from 0.1 to 

2.25 μm and from 20 to 140 nm, respectively. Large separations between elements were thought to 

avoid significant influence between neighboring structures through dipolar interactions. Figure 

2.8.b shows the variability in the as-grown magnetic state of ten stripes with different aspect ratios. 

The observed spin distributions range from complex multi domain to single domain configurations, 

also being present intermediate structures with closure domains at both ends. As has been 

previously discussed by Fernández-Pacheco and co-workers 
51

, magnetization reversal in this type 

of wires is not expected to be significantly influenced by structural defects; essentially, shape 

                                                 
49 A. Fernández-Pacheco, J. M. de Teresa, R. Córdoba and  M. R. Ibarra, Journal of Physics D: Applied Physics 42 

(2009) 055005 
50 A. Fernández-Pacheco, J. M. de Teresa, R. Córdoba, M. R. Ibarra, D. Petit, D. E. Read, L. O’Brien, E. R. Lewis, H. T. 

Zeng and R. P. Cowburn, Applied Physics Letters 94 (2009) 192509 
51 A. Fernández-Pacheco, J. M. de Teresa, A. Szkudlarek, R. Córdoba, M. R. Ibarra, D. Petit, L. O’Brien, H. T. Zeng, E. 
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anisotropy suffices to explain the reversal process. Thus, domain wall pinning effects caused by 

defects are not expected for the nanostructures studied here.  

 

 

 

Figure 2.8: The cobalt stripes. (a) Topography and (b) MFM image showing polycrystalline Co stripes of variable 

aspect ratio; image size: (22×24) μm2. (c) & (d) Magnified images providing a better resolution. 

 

Interestingly, two “phantom” stripes are faintly visible in the left column of stripes in figure 2.8.b 

whereas no prominent features are seen in the corresponding topographic map. This effect is 

caused by charge accumulation on the substrate due to the fabrication technique, an effect that will 

be discussed in detail in chapter 3. More detailed images of two of the widest stripes are seen in 

figure 2.8.c-d, where the intricate magnetic contrast yielded by the widest element seems to be 

difficult to interpret at first sight. The other nanostructure has a single domain character in the 

central region with closure domains at the longitudinal ends. 

 

The magnetization reversal processes for stripes within each regime will be discussed in the 

following. Figure 2.9 displays MFM images of one of the widest elements, recorded for different 
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applied fields. Complementarily, simulated images show equilibrium steps during the reversal 

process for a cobalt stripe of the same dimensions. These numerical calculations are in qualitative 

good agreement but lack in quantitative precision; for that reason, only the experimental field 

values are displayed. In the remanent state and after ex-situ saturation along the stripe long axis, a 

complex magnetic structure is experimentally observed (uppermost image in fig. 2.9.a). The 

corresponding simulated image turns very helpful since it describes the contrast as caused by the 

presence of several vortices along the stripe. The combination of vortices with the square shape of 

the magnetic element yields such fan-like color distribution in the MFM maps. 

 

 

 

Figure 2.9: The widest stripes. (a) Sequence of MFM images of a (5.2 x 1.1 x 0.1) μm3 Co stripe measured at variable in-

plane fields after ex-situ saturation with -500 mT. (b) Sequence of micromagnetic simulation images describing the 

experimental spin configurations. Simulated images do not correspond to the same field values as in the experiment. 
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By gradually applying a horizontal field, vortices change their position moving perpendicular to 

that direction. For sufficiently large values, the ones present in the central region of the stripe 

annihilate at the long edges. At this point, a central single domain region is observed, in which 

spins point parallel to each other. At both ends, single vortices form closure domains (lowermost 

images in figures 2.9.a-b). These vortices approach the edges of the nanostructure and annihilate 

once a strong enough field is reached, leaving the sample in a reversed single domain state. 

 

Multiple-vortex mediated reversals are also observed when decreasing the stripe width, as observed 

in the two elements shown in figure 2.10. A similar behavior is observed in the uppermost one, as 

compared to the one described in figure 2.9, with vortices forming along the whole nanostructure 

(see fig. 2.10.b). However, for width values of around 400 nm, a single domain is observed, in 

which vortex closure domains are distinguishable at both ends (see bottom stripe in fig. 2.10.c). 

When the field reaches a critical value, a sudden reversal takes place in these elements. Finally, the 

shape anisotropy in the narrowest stripes provides them with a single domain behavior, where no 

closure domains are observed in the experiments. In this case, the magnetization is reversed by 

means of a fast domain wall nucleation-propagation-annihilation process. 

 

 

 

Figure 2.10: Stripes of intermediate widths. Evolution with an external horizontal field of the magnetic state of two 

stripes with dimensions (5.2 μm x 510 nm x 120 nm) and (5.3 μm x 400 nm x 95 nm). 

 

All the information extracted so far was obtained from standard MFM measurements and their 

comparison to simulations. We will now extend our knowledge by using the aforementioned 3D 

modes. First, a topographic image and its corresponding standard MFM map of a 1 μm wide stripe 

were obtained (fig. 2.11.a-b). The same intricate contrast is observed with the presence of four 

magnetic vortices. 3D modes experiments were performed by continuously scanning the tip along 

the white profile in figure 2.11.a at a tip-sample distance of around 30 nm, while sweeping the 
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external field. Results are shown in the frequency shift images shown in figures 2.11.c-d. In the 

same way as in standard MFM images, Δω yields information about the magnetic properties of the 

sample and, assuming the magnetization in the tip remains unchanged during the measurements, is 

directly related to the sample magnetization. Hence, every horizontal line reveals the magnetic state 

of the sample along the dashed line in figure 2.11.a for a specific field value, indicated on the 

vertical axis. 

 

 

 

Figure 2.11: 3D modes (I). (a) Topography and (b) corresponding MFM image of a stripe 1 μm in width and 105 nm 

thick. 3D modes images recorded with the tip scanning along the dashed profile line in (a), while sweeping the external 

field from (c) negative to positive fields and (d) vice versa. 

 

For large fields – corresponding to the upper- and lowermost regions in figure 2.11.c and d – the 

stripe lies in the saturation state and presents a single domain structure. This configuration yields a 

characteristic dark-bright contrast at the ends of the structure. As the field is decreased down to 

around 15 mT, some contrast appears in the central region of the planar wire, which is caused by 

the nucleation of vortices along the magnetic element, as is shown in the sequence displayed in 

figure 2.9.e. In particular, a complex combination of dark and bright contrast is observed in the 

remanent state, when no external field is applied, due to the high divergence of the magnetization 

resulting from such spin distribution. By reversing the field direction it is possible to record 

vortices displacements that move away from the profile along which the probe is scanning and, 

thus, no signal is recorded in the central part of the stripe anymore. Eventually, over a certain value 

vortices annihilation takes place and a subsequent loss of contrast along the magnetic structure is 
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seen. Finally, a reversed bright-dark contrast at the stripe ends is obtained, corresponding to the 

reversed saturation state. 

 

A different behavior is observed in narrower elements. Figure 2.12 shows the topography and its 

corresponding MFM image of a 260 nm wide stripe, with a comparable thickness to the one shown 

in figure 2.11. 3D modes measurements performed with the probe moving along the stripe main 

axis – for magnetic fields ranging between (-35 mT, 30 mT) – indicate the presence of a single 

domain configuration with a bi-stable character. On the way back from saturation (uppermost 

horizontal lines in figures 2.12.c-d), the characteristic dipolar contrast is seen for the whole range 

of fields, until a sudden change happens. Magnetization reversal processes take place via a fast 

domain wall nucleation-propagation-annihilation mechanism, much faster than the scan speed of 

our set up. Thus, a reversed single domain contrast is recorded from one line to the following one, 

once the switching field has been reached. 

 

 

 

Figure 2.12: 3D modes (II) (a) Topography and (b) MFM image at remanence of a (5.4 μm x 260 nm x 95 nm) stripe. 3D 

modes images measured from (c) negative to positive fields and (d) vice versa. Graphs show the profiles along the 

corresponding dashed lines in the 3D modes images. Error in the field calibration is in the order of the dot size. 
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Plotting the contrast along vertical profiles in the 3D modes maps gives us information about the 

variation of the magnetostatic interaction between tip and sample, as the applied field is changed. 

By doing this at one end of the stripe (black and red profiles in figs 2.12.c-d), the hysteresis loop of 

this single stripe is obtained. Using this method, a switching field of 24 ± 2 mT is obtained for this 

nanostructure. Its single domain character is evident when plotting a vertical profile in the central 

region of the stripe, since no change in the tip-sample interaction is observed (blue and green 

profiles in fig. 2.12). Data shown in the hysteresis loops have been smoothed to slightly decrease 

the noise. Notice that a subtle asymmetry is observed in the hysteresis loops between positive and 

negative frequencies. This is expected and usually observed in magnetic force microscopy and is 

due to the enhanced sensitivity of the system to attractive interactions (negative Δω) as compared 

to repulsive force gradients (positive Δω). 

 

Thus, this particular operating mode yields a method for quantifying critical fields in magnetic 

samples, such as switching fields in samples with single domain character or vortices nucleation 

and annihilation fields. The high spatial resolution characteristic of scanning force microscopy 

represents an advantage compared to other characterization techniques, since it allows for 

characterization of single nanostructures well below the micrometer scale. High magnetic field 

resolutions can be achieved by choosing small steps (in the examples shown in figures 2.11 and 

2.12, field steps of 0.17 mT and 0.13 mT were used, respectively), while performing low time 

consuming measurements, typically in the order of 1-2 minutes. However, it is important to point 

out that a systematic error associated to the stray field of the probe is introduced in the 

quantification of critical fields. As it is well known, the magnetic coating at the tip apex creates 

non-negligible magnetic fields that add up to the applied one. Additionally, in our case a non 

negligible error is present when calibrating the field applied at the sample position. Nevertheless, 

this 3D modes procedure represents an improvement compared to standard MFM, since no 

topographic feedback is used during the experiment; on the contrary, the probe remains at a tip-

sample distance of several tens of nanometers without approaching the sample. Therefore, the 

influence of the stray field is minimized. 

 

Switching field of cobalt stripes as a function of thickness 

 

Due to the relatively large variability in dimensions resulting from this fabrication technique, it 

becomes not straightforward to grow stripes with homogeneous profiles and the desired values of 

width and thickness. The efforts of our collaborating group turned out to be successful and a 

sample was fabricated, in which most of the stripes present a comparable length in the range of (7.0 

± 0.1) μm (see figure 2.13). Their dimensions and large enough aspect ratios provide them with a 
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single domain character and square hysteresis loops caused by fast DW propagation magnetization 

reversals. Thus, 3D modes seems to be a fast and suitable way to study the dependence of the 

switching field on the stripe thickness. Homemade MFM probes were used due to the excessive 

influence that the commercial ones had in the magnetic state of the sample, at the expense of 

getting lower sensitivities. Refer to chapter 4 for further information on these probes. 

 

 

 

Figure 2.13: Co stripes of similar length. (a) Topography of polycrystalline cobalt nanostripes, nine of them having 

comparable lengths in the range (7.0 ± 0.1) μm.  (b) Excitation frequency image obtained during the retrace scan, where 

strong dark halos are observed around the stripes. The expected single domain contrast is not observed in the stripes. (c) 

Surface potential and (d) pure MFM images obtained in the same area with the Kelvin feedback enabled. The image in 

(c) accounts for electrostatic interactions and the one in (d) only for magnetostatics. Notice the drop in the frequency 

range as compared to (b), revealing that the magnetic information was masked beneath charging effects. 
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Unexpected dark halos are observed around the nanostripes in the frequency shift image (fig. 

2.13.b), where the magnetic information of the sample is usually obtained. As will be demonstrated 

in chapter 3, such contrast arises from charging effects that are present in the regions surrounding 

the stripes, giving rise to subsequent frequency shifts that mask the magnetic information. Small 

prominences around 5 nm high are seen in the topography as well, revealing that some material 

with small cobalt content has grown around the stripes. It will be explained that, by enabling an 

additional feedback loop to cancel out electrostatics known as Kelvin Probe Force Microscopy 

(KPFM), it becomes possible to separate both contributions and obtain pure MFM contrast (fig. 

2.13.c-d). In fact, halos are perfectly seen in the surface potential image presented in figure 2.13.c, 

which accounts for electrostatic interactions between tip and sample. It is even possible to 

distinguish the paths followed by the electron beam during the deposition process; however, no 

particular feature is noticeable along the stripes themselves. On the contrary, the typical single 

domain character is clearly observable in the pure MFM image (fig. 2.13.d, compare to fig. 2.13.b). 

 

Using the 3D modes, hysteresis loops were obtained for all the stripes presenting a comparable 

width, in the range of (350 ± 10) nm. They are six elements, five of whose results are shown in the 

graph of figure 2.14. These experimental data (black profile) show a gradual decrease of the 

switching field as the stripes become thicker. The experimental error was limited by the low signal-

to-noise ratio provided by the sensing tips. 

 

 

 

Figure 2.14: Switching field vs thickness. Dependence of the switching field versus the stripe thickness, obtained (black) 

experimentally using the 3D modes, with the Kelvin feedback enabled (see figure 3.7); (red) from micromagnetic 

simulations, where larger values are expected due to the usual overestimation associated to them and (blue) from the 

theoretical demagnetizing factors. 
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An approach using the demagnetizing field approximation is plotted as a blue dashed line. 

Demagnetizing fields were estimated through the theoretical demagnetizing factors, which for the 

case of a rectangular stripe can be obtained from their lateral dimensions using the formula given 

by Aharoni 
52

. An arbitrary offset was added to the calculated demagnetizing fields, which can be 

regarded as the external field necessary to reverse the magnetization in a very thin stripe with the 

same length and width considered in the calculations (7000 x 350) nm
2
. It has a value of 20 mT for 

the blue curve shown in figure 2.14. However, the simple demagnetizing factor approach is only 

valid for samples where the internal field can be considered uniform throughout the stripe and that 

reverse the magnetization by coherent rotation. In order to make a reliable statement, 

micromagnetic simulations must be used.  

 

Simulations were performed for stripes of the nominal experimental dimensions (350 nm x 7 μm x 

thickness) using again the OOMMF code. The resulting fields at which the magnetization switches 

are plotted as a red profile in figure 2.14, with the external field being applied along the Y axis. A 

similar slope is seen as in the former cases for thicknesses over 40 nm; however, numerical values 

are offset to larger values. As usual, only a qualitative agreement is reached and, since no thermal 

effects or structural defects are considered in the simulations, the switching fields are 

overestimated. By contrast, a different trend is predicted for small thicknesses, up to around 30 nm, 

where the switching field increases rapidly with the stripe height; thus, a transition between 

reversal modes seems to take place. Such a transition between reversal mechanisms has already 

been reported for experimental Ni80Fe20 systems by Vavassori and co-workers 
53

.  

 

Figure 2.15 presents the simulated spin configurations during the reversal for three different 

thicknesses. Images shown do not correspond to equilibrium states but to snapshots extracted 

during the dynamic reversal. For very low thicknesses, simulations predict the formation of 

multiple Neél domain walls all along the elongated element, as can be clearly seen in the upper 

image of figure 2.15.a. To further help with the interpretation of the simulations, cross sections of 

the stripes – taken at the positions highlighted with arrows – are presented as well.  

 

As the thickness increases, less energy is gradually required for spins to point out of the sample 

plane. For thicknesses close to the pronounced drop in Hsw (fig. 2.15.b), reversal takes place 

through propagating vortex walls that nucleate and annihilate at the longitudinal edges, with the 

magnetization essentially lying IP.  

 

                                                 
52 A. Aharoni, Journal of Applied Physics 83 (1998) 3432-3434 
53 P. Vavassori, V. Bonanni, G. Gubbiotti, A. O. Adeyeye, S. Goolaup and N. Singh, Journal of Magnetism and Magnetic 

Materials 316 (2007) e31-e34 
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Figure 2.15: The three regimes. Magnetization reversal predicted by micromagnetic simulations for Co stripes 350 wide 

(X axis) and 7 μm long (Y axis) and variable thickness of (a) 7 nm, (b) 35 nm and (c) 84 nm, with negligible magneto-

crystalline anisotropy. Top views (top) and cross sections at the possitions highlihgted with arrows (bottom) of non-

equilibrium steps during the reversal process. 

 

In the elements of largest thicknesses, two asymmetric Bloch walls 
54

 are predicted to carry out the 

reversal, as can be seen in figure 2.15.c. Taking a look at the cross section, a similarity becomes 

clear between this configuration and the longitudinal vortex walls, which mediate the 

magnetization reversal in cylindrical nanowires 
55

 of similar dimensions. Indeed, the aspect ratio 

between the two transversal dimensions has decreased down to four in figure 2.15.c.  

 

                                                 
54 A. Hubert and R. Schäfer, “Magnetic Domains” (Springer, Berlin 1998) 
55 L. G. Vivas, R. Yanes, O. Chubykalo-Fesenko and M. Vázquez, Applied Physics Letters 98 (2011) 232507 
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Consequently, at least three regimes are found, with this numerical approach, in the inversion type. 

In addition, it is possible to observe the presence of closure domains in the equilibrium states of the 

thickest stripes, close to the switching field. This can be inferred from the simulated hysteresis 

loops, as shown in figure 2.16: 

 

 

 

Figure 2.16: Simulated loops. Hysteresis loops for stripes of four different thicknesses, obtained from simulations. The 

presence of closure domains in the equilibrium states of thick stripes can be extracted from the graphs. 

 

These closure domains give rise to a decreased magnetization observable in the loops before the 

sudden jump takes place. They consist of domain walls of the same types described above, as they 

are indeed responsible for initializing the reversal process from the ends of the elongated 

nanostructures. Thus, vortex DWs are observed at the ends of stripes with intermediate thicknesses 

and asymmetric Bloch walls in the case of the thickest elements. On the contrary, no closure 

domains are observed when the height of the nanostructures lies below 25-30 nm. 

 

Unfortunately, the sixth experimental stripe not shown in figure 2.14, even although being an ideal 

candidate to experimentally check this change of reversal mode due to its 17 nm thickness, could 

not be characterized because of the too low magnetostatic coupling to the MFM probe that yielded 

no signal over the experimental noise. Thus, this transition remains as a predicted result. 
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3. Domain structures in modulated Fe28Co67Cu5 nanowires 

 

Cylindrical Fe28Co67Cu5 nanowires with a very high aspect ratio were fabricated by Dr. C. Bran in 

the group of Prof. M. Vázquez at the Material Science Institute of Madrid (Spain) within the pores 

of alumina layers that serve as templates 
56,57

. Such aluminium oxide layers – containing cylindrical 

pores of tunable diameter arranged in hexagonal order – were obtained after carrying out a two-step 

anodization process on 99.999 % pure aluminium foils in an H2SO4 aqueous solution (3 wt. %) at a 

constant temperature of 0 ºC. During the first anodization step, a constant voltage of 25 V was 

applied for 16 hours. After dissolving the pores formed in the 1
st
 anodization using a mixed 

solution of chromium oxide and phosphoric acid, the surface of the Al substrate keeps the 

hexagonal structure created in the 1
st
 step, acting as a mask for the 2

nd
 anodization.   

 

The modulated nanopores were synthesized in the 2
nd

 anodization step by periodically applying 

pulses of 25V, called mild anodization (MA) pulses, and 35V, hard anodization (HA) pulses. The 

geometry of the nanochannels (i.e length, diameters, shape) is controlled not only by time, voltage 

or temperature but also by the shape of the hard anodization pulses 
58

. During the 2
nd

 anodization, 

and in order to avoid the breakdown of the anodized film during the first HA pulse, the duration of 

the first MA pulse was extended to 15 minutes, followed by alternating mild and square hard pulses 

applied for 150 s and 200 ms, respectively, and repeated 10 times to assure a pore length of about 

40 μm. The resulting cylindrical modulated pores are formed by segments with diameters of around 

22 and 35 nm, respectively, while the center-to-center inter-wire distance is kept constant at 65 nm. 

After the anodization process, the aluminium substrate was removed with an aqueous solution 

composed of copper chloride and hydrochloric acid and the alumina barrier layer is etched with an 

aqueous solution of H3PO4 (5 wt. %). A gold layer was sputtered on one side of the alumina 

templates to ensure a good conductivity needed for the electrochemical deposition.  

 

Fe28Co67Cu5 nanowires around 7 μm in length were subsequently grown into the cylindrical 

modulated pores by electrodeposition from a sulfate-based electrolyte containing CoSO4∙7H2O (35 

g/l), CuSO4∙5H2O (2 g/l), FeSO4∙7H2O (15 g/l), H3BO3 (10 g/l) and ascorbic acid (10 g/l).  The 

electrochemical deposition was carried out under potentiostatic conditions by applying −1.8 V 

versus the Ag/AgCl reference electrode, keeping the temperature of the electrolyte at 25
o
C and the 

pH value at about 3.0. As a result, a macroscopic membrane enclosing a very large number of 

ferromagnetic nanowires is obtained. The membrane was then divided into different pieces so that 

bulk magnetometry measurements were performed, on the one hand, whereas dissolution of the 

                                                 
56 C. R. Martin, Science 266 (1994) 1961-1966 
57 H. Masuda and K. Fukuda, Science 268 (1995) 1466-1468 
58 I. Minguez-Bacho, S. Rodriguez-López, M. Vázquez, M. Hernández-Vélez and K. Nielsch, Nanotechnology 25 (2014) 
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alumina and subsequent deposition onto a Si substrate was followed up by TEM and MFM analysis 

of single Fe28Co67Cu5 elements, on the other hand. In a previous report 
24

, XRD spectra showed 

these type of nanowires to crystallize in an FeCo BCC phase textured along the [110] direction. In 

order to help with the analysis of their magnetic properties presented later, we will now give some 

detail about the resulting crystalline structure on the inside of the nanostructures.  

 

For doing the characterization, different pieces of the same alumina membrane were dissolved 

using a mixed solution of CrO3 and H3PO4. Nanowires were then repeatedly water washed while 

separating them with the help of a small magnet. Last, the water was replaced by ethanol and a 

drop of dissolved nanowires spread on top of a Si substrate by spin coating. Wires usually tend to 

gather together, especially during the washing step, so that spin coating dispersion becomes 

necessary. A negative side effect turns out to be an enhanced probability of the wires to fracture; 

broken fragments can thus be found in some examples shown in this report. For long enough 

elements, slight bending may also take place.  

 

 

 

Figure 2.17: TEM characterization of dissolved modulated Fe28Co67Cu5 nanowires. (a) A modulation step in the 

diameter is clearly observed in the single nanowire. (b) Zoom in images on the area highlighted with a red square in (a), 

showing a BCC unit cell highly textured along the [110] direction. (c) Magnified images of the area framed in blue in 

(a), revealing a less strong texture. 

 

High resolution transmission electron microscopy (HR-TEM) characterization was performed by 

Dr. C. Magén at the Nanoscience Institute of Aragón (INA) to evaluate the resulting crystallinity 

and structural properties of the nanostructures. The composition of the nanowires alloy was also 

checked by Energy Dispersive X-ray spectroscopy (EDX) to be the aforementioned one. A step-like 

variation in the diameter of a single nanowire can be easily identified in figure 2.17.a, where the 
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very high aspect ratio of these nanostructures becomes evident. Magnified images of the square 

areas framed in red and blue are presented in figures 2.17.b and c, respectively. There, an 

amorphous layer with a roughly constant thickness of 5 nm is observed throughout the whole 

nanowire, regardless of the local diameter, whose origin might be the mismatch between the 

crystalline structure of the wire and the alumina on the pore walls during the growth process. 

Regions where the diameter remains constant are estimated to be around 500-700 nm long, with 

diameters varying from around 35 nm in the thicker parts (fig. 2.17.b) to 22 nm in the thinner ones 

(fig. 2.17.c). Inner regions of the nanostructure present a BCC crystalline order with the thicker 

parts being highly textured along the [110] direction, whereas thinner fragments show considerably 

weaker texture. Notice that a morphological roughness of several nanometers is observed on the 

surface of the nanowire, as well as at the interface between the external amorphous and the 

crystalline inner parts. Its effect will be commented later during the MFM analysis.  

 

Hysteresis loops were obtained from a different piece of the same alumina membrane 

(encompassing a large number of Fe28Co67Cu5 nanostructures) at room temperature by vibrating 

sample magnetometry (VSM). Magnetic fields up to ±1.7 T were applied, able to nearly saturate 

magnetically the sample along both the longitudinal and transversal directions. According to the 

shape and enclosed areas of both loops (fig. 2.18.a), an effective longitudinal magnetization easy 

axis is deduced. The resulting loop for the case of a longitudinal field suggests the existence of 

relatively large magnetostatic interactions between neighboring elements, as expected from the 

small inter-pore distance. As a result, a remanent magnetization of 41 % the saturation value is 

obtained. Saturation fields of 0.8 and 1 T along the easy and hard axis are extracted from the graph.  

 

As will be described later in detail, the magnetic behavior of individual cylindrical nanowires has 

been simulated under different conditions. Figure 2.18.b shows the hysteresis loop along the easy 

axis of a modulated element with two thick and two thin segments (red curve), compared to the 

evolution of two wires with homogeneous diameters of 22 and 36 nm (green and blue curves, 

respectively). The three of them show a bi-stable character (see inset in figure 2.18.b) with high 

remanent magnetizations (over 98 % the saturation value), as expected from single-domain 

individual wires. In the case of homogeneous wires, the reversal process is mediated by two vortex 

walls nucleating at both longitudinal ends and propagating inwards. Larger fields are required for 

the 22 nm element to flip the orientation as compared to the 36 nm one. As will be shown later, one 

of the ends of the simulated nanowire is 36 nm in diameter (corresponding to a thick segment). The 

reversal process of such element begins with a vortex wall nucleating at this end and this explains 

the similarities of the hysteresis loops between the modulated and 36 nm straight wires (fig. 

2.18.b). The slightly lower value of the magnetization seen in the modulated structure close before 

the Barkhausen jump is associated to magnetization curling taking place at the discontinuities. 
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Figure 2.18: Hysteresis loops. (a) VSM hysteresis loops of modulated Fe28Co67Cu5 nanowires embedded within the Al2O3 

membrane, with the field applied along the wires’ longitudinal axis (red curve) and a transversal direction (black 

profile). (b) Simulated hysteresis loops of cylindrical homogeneous (d=22 nm and d=36 nm) and modulated nanowires.  

 

Knowing about the nanowires structural characteristics paves the way to extract more accurate 

information from magnetic force microscopy images and interpret the influence of the periodic 

diameter modulation. Intuitively, since small defects cause the magnetization to diverge – and, 

consequently, magnetic charges to appear –, a periodic MFM contrast is expected to be measured 

along the nanostructures, corresponding to the transitions between segments of different diameter. 

 

The topography of some modulated nanowires can be seen in figure 2.19.a. The high aspect ratio 

nanostructures present a clear periodic modulation noticeable in the topographic map, where it is 

possible to discern the wider and thinner segments. It is worth recalling that, when using scanning 

force microscopies such as MFM, objects are presented with broadened lateral dimensions due to 

the convolution of tip-sample interactions over the tip volume. Nevertheless, very high accuracy is 

obtained in the height profiles. In the experiments presented in this report, even although nanowires 

of much larger diameters seem to be present, the height values measured are in outstanding 

agreement with the 22 and 35 nm values deduced from TEM imaging.  

 

A very good dispersion of nanowires was achieved after dissolution of the alumina membrane, with 

a large density of individual elements observed in the experimental images. However, series of 

nanostructures aligned up in a row were also found in different parts of the sample, a likely 

consequence of the dipolar-like magnetostatic interactions between dissolved wires during the 

drying step on the silicon substrate. As already pointed out in the TEM analysis, some nanowires 
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display a slight bending which we attribute to an enhanced weakness of the thinner parts, 

consequence of their reduced diameter and lower crystalline texture (see fig. 2.17.c).  

 

 

 

Figure 2.19: The as-grown magnetic state. Modulated nanowires deposited onto a Si substrate, showing the domain 

structure before any field was applied (see text). (a) (20 x 7.5) μm2 images displaying the topography and the magnetic 

configuration of nanowires. (b) Magnified nanowire present in the lower part of (a). 

 

Figure 2.19.a shows the corresponding MFM image in a quasi-as-grown state. As mentioned 

before, a small magnet was used to separate the NWs from the solvent during the washing step, so 

that eventual changes in the magnetization might have been induced. A direct interpretation of the 

MFM images seems to be rather difficult. To a first sight, they seem to indicate the existence of 

complex configurations involving many DWs, as every nanowire displays multitude of attractively 

and repulsively interacting regions (dark and bright contrast in the MFM images, respectively). The 

same behavior is also observed in short nanostructures, as the one presented in figure 2.19.b.  

 

As a general overview, we mention that two main types of magnetic contrast are observed: 

relatively intense spots, which are not only present at the ends of the wires but also at specific 

positions along the nanostructures, and series of weaker and alternating bright/dark contrasts 

observed along the elements. Each of them will be later attributed to a different source. We should 
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note that no significant charge accumulation was found to be present in the wires, so crosstalk of 

electrostatic interactions into the MFM maps can be disregarded. 

 

In order to check the magnetic hardness of these nanostructures, measurements were carried out 

while applying an external in-plane field along the horizontal direction of figure 2.20. The 

sequence of images shown there was recorded applying fields along opposite directions in order to 

identify and interpret eventual changes in the domain structure of nanowires. As was expected from 

the bulk hysteresis loops shown in figure 2.17, it was not possible to saturate the sample with the 

magnetic fields achievable in-situ. Nevertheless, changes in the magnetic state are observed and 

highlighted by arrows in figure 2.20.  

 

 

Figure 2.20: Magnetic hardness of the modulated nanowires. Topography and sequence of MFM images recorded 

under an external magnetic field applied along the horizontal direction. Blue arrows indicate changes in long structures, 

attributed to DWs nucleation/annihilation processes. Yellow arrows highlight changes in the shortest wires. 
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Essentially, just minor changes are observable during the field sweep both in long nanowires (blue 

arrows) as well as in short wires (yellow arrows). Since the magnetization seems to change only 

locally, we attribute these variations to domain wall nucleation/annihilation processes. Thus, the 

modulated geometry proves to enhance the domain wall pinning.  

 

- The remanent state 

 

In order to unveil this challenging domain structure, the sample was saturated with an external field 

(1.7 Tesla) applied along a well defined direction (horizontally in figure 2.21) and MFM 

experiments were again performed. According to the macroscopic hysteresis loops shown in figure 

2.17.a, one might expect the wires to effectively saturate under such large fields and to possess a 

single domain character going back to zero fields. This remanent state is shown in figure 2.21.a, 

where several isolated nanowires can be identified. Relatively strong magnetic contrast is not only 

visible at the longitudinal ends (typically observed in single domain samples with the 

magnetization lying in the sample plane) but also at different position along the wires. This 

becomes even more evident watching the high resolution MFM image shown in figure 2.21.b.  

 

In addition to these intense spots, a quite periodic but considerably weaker contrast is also 

noticeable in the zoomed picture shown in figure 2.21.c. One may notice the good signal-to-noise 

ratio achieved in the experiment by looking at the frequency shift scale bar, which reveals the net 

divergence of the magnetization in the sample to be rather small, despite the clear and well defined 

contrasts observed in the images. We will now focus on the first type of contrast and will deal with 

these fainter features at the end of the section. 

 

In order to do so, micromagnetic simulations were carried out using the OOMMF code to simulate 

the resulting spin distribution in a 2 μm long cylindrical nanowire with a step edge modulated 

diameter varying between 22 and 36 nm and a period length of 500 nm. A cubic cell size of 

(2x2x2) nm
3
 was used, with the experimental values for the saturation magnetization MS=1.59∙10

6
 

A/m and exchange stiffness A=10.7∙10
-12

 J/m. The magnetocrystalline anisotropy has been assumed 

not to play a significant role in the magnetization reversal process taking place in these 

nanostructures, according to the conclusions reported by Bran and co-workers 
24

. Simulated MFM 

images are shown in a black-white color scale that stands for a negative-positive divergence of the 

magnetization. In addition, arrows are also plotted that account for the averaged orientation of local 

spins; in this case, a blue-red color scale represents a negative-positive component of the local 

magnetization along the nanowire axis. 
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Figure 2.21: The remanent state. Nanowires after ex-situ saturation with a field of 1.7 T along the horizontal direction. 

The red and blue square areas in (a) and (b) are shown magnified in the high resolution images (b) and (c), respectively. 

 

A comparison between the experimental nanostructure seen at the bottom of figure 2.21.b and a 

simulated wire is presented in figure 2.22, with both elements being in their remanent state. A 

dashed white line has been plotted in the experimental images to help correlate the magnetic 

contrast with the modulated shape. In both cases, an individual wire comprising a series of two 

thick and two thin parts is seen. Very good agreement is observed between theory and experiment, 

in particular if one focuses on the strong spots observed in the MFM images. As revealed by the 
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simulated hysteresis loop of this element, already shown in figure 2.18.b, a single domain state is 

predicted to be the equilibrium configuration at remanence. The local orientation of the 

magnetization is depicted in figure 2.22.c, where no domain wall is observed. Therefore, the origin 

of the strong divergence is purely shape-induced. The sharp modulation in the diameter of the wire 

introduces discontinuities at which magnetic moments strongly diverge to minimize the 

magnetostatic energy. As a result, magnetization curling takes place (fig. 2.22.d) in narrow regions 

that extend over 10-20 nm into the thicker segments of the nanowire. 

 

 

Figure 2.22: The contrast at remanence. (a) High resolution images showing an individual Fe27Co68Cu5 nanostructure. 

Strong dark/bright spots are observable in the MFM map. (b) Simulated configuration at remanence for a modulated 

wire with two thick and two thin parts, equivalent to the experimental case. A single domain state is obtained with large 

divergence of the magnetic moments at the discontinuities. (c) Zoom in on the blue framed region in (b). Arrows indicate 

average directions of the simulated spins. (d) Cross section view of the area enclosed by the dashed square line in (c). 

 

A direct consequence arising from this is the fact that one has to be careful with the interpretation 

of magnetic force microscopy data to characterize modulated nanostructures. Single domain states 

do not longer show a simple dipolar-like contrast at the longitudinal ends but a series of alternating 

dark/bright spots, with even consecutive regions yielding equivalent contrasts (see right side of the 

nanowire in figure 2.22). 
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- The demagnetized state 

 

Having clarified that, it now becomes tricky to discern between the single domain regions (with a 

modulated contrast caused by the divergent magnetization) and pinned DWs (separating two 

antiparallel domains). Figure 2.23 shows a large number of modulated Fe28Co67Cu5 nanowires after 

demagnetizing the sample under an alternating applied field of decreasing amplitude along the 

horizontal direction. In order to achieve both a good interpretation of the domain structures and 

statistical significance, these images were recorded for about 20 hours each, allowing the lock-in 

amplifier to filter out most part of noise sources. As a result, high resolution and enhanced signal-

to-noise ratio were obtained, with a frequency shift noise as low as 20-25 mHz.  

 

 

 

Figure 2.23: The demagnetized state. High resolution images of another area of the sample showing nanowires in their 

demagnetized state. A frequency shift noise of 20-25 mHz is present in the MFM pictures on the right, yielding a very 

good signal-to-noise ratio. 
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A complex contrast is again observed in the wires. Now, being aware of the strong influence that 

the modulated shape has in the magnetic properties, we will analyze in detail the two nanowires 

highlighted with a color frame in former figure, which account for the general behavior observed 

experimentally. The one enclosed in a blue square is zoomed in and shown next: 

 

 

 

Figure 2.24: The demagnetized domain structure (I). (a) Nanowire highlighted in blue in figure 2.23. The lateral size of 

the image is 2.7 μm. (b) Simulated (non-equilibrium) state describing the experimental contrast to a good extent, starting 

with a randomly distributed spin orientation and observing its evolution without any applied field. The same structure is 

shown twice: displaying the divergence of the magnetization (up, in a black-gray-white color-scale) and the domain 

orientation (down, where red and blue stand for spins pointing to the left and to the right, respectively). (c) Zoom in on 

the wall observable in (b), describing it as a transversal DW. 
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From the topographic map it is possible to deduce a central thin part surrounded by two thicker 

regions. Apart from two defects at the ends of this wire, a rather good and straight shape is 

observed. A quick look at the corresponding MFM image reveals both ends of the nanostructure to 

be repeled (bright contrast stands for positive frequency shifts) by the sensing tip, already 

indicative of the existence of a domain wall. Figure 2.24.b shows a simulated nanostructure similar 

to the former case yielding an equivalent contrast as in the experimental image, with repulsive 

charges at both ends and a transversal DW in the center (see fig. 2.24.c) separating two antiparallel 

domains (colored red and blue in fig. 2.24.b).  

 

For simulating the demagnetized state, the magnetic moments were initially set to be randomly 

oriented and their evolution was studied under no applied field. Note that the simulated state shown 

in figure 2.24.b was not in its equilibrium configuration but corresponds to a step during the 

dynamic evolution. In the experimental case, DWs seem to be located at any position, including the 

thin segments. A possible reason for that might be enhanced pinning effects associated to the 

difficulty of crystallites to fill the pores into which nanowires are grown, for such small dimensions 

(d ≈ 22 nm).  

 

Another significant example of a demagnetized wire is presented next, showing the red framed area 

in figure 2.23. The topography indicates the presence in reality of two fragments of wires that have 

aligned up. The one on the left displays a defined shape with two segments (a thin part and a 

thicker one) that, according to the simulation shown in figure 2.25.b, may well be in a single 

domain state. On the contrary, it becomes difficult to discern a pattern in the geometry of the 

second fragment lying on the right side. We believe this illustrates an intermediate situation 

between well defined variations of the diameter resulting from the external modulation and small 

local changes, a variability that is expected to happen when patterning large amounts of 

nanostructures. A very smooth modulation seems to take place in the central region of the wire, 

giving rise to a very subtle contrast in the MFM image. Two bright spots are again observed at the 

respective ends, revealing the existence of another pinned DW, which we attribute to be responsible 

of the intense dark stain on the right side of the nanostructure. 

 

Simulations introduced in figure 2.25.b explain and give a plausible interpretation for the 

experimental results. However, it is important to note that both wires were not simulated 

simultaneously; instead, separate calculations were used and the resulting configurations were put 

together into the same figure. Therefore, no magnetostatic coupling between the nanostructures was 

taken into account. Again, the wire presenting a transverse domain wall was not in its equilibrium 

state but in an intermediate configuration between the initial random state and the most stable one. 
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Figure 2.25: The demagnetized domain structure (II). (a) Nanowire highlighted in red in figure 2.23. The lateral size is 

3 μm. (b) Two separately simulated nanowires reproducing the experimental data. The one on the left is in its equilibrium 

single domain state (see the monotonous blue contrast in the lower row), whereas the one on the left shows a dynamic 

snapshot with a domain wall. (c) & (d) Magnified images of the regions highlighted in (b). 

 

We just showed two examples that give a general view of the behavior observed in the 

demagnetized state, where pinned domain walls are observed experimentally. In general, longer 

nanostructures show more complex contrasts, which in essence represent a superposition of the 

results shown in figures 2.24 and 2.25, as a larger number of DWs may be pinned at different 

positions along it. 
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- The origin of the weak contrast 

 

Last, we give some detail about the quite periodic and relatively weak contrast observed in some 

nanostructures, particularly described in figure 2.21.c. We have shown that abrupt changes in the 

diameter of the nanostructures cause relatively large divergence in the magnetization. In addition, 

smoother changes (such as the ones present in fig. 2.25.a) also cause local spins to reorientate, in 

order to account for the shape variation. In general, there is a correlation between topographic 

protuberances and the existence of contrast in the corresponding MFM image. The fact that some 

roughness was observed and pointed out in the TEM analysis of figure 2.17 brings us to attribute 

the weak contrast observed along every nanowire to structural deviations from flat cylindrical 

surfaces. Thus, we suggest the nanowires to possess two sorts of geometrical discontinuities: small 

morphological roughness associated to the growth process (that yield faint contrast in the images) 

and abrupt steps induced on purpose by the modulated voltage (responsible for intense contrast 

spots). One can easily control the second kind but more difficult seems to deal with the first one, in 

particular when growing nanowires with a diameter as small as 20 nm. 

 

In order to support this assumption, straight nanowires of the same composition (i.e. Fe28Co67Cu5) 

were fabricated with a constant diameter of 40 nm, similar to the thicker parts in the modulated 

wires described so far. In this case, no modulation was induced on purpose during the fabrication of 

the alumina nano-porous template. Two simultaneously recorded topographic and MFM images are 

introduced in figure 2.26. Despite the “double-tip” effect observable in the topography, an 

individual nanowire with a very flat and straight geometry is seen.  

 

 

 

Figure 2.26: Homogeneous Fe28Co67Cu5 nanowires. Individual nanowire with no modulation in the diameter. The 

corresponding MFM image shows the wire to be in a single domain state and reflects the same weak contrast along the 

nanostructure observed for the case of modulated wires. 
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The corresponding magnetic image clearly shows a single domain state, according to the strong 

contrasts at both longitudinal ends, with the same succession of weak dark/bright stains along the 

nanostructure that was observed and commented for the case of modulated wires. It thus suggests 

that the morphological rippling generated during the growth process plays a role. Furthermore, the 

influence it has in the MFM images cautions against eventual misinterpretation of data. Similar 

effects might also be measured in very narrow nanowires of different ferromagnetic materials if the 

resulting nanostructures present substantial corrugation and enough sensitivity is reached during 

the measurement. 

 

Summarizing, we discussed the magnetic properties of very narrow and magnetically hard 

cylindrical Fe28Co67Cu5 nanowires with a modulated diameter ranging between 22 and 35 nm. 

Characterizing the magnetic properties of single nanostructures with such small dimensions is 

available to few techniques. If one opts for using magnetic force microscopy, it is important to be 

aware of the effects that properties such as shape and morphology can have in the magnetization, 

for a correct interpretation of data. Here, we unveiled the effect of step-edge modulated diameters 

in the local orientation of the magnetization and the subsequent MFM contrast observed 

experimentally. Resulting images with complex contrast are obtained that require a careful non-

trivial interpretation of results. With the help of micromagnetic calculations, we showed the 

remanent configuration to be a single domain state and the existence of pinned domain walls when 

the sample is demagnetized. Even the simplest remanent state gives rise to series of attractive and 

repulsive regions along each modulated nanowire and reasons for that are given. This can be of 

great help for future works, whenever information wants to be extracted from nanostructures with 

abrupt shape variations. Furthermore, morphological roughness was found to induce local changes 

in the local orientation of spins and the effect of corrugations of only few nanometers was 

measured experimentally. We believe to have shown that a thorough analysis with MFM and, 

eventually, the help of simulations can be used to extract the actual domain configuration from very 

narrow samples with sophisticated geometries. 
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II. Samples with relevant magneto-crystalline anisotropy 
 

In this second part of the chapter, we present experimental results in samples with well defined 

structures, in which the magneto-crystalline anisotropy plays a relevant role. As a result, more 

complex configurations occur when both magnetostatic and magneto-crystalline anisotropies are 

present and compete with each other. 

 

4. Magnetization reversal in cobalt stripes with competing anisotropies 

 

Ferromagnetic stripes with internal magneto-crystalline anisotropy were fabricated by epitaxial 

deposition of the magnetic layer onto single crystalline vicinal Si(111) by the group of Prof. E. V. 

Pustovalov, at the Far Eastern Federal University of Vladivostok. Vicinal surfaces can be 

described as stairs-like surfaces, where steps involving a low number of atoms separate flat terraces 

59
. Since atoms belonging to the step edges have a different number of nearest neighbors than the 

atoms in the underlying bulk, steps give rise to a lattice distortion. In our sample, the vicinal 

substrate originates from a 4º miscut angle along the         direction, where the miscut is defined 

as the misorientation between the atomic plane and the sample surface, as sketched in figure 2.27. 

Thus, miscutting results in atomic terraces that “step down” in the direction of the miscut. 

 

 

Figure 2.27: The vicinal substrate. Schematics of a vicinal substrate resulting from a miscut angle of 27 º. 

 

A 10 nm thick Co(111) film was deposited onto the vicinal Si(111) substrate by molecular beam 

epitaxy in an ultra-high-vacuum (UHV) system with a base pressure of 4∙10
−11

 mbar. Prior to the 

cobalt deposition, a copper buffer layer was grown on top of the Si(111) surface to prevent 

                                                 
59 F. Leroy, P. Müller, J. J. Métois and O. Pierre-Louis, Physical Review B 76 (2007) 045402 
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intermixing of Co and Si and smooth the mismatch of their lattice parameters. The best crystalline 

quality in the magnetic film is obtained with a 2 nm Cu(111) buffer layer, as has been reported 
60

. 

Scanning tunnelling microscopy observations revealed the presence of terraces about 30 nm wide 

separated by 1.5 nm high steps (fig. 2.28.a). These terraces force the magnetic moments in the 

cobalt layer to point parallel to the edges, defining a uniaxial anisotropy.  

 

Taking this into account, a set of 50 μm long stripes and variable width (see caption of fig. 2.28) 

was patterned with the long axis being perpendicular to the terraces, as can be seen in figure 2.28.b. 

By doing this, a competing effect between crystalline and shape anisotropies is created. Removal of 

the magnetic material in the surrounding (50 x 50) μm
2
 was performed by focused ion beam (FIB) 

etching, using Ga
+
 ions under an accelerating voltage of 30 kV at a rate of 0.1–1.0 nA. Despite the 

advantages of FIB to pattern nanostructures, a known associated drawback is the influence that 

implanted gallium ions have in the magnetic properties of the resulting samples 
61

. However, in this 

case no relevant changes were observed in the regions close to the milled edges. 

 

 

 

Figure 2.28: The  epitaxial cobalt. SEM images of (a) a 10 nm thick Co(111) film deposited onto vicinal Si(111) and (b) 

a patterned stripe with the main axis being perpendicular to the steps, after removal of the surrounding material. (c) 

Evolution of the coercive fields as a function of the stripe width, measured by MOKE, for stripes 350 nm, 750 nm, 850 

nm, 1 μm, 1.6 μm and 2 μm wide. Error in the MOKE values are in the order of the dot size. 

 

In this work, we prove the induced magneto-crystalline anisotropy to be strong enough to compete 

with and even overcome the shape anisotropy. Characterization of the domain structure in every 

nanostructure is presented and the competition between both anisotropies is analyzed. We show 

that the effective magnetic anisotropy – resulting from both magneto-crystalline and shape 

contributions – can be controlled by tuning the geometrical dimensions. Then, a detailed study of 

the magnetization reversal process is shown. Last, the influence of structural or geometric defects 

on the nucleation of domain walls during the magnetization reversal process is discussed.  

                                                 
60 A. V. Davydenko, Yu. P. Ivanov and L. A. Chebotkevich, Journal of Magnetism and Magnetic Materials 324 (2012) 

1248-1252 
61 I. V. Roshchin, J. Yu, A. D. Kent, G. W. Stupian and M. S. Leung, IEEE Transactions on Magnetics 37 (2001) 2101 
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Throughout this work, experimental results are supported by micromagnetic simulations, 

performed with the finite element code MAGPAR 
62

 by the group of Dr. O. Fesenko-Chubykalo at 

the Material Science Institute of Madrid. Due to computing restrictions, a mesh size of 5 nm, a 

constant length to width aspect ratio of 10 and a constant thickness of 10 nm were used, with 

widths ranging from 100 nm to 700 nm. The magneto-crystalline anisotropy constant was chosen to 

be K1=6.3·10
4
 J/m

3
 – obtained from the anisotropy field in the hysteresis loops of epitaxial Co films 

– and an exchange stiffness of A=13·10
-12

 J/m and a saturation magnetization of µ0·MS=1.75 T were 

used. In general terms, calculations are in qualitative good agreement with the experimental data 

but quantitative values disagree. As usual, such discrepancy is attributed to thermal effects, the 

presence of defects in the experimental samples and local variations in the magneto-crystalline easy 

axis orientation due to inhomogeneities in the terraces. 

 

Hysteresis loops of every nanostructure were measured by MOKE, applying magnetic fields both 

along the stripe main axis and perpendicularly to it. The obtained coercive fields can be observed in 

figure 2.28.c as a function of the stripe width. The magnetization reversal processes seem to depend 

on the width of the nanostripes. If the field is applied along the main axis (black profile in fig. 

2.28.c), which in fact turns advantageous to the shape anisotropy, a monotonously decreasing HC is 

observed with increasing width. It indicates the loss of relevance of the shape for the widest 

elements, where the anisotropy induced by the substrate seems to govern the magnetic properties. 

This becomes evident when taking a look at the hysteresis loops in figure 2.29, where hysteresis 

loops of the 750 nm wide stripe are displayed. The squareness observed in the upper row (field 

along the short side), together with the high remanent saturation of around 80 %, confirms the 

dominance of the crystalline energy. With increasing width, the long side becomes a harder axis 

that is reflected in low coercive field with an almost non-hysteretic behavior. 

 

On the contrary, when the field is applied along the short side (i.e. crystalline easy axis), a very 

slow increase of HC is seen for thicknesses over 600 nm (red profile in fig. 2.28.c), with a drop for 

the smallest widths. A different behavior seems to take place in the narrowest stripe (w =350 nm), 

where a coercive field around one half times the value for the widest elements suggests a hard 

competition between the two anisotropies. In order to get a deeper insight into the spin 

configurations and processes involved during the magnetization reversal, we carried out a thorough 

characterization of the stripes by magnetic force microscopy, which is described next. 

 

                                                 
62 W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster and  V. Tsiantos, Comp. Mat. Sci. 28 (2003) 366-383 



Chapter 2: Magnetization reversal processes by VF-MFM 

90 

 

 

 

Figure 2.29: Hysteresis loops. (Left column) Experimental and (right column) simulated hysteresis loops for the stripe 

750 nm in width. (a) & (c) describe the reversal process with the field applied along the short axis, whereas (b) & (d) 

correspond to the long axis. 

 

Domain structure characterization by means of MFM 

 

For the MFM characterization, homemade probes with a 20 nm thick sputtered cobalt layer were 

used. The reason for this is the excessive stray field created by commercial sensors, even specific 

low moment probes, as well as the search for better spatial resolutions. A more detailed description 

of our MFM tips is presented in chapter 4, refer to that part of the manuscript for further 

information. Topographies show the stripes to have a very flat granular surface with smooth 

roughness (fig. 2.30.a); however, some defects – originated during the FIB etching process – are 

present on the sides of the stripe. These features give rise to a faint bright contrast in the MFM 

images that should not be interpreted as resulting from magnetostatic interactions.  

 

Examples of such MFM images are shown in figure 2.30 as well, where the resulting domain 

structure for three different stripes after long axis saturation can be observed. Nanostripes with 

largest widths (fig. 2.30.d) show a transversal single domain behavior. The crystalline anisotropy 

clearly overcomes the magnetostatic influence, resulting in single domain areas comprising the vast 

majority of the stripe. This is in agreement with the nearly zero coercive field measured by MOKE 

(black profile in figure 2.28.c). Closure domains are expected to be present at the longitudinal ends 

of the widest nanostructures and will be discussed later. 
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For the case of stripes of intermediate width a different configuration is observed, in which a 

transversal domain structure is observed at remanence (fig. 2.30.c). An enhanced magnetostatic 

coupling now favors the formation of such domains with alternating polarities. Nevertheless, the 

transversal anisotropy is still dominant. As it can be seen, these domains are separated by well 

defined domain walls that yield a clear MFM contrast. We attribute the difference in domain size 

for each polarity to a misalignment of the applied field with respect to the stripe axis, which is 

estimated to be of few degrees. In such case, the external field on the way down from saturation 

can be decomposed into two components: one parallel to the main axis and a second one 

perpendicular to it; the latter accounting for a preferential domain polarity as it breaks the 

symmetry of the system and favors a specific orientation of the transversal domains. 

 

 

 

Figure 2.30: The domain structures. MFM images obtained in the remanent state after saturating along the long axis 

the nanostripes of width (a)-(b) 350 nm, (c) 750 nm and (d) 2000 nm. A simulated MFM image is shown in (b) with 

arrows describing the local orientation of the magnetization. 

 

Particularly interesting becomes the case of the narrowest nanostructure, which shows a different 

behavior as compared to the described ones. In it, a symmetric chess-like configuration is visible 
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(fig. 2.30.b). Such domain structure has already been reported 
27,63,64

 but, unfortunately, images 

most often lack in good spatial resolution and are then presented excessively equalized. From those 

experiments, authors deduce the presence of transversal domains pointing across the stripes and no 

information about the domain walls can be extracted. Figure 2.30.b presents a detailed MFM image 

of the 350 nm wide stripe, in which smooth variations of the magnetization can be observed. Very 

slight influence of the topography is present and gives rise to a faint granular contrast but we 

believe information on the domain structure of this nanostripe is optimized under these conditions. 

Domain walls between adjacent domains are mildly defined and are, thus, indicative of a non 

abrupt transition of the magnetization orientation. In contrast to the statement given in the literature 

27,63
, magnetization does not seem to lie completely along the short side but rather describes a 

wiggly path (see the simulated MFM image in fig. 2.30.b). This is in agreement with the MOKE 

characterization where ratios for the remanent to saturation magnetization are found to be 0.49 and 

0.44, with the field applied parallel to the long and short axis, respectively. 

 

Magnetization reversal processes 

 

After analyzing the domain structure of the stripes in the remanent state, we studied in detail the 

magnetization reversal process of the intermediate elements, as they show a more complex 

behavior involving well defined domain walls. Figure 2.31 presents the evolution of the 

magnetization in the 750 nm wide structure, as the external field – applied along the long axis – is 

decreased from positive saturation and reversed. As the Zeeman energy decreases on the way from 

saturation, the magnetization gradually becomes wavy due to the influence of the stepped substrate 

over the crystalline anisotropy and a quasi-periodic contrast is observed (fig. 2.31.a). Further 

decrease of the field provokes an enhanced contrast on the lateral sides and the appearance of 

transition regions with a high magnetization divergence (fig. 2.31.b). At lower fields, this large 

divergence acts indeed as a seed for the formation of well defined domain walls (fig. 2.31.c and .d), 

a domain configuration that remains present for a wide range of fields. Again, a preferential 

domain polarity seems to be present possibly due to the non parallel external field direction. 

 

A deeper insight into the spin configuration is provided by simulations. Figures 2.31.I-II show 

simulated MFM images describing the experimental contrast observed at remanence (fig. 2.31.d) 

and around the coercive field (fig. 2.31.e), respectively. The key step during the reversal process 

takes place between these successive situations. In between, the contrast of DWs reverses from a 

configuration in which the upper and lower parts are dark and bright, respectively (fig. 2.31.d-I), to 

                                                 
63 I.L. Prejbeanu, L. D. Buda, U. Ebels, M. Viret, C. Fermon and K. Ounadjela, IEEE Transactions on Magnetics, 37 

(2001) 2108 
64 K. Gross, P. Szary, O. Petracic, F. Brüssing, K. Westerholt and H. Zabel, Physical Review B 84 (2011) 054456 



Chapter 2: Magnetization reversal processes by VF-MFM 

93 

 

another one where they are bright and dark (fig. 2.31.e-II). Having a careful look at the simulated 

maps, one realizes that magnetic vortices that were present on one side of the walls (positions of 

these vortices have been highlighted with white circles in the simulations) have moved to the 

opposite one along the DW plane. Although domains actually maintain the same orientation, the 

longitudinal component of the magnetization at the vortices positions has reversed. Taking into 

account that many vortices are present in the wire, this explains the jump in the hysteresis loop 

displayed in figures 2.29.b and d. The new vortices positions serve as starting points for the 

magnetization to point along the reversed field direction (fig. 2.31.f, remember the field is applied 

along the stripe’s main axis). As the strength of the reversed field increases sufficiently, domain 

walls become dimmer and vortices disappear as spins gradually orientate along the stripe main 

axis. This indicates the loss of a well defined domain structure, as observed in figure 2.31.g. 

 

 

 

Figure 2.31: The reversal process (a) – (g) Sequence of MFM images showing the domain structure of the 750 nm wide 

stripe at different magnetic fields applied along the main axis. Arrows indicate the orientation of the magnetic domains in 

each case. Well defined domain walls are observed during most part of the field range. Blue and red colored frames 

around (d) and (e) highlight the contrast reversal taking place in the DWs. (I) & (II) Simulated configurations describing 

the DW reversal, corresponding to the situations occurring in (d) and (e), respectively. Note that the same areas are 

shown in both images. Open circles point out positions of magnetic vortices. 
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Local hysteresis loops by means of 3D modes 

 

Another useful parameter measurable in this set of stripes is the switching field, in particular in the 

widest single domain elements. As explained in section 2 of this chapter, a versatile way for 

obtaining hysteresis loops is to take advantage of the 3D modes. For carrying out this kind of 

experiments, the same profile is continuously scanned across the stripes while the external field is 

swept. At the retrace distance, van der Waals forces are negligible and magnetostatics becomes 

then dominant. When the switching field is reached, a sudden contrast reversal is recorded in the 

frequency shift image. A resulting hysteresis loop image is shown in figure 2.32 for the same 750 

nm wide stripe analyzed before; in this case, with field applied along the short direction. The 

profile drawn by a blue arrow is plotted on the right side and describes the sudden jump observed 

by MOKE in figure 2.29.a: 

 

 

 

Figure 2.32: Hysteresis loop of a single stripe. Frequency shift 3D mode image performed on the 750 nm wide stripe 

with the external field applied along its short axis. The field was swept from −60 mT to +50 mT and a switching field 

value of 12 mT is obtained from the profile plotted on the right. 

 

These experiments were only performed in the widest stripes since they are particularly useful for 

the quantification of switching fields in samples with abrupt changes in the domain configuration. 

Higher complexity arises if one tries to estimate coercive fields or smooth changes in other kind of 

samples. In order to obtain more reliable values and for statistical purposes, loops were repeated 10 

times in each stripe and the resulting average fields are provided in table 2.i. The values obtained 

with the force microscope are in reasonable agreement with the MOKE values but provide bigger 

values, as well as a larger error. 
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Stripe width  

(nm) 
MFM average coercive field (mT) MOKE average coercive field (mT) 

750 10.7 ± 2.0 8.2 ± 0.5 

1000 9.8 ± 2.0 8.5 ± 0.2 

1600 9.6 ± 2.0 8.7 ± 0.2 

2000 9.9 ± 2.0 8.2 ± 0.3 

 

Table 2.i: Comparison between coercive fields obtained by means of VF-MFM and MOKE, for the widest stripes with the 

external field applied along the short axis. 

 

Former experiments were done scanning over central areas of the wires. Another interesting region 

to perform 3D modes measurements is at the longitudinal ends of the stripes, since a different 

behavior is expected with eventual nucleation of domain walls. As can be seen in figure 2.33.a for 

the 2 μm wide element, these regions present geometric defects that can act as preferential 

nucleation sites during the magnetization reversal process. The MFM image at remanence (figure 

2.33.b) shows the characteristic single domain behavior throughout the extensive central part of the 

nanostructure, whereas a slightly different contrast can be seen at the end.  

 

The 3D modes experiment presented in figure 2.33.c was carried out scanning along the white 

profile drawn in figure 2.33.a. For large magnetic fields, a single domain is also observed in this 

part of the stripe but, as H drops below a certain value, some contrast appears in the central region. 

For low enough fields a domain wall is nucleated and suddenly disappears at fields around 

remanence, causing the magnetization reversal and so the reversed contrast observed in the 

remaining part of the image. Here, the switching field value is smaller than the one shown in table 

2.i, when experiments were done in the central region of the stripe. One has to keep in mind that 

local stray fields associated to MFM probes have a non negligible in-plane component that can 

indeed influence the magnetic state of the sample. 

 

 

Figure 2.33: The end of the stripe. (a) Topography at one end of the 2000 nm wide stripe. (b) Corresponding MFM 

image. (c) 3D mode image obtained along the white profile in (a) with the magnetic field swept from +60 to −50 mT. 
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Defects are also present in the lateral sides of the stripes, so it may also be interesting to study their 

influence in the DW nucleation. With that purpose, small defects were defined in a simulated stripe. 

The results arising from simulations show those defects to be preferential nucleation sites for DWs, 

leading to a non periodic domain structure with tilted domain walls (fig. 2.34.d). However, the 

interaction between DWs after the formation of vortices seems to determine their final positions 

(fig. 2.34.e), although influenced by the place where they were nucleated (at least, for this defect 

size). In order to study this effect in our lab, an original experiment was carried out, again 

involving the 3D modes. The topographic map of the 750 nm wide stripe is presented in figure 

2.34.a, where the white dashed line indicates the profile along which the tip was scanned. 

Therefore, the 3D modes map (fig. 2.34.b) gives information about the nucleation and evolution of 

DWs along this profile, as the field – parallel to the long axis – was decreased down to remanence. 

 

 

 

Figure 2.34: The influence of defects. (a) Topography of the 750 nm wide stripe and (b) 3D modes image obtained 

while scanning the tip along the profile shown in (a) for varying fields between 70 mT and remanece. DW movement and 

annihilation are observed and highlighted by dark blue arrows. (c) MFM image measured after the 3D modes 

experiment. Notice the coincidence between the lower part of (b) and the upper edge of the stripe in (c). (d) & (e) 

Micromagnetic simulations for a 750 nm wide stripe introducing very small edge defects (marked with squares): (a) 

before vortex nucleation; (b) after vortex nucleation. Open circles highlight the vortex core positions. 
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It is possible to observe DW displacements and annihilations during the field sweep, when 

comparing the upper- and lowermost parts of figure 2.34.b (changes are highlighted by dark blue 

arrows). On the way down to remanence, magnetization starts describing a wiggly path that causes 

the contrast seen in the upper part of the 3D modes image. We believe that the frontiers between 

regions with opposite contrast are influenced by defects on the sides of the nanostructure, 

analogously to the situation shown in figure 2.34.d. According to the MFM experiment described in 

figure 2.31, nucleation fields of the characteristic single vortex DWs present at remanence are 

around 30 mT. That corresponds to the central part of figure 2.34.b and coincides with the 

movement of DWs. The situation is analogous to the one in figure 2.34.e, described in former 

paragraph. As a result, the domain wall position, even though influenced by the region where it was 

formed, does not always correspond to its nucleation site. We suggest that domain wall nucleation 

is influenced by structural defects but subsequent displacement takes place due to wall interactions. 

Notice the similarity in the contrast between the lower part of figure 2.34.b and the upper part of 

figure 2.34.e, where the MFM image measured right after the 3D modes experiment is shown. It is 

worth remarking that the positions of the DWs at remanence are reproducible, i.e. they were found 

located at the same sites after successive saturation processes. 

 

Summarizing, the influence of a stepped Si(111) substrate in the magnetic properties of patterned 

epitaxial Co stripes was analyzed. This corrugation in the substrate induces a magneto-crystalline 

easy axis in the cobalt layer parallel to terraces. Different magnetic configurations are present, 

depending on the aspect ratio, and magnetization reversal takes place via different mechanisms. 

Compared to previous results published in the literature, MFM images with enhanced resolution 

allow us to unveil a chess-like domain structure for the narrowest structures. As a result, the 

magnetization does not seem to lie completely along the short side but rather describes a wiggly 

path with smooth domain walls, indicative of an effective compensation of anisotropies. 

Furthermore, we were able to characterize the domain walls present in stripes of intermediate width 

as single vortex DWs and detect their evolution during the reversal process. All these results have 

been supported by means of micromagnetic simulations. Last, the useful 3D modes were used to 

quantify switching fields in the largest stripes – which show a transversal single domain behavior – 

and to study the influence of structural defects in the reversal process of nanostructures. Defects act 

as nucleation sites, as expected, but domain wall positions seem to be determined by wall to wall 

interactions. 
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5. Magnetic configuration in La0.7Sr0.3MnO3 islands 

 

This work focuses on the magnetic structure of self-assembled epitaxial La0.7Sr0.3MnO3 (LSMO) 

nanoislands grown by chemical solution deposition (CSD) onto (001)-oriented yttria stabilized 

zirconia (YSZ) substrates. In particular, the influence that size, morphology, crystallographic 

structure and strain have on the magnetic properties of our LSMO nanoislands is adressed. Detailed 

description about the growth process, as well as about morphological and structural 

characterization can be found elsewhere 
34

. Essentially, LSMO islands are found to have truncated 

square pyramid geometries with thicknesses between 10-40 nm and lateral sides between 50-150 

nm (fig. 2.35). All experiments shown in this section were carried out in a low humidity 

environment at a retrace distance of 30 nm, which proved to be optimal for obtaining good 

magnetic sensitivity while avoiding cross-talk with the topographic signal. Commercial 

Nanosensors PPP-MFMR and PPP-LM-MFMR probes (k≈2.8 N/m, f≈75 kHz) were used. 

 

 

 

Figure 2.35: The LSMO nanoislands. (a) 5x5 μm2 topographic image of LSMO nanoislands grown on (001)-YSZ. (b) 

Cross-sectional TEM image of an LSMO nanoisland with a lateral side to thickness aspect ratio of (D/t)~3.5; displaying 

the typical truncated pyramid geometry. (c) Experimental distribution of the (D/t) aspect ratio. 

 

Figure 2.36.a shows the magnetization curves measured at 110 K with an IP and OOP applied field 

and reveals an easy axis lying mainly within the sample plane. A coercive field of 15 mT and a 

saturation magnetization of MS=(480±50) kA/m at 35 K, somewhat below the value for bulk LSMO 

(590 kA/m), were also obtained. A competition between shape and crystalline anisotropies seems 

to take place, when having a look at the hysteresis loops. Ferromagnetic resonance (FMR) 

experiments (fig. 2.36.b) indicate the existence of an easy magnetization axis along the [110] 

direction with a magnetocrystalline anisotropy constant K1(150 K)=(5±1) kJ/m
3
. This is in the same 

order of reported values for (001) LSMO films which show the [110] easy axis 
65,66

.  

                                                 
65 K. Steenbeck and R. Hiergeist, Applied Physics Letters 75 (1999) 1778 
66 K. Steenbeck, T. Habisreuther, C. Dubourdieu and J. P. Sénateur, Applied Physics Letters 80 (2002) 3361 
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Figure 2.36: Averaged magnetic properties. (a) Measured in-plane (IP) and out-of-plane (OP) magnetic hysteresis loops 

(110 K) evidence the in-plane anisotropy of the system. (b) Results from the FMR measurements, where open symbols 

represent the measured in-plane dependence of the resonant field Hr at 150 K. 

 

Previous experiments give an idea of macroscopic values for a large amount of nanoislands. Thus, 

our role was to carry out MFM experiments in order to unveil the magnetic properties of individual 

elements and correlate them to the geometric dimensions. It is worth reminding that the magnetic 

coating in MFM tips increases the final diameter of the probe, hence lowering the lateral resolution 

achieved in the experiment. Here, the convolution between tip and sample was taken into account 

in order to evaluate lateral dimensions and corrected using the WSxM software 
67

.  

 

Figure 2.37 displays the topography and its corresponding MFM image of the surface, recorded 

after nearly saturating tip and sample along opposite OOP directions with a magnetic field of 500 

mT. We may observe three different magnetic configurations depending on the islands’ thickness 

and lateral size. Essentially, the largest islands show a multi-domain structure with an IP 

magnetization and strong contrast at the edges, whereas a vortex state seems to be present in the 

medium-size ones, with a characteristic contrast in the center of the object. However, the magnetic 

configuration of the smallest LSMO islands could not be resolved due to the too small interaction 

with the sensing tip, compatible with an IP magnetization as was suggested by the hysteresis loops. 

The presence of such different domain configurations is in agreement with the macroscopic 

                                                 
67 I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero and A. M. Baró, Review of Scientific 

Instruments 78 (2007) 013705 
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hysteresis loops measured along the OOP direction, where a remanent magnetization of around 

MS/4 and a non negligible coercive field are seen, thus suggesting multi-domain configurations 

with some OOP component. 

 

 

Figure 2.37: The magnetic structure. (a) Topographic and MFM images of LSMO nanoislands at room temperature. (b) 

Detailed images of a smaller area, showing LSMO nanoislands of different aspect ratios. Dashed, dotted and solid line 

circles highlight nanoislands with single domain, vortex, and multidomain magnetic configurations, respectively. 

 

There is a clear correlation between the geometrical dimensions of the LSMO nanoislands and their 

magnetic state. Statistical processing of MFM images measured at different spots of the sample 

indicates the aforementioned configurations to fall into three different regions within the width vs. 

thickness graph shown in figure 2.38.a. Nanoislands with a multi-domain configuration correspond 

to those with largest D and t values; nanoislands with relatively large thickness and lateral size 

below 110 nm display a vortex state, in good agreement with previous observations in magnetic 

metal nanostructures 
68,69,70

, while the smallest nanoislands present a low contrast that seemingly 

corresponds to a homogeneous in-plane magnetization. In spite of this experimental faint contrast 

being at the limit of detection, the observed diversity of magnetic configurations cannot be inferred 

from SQUID hysteresis loops since, in such macroscopic measurements, all size dependent 

behaviors add up and reflect the average magnetic characteristics of the nanoisland ensemble. 

                                                 
68 T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto and T. Ono, Science 289 (2000) 930 
69 R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland and D. M. Tricker, Physical Review Letters 83 (1999) 

1042 
70 A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern and R. Wiesendanger, Science 298 (2002) 577 
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Figure 2.38: The three regimes. (a) Phase diagram extracted from a set of MFM measurements, showing the magnetic 

configuration of the self-assembled LSMO nanoislands as a function of their width (D)-thickness (t) dimensions (dashed 

lines have been included as a guide to the eye). Micromagnetic simulations for the equilibrium state of (b) small, (c) 

medium size and (d) large nanoislands, after saturation along the OOP direction (data scale: 25 kA/m, blue-red colors 

stand for the outward-inward OOP component of the magnetization, respectively). 

 

In order to help with the interpretation of the experimental images, micromagnetic simulations 

were performed with OOMMF using the experimental parameters for the saturation magnetization 

(MS=48∙10
4
 A/m) and anisotropy constant (k1=5∙10

3
 J/m

3
) and an exchange stiffness of A=1.73∙10

-12
 

J/m. The equilibrium magnetization distribution in the remanent state after IP saturation is shown 

in figure 2.38 for the three regimes considered. The smallest nanostructures, with a size of 

(50x50x10) nm
3
 (fig. 2.38.b), show a single domain remanent state. This, together with the weaker 

interaction between tip and sample arising from the low amount of material present, causes the 

faint experimental contrast. Medium size islands, with dimensions of (90x90x15) nm
3
 (fig. 2.38.c), 

show a magnetic vortex configuration, with the magnetization rotating in plane around the center of 

the structure, where the magnetic moments are pointing out of the sample plane. The largest 

simulated islands, with a size of (150x150x30) nm
3
 (fig. 2.38.d), show a vortex state in remanence, 

as well, but a larger magnetization divergence is present close to the borders. We believe this is the 

origin of the contrast at the edges of the largest nanoislands in the experimental MFM images.  

 

(a) (b) (c) (d)
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Chapter 3: Distinguishing electrostatic and magnetic 

interactions 

 

As detailed in the introduction of this thesis, scanning probe microscopies can be used to detect 

different short, medium and long range interactions with high sensitivity and lateral resolution. The 

two long range interactions particularly relevant at the usual tip-sample separation distances used in 

MFM experiments are electrostatics and magnetostatics. Eventually, electrostatic force gradients 

can be large enough to mislead the user about the actual magnetic state of the sample. On the one 

hand, care should then be taken with samples presenting low magnetic moment such as organic 

nanomagnets 
1
, magnetic oxide films 

2
, superparamagnetic particles 

3,4
 and carbon based materials 

5,6
, since spurious van der Waals and electrostatic interactions might be present and yield a 

measurable frequency shift on the cantilever oscillation. On the other hand, samples might be 

composed of different materials (for instance, the substrate and patterned material, when using 

lithographies or templates), each one presenting a different surface potential. This heterogeneous 

electrostatic interaction might be misinterpreted as part of the domain configuration of the 

magnetic material. 

 

Two different approaches can be used to confirm the magnetic origin of the observed contrast. The 

first one consists of studying the contrast response in frequency shift images as in-situ magnetic 

fields are varied 
7,8,9

. This method does not yield the pure magnetic information but its overlap with 

electrostatics. Changes on the contrast must be assessed to the presence of a magnetic response 

within the sample but information about its actual spin configuration is still lacking. The second 

one, proposed here, relies on using a combination of MFM with Kelvin Probe Force Microscopy 

(KPFM) 
10,11

 to compensate the electrostatic force gradient. This method separates both 

contributions and allows obtaining true MFM pictures. Little attention has been paid to this issue 

despite its relevance in some cases and current chapter is focused on it. 

 

                                                 
1 J. Gómez-Segura, O. Kazakova, J. Davies, P. Joseph-Franks, J. Veciana and D. Ruiz-Molina, Chemical 

Communications 45 (2005) 5615-5617 
2 Y. Wu, Y. Suzuki, U. Rüdiger, J. Yu, A. D. Kent, T. K. Nath and C. B. Eom, Applied Physics Letters 75 (1999) 2295 
3 C. S. Neves, P. Quaresma, P. V. Baptista, P. A. Carvalho, J. P. Araujo, E. Pereira and P. Eaton, Nanotechnology 21 

(2010) 305706 
4 S. Schreiber, M. Savla, D. V. Pelekhov, D. F. Iscru, C. Selcu, P. C. Hammel and G. Agarwal, Small 4 (2008) 270 
5 J. Cervenka, M. I. Katsnelson and C. F. J. Flipse, Nature Physics 5 (2009) 840 
6 P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han and T. Butz, Physical Review Letters 91 (2003) 227201 
7 R. Engel-Herbert, T. Hesjedal, J. Mohanty, D. M. Schaadt and K. H. Ploog, Physical Review B 73 (2006) 104441 
8 S. Foss, C. Merton, R. Proskch, G. Skidmore, J. Schmidt, E. D. Dahlberg, T. Pokhil and Y.-T. Cheng, Journal of 

Magnetism and Magnetic Materials 190 (1998) 60 
9 A. Asenjo, D. García, J. M. García, C. Prados and M. Vázquez, Physical Review B 62 (2000) 6538 
10 M. Nonnenmacher, M. P. O’Boyle and H. K. Wickramasinghe, Applied Physics Letters 58 (1991) 2921 
11 T. Glatzel, S. Sadewasser and M. C. Lux-Steiner, Applied Surface Science 210 (2003) 84 
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1. Fundamentals of Kelvin Probe Force Microscopy (KPFM) 
 

Magnetic force microscopy measurements are typically recorded at relatively large distances, at 

which atomic corrugations are negligible and the sample can be considered to be a flat surface. In 

the simplest model of a perfect plane capacitor, the electric field can be easily calculated by means 

of Gauss’ theorem and turns out to be constant at every point between plates: 

 

         
 

  

      
    

  

   
 

  

   
 

  

   

 

The electrostatic energy stored in such a capacitor is given by: 

 

  
 

 
                    

  

 
       

 
          

  

   

         

 

The volume can be expressed in terms of the capacitance as: 

 

  
 

 
 

   

 
 

         

   
         

   

 
   

giving the expression: 

  
  

   

 
   

 
      

   

   

    
 

 
      

 

Assuming again, as it was done in the introduction of this thesis, that the cantilever is mainly 

sensitive to the vertical component of the tip-sample interacting force (i.e., the force constant 

kZ<<kX,kY) and for large tip-surface distances compared to atomic dimensions, we calculate: 

 

    
       

 

  
 
 

 
        

 

 
 
  

  
    (3.1) 

 

The electrostatic field between the tip and the sample is a result of the so-called contact potential 

difference (CPD). The electric potential on the surface of a metal depends on the surface 

reconstruction, contamination, etc., and so does the CPD. Thus, different CPD may be measured on 

the same sample when using two different probes, even if they were fabricated in the same way. In 

the case of heterogeneous samples, where more than one material is present, dissimilar metals can 

show an electric potential difference even at equilibrium. Thus, different CPD are expected for 

each material. 
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Kelvin Force Probe Microscopy (KPFM) uses a feedback loop to cancel out electrostatic 

interactions with the sample and provide CPD images. For doing so, the system excites the probe 

electrostatically with a sinusoidal voltage. Thus, the cantilever is excited at two frequencies 

simultaneously, when using the KPFM mode: piezoacustically at the first resonant mode – used for 

topography measurements – and electrostatically at a different one. This second excitation 

frequency (ω2) may be the second flexural eigenmode – used in the amplitude modulation KPFM 

(AM-KPFM) – that takes advantage of its quality factor to amplify the mechanical response, or a 

relatively small frequency – used in the frequency modulation KPFM (FM-KPFM) – out of the first 

mode bandwidth to avoid crosstalk.  

 

In both variants, the KPFM feedback uses a second lock-in to cancel out the cantilever response to 

the electrostatic interaction; however, different modulated signals are brought into it in each case. 

In AM-KPFM, the signal coming out from the photodiode is fed directly into this second lock-in 

(which is referenced to ω2), in such a way that only the information around the second eigenmode 

is extracted. By contrast, in the FM-KPFM mode the output of the first lock-in is analyzed, as will 

be detailed later.  

 

Similar to standard AFM, amplitude modulation KPFM directly detects forces, whereas frequency 

modulation KPFM detects force gradients. One should keep in mind that tip-sample interactions 

cause the intrinsic resonance frequencies of the lever to shift. Thus, AM-KPFM  is optimized when 

using a second PLL feedback that tracks the second resonance mode whenever it is shifted by the 

sample influence. Otherwise, any interaction will cause the oscillation amplitude at ω2 to decrease; 

however, this drop will not be associated to a CPD compensation. This additional PLL setup is not 

necessary when operating the FM-MFM mode.  

 

In general, higher lateral resolution is achieved in FM-KPFM 
11,12

 because only the final part of the 

tip is sensitive to the force gradient, whereas most part of it – and even the cantilever – can 

contribute to the electrostatic force. For large enough distances, electrostatic forces decrease 

smoothly and their force gradient becomes very small. However, forces themselves can reach 

values high enough to contribute significantly to the measurement. As a result, the lateral resolution 

is reduced by an averaging effect between the tip and cantilever. According to Enevoldsen and co-

workers 
13

, resolution in FM-KPFM is typically in the order of the tip apex dimension. 

Nevertheless, it has been demonstrated that both FM- and AM-KPFM can show atomic scale 

resolution 
13

, although the mechanisms responsible for the contrast are still controversial 
14

.  

                                                 
12 U. Zerweck, C. Loppacher, T. Otto, S. Grafstrom and L.M. Eng, Physical Review B 71 (2005) 125424 
13 G. H. Enevoldsen, T. Glatzel, M. C. Christensen, J. V. Lauritsen and F. Besenbacher, Physical Review Letters 100 

(2008) 236104 
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Regarding the energy resolution of the contact potential difference, higher precisions are obtained 

in AM-KPFM in general terms 
11,15

. Amplitude modulation KPFM measures the CPD from the 

resonance peak of the oscillating cantilever, greatly enhancing the signal-to-noise ratio. 

Conversely, frequency modulation KPFM detects the CPD through a frequency demodulator and 

additional noise is then generated, limiting the energy resolution. 

 

But how does the KPFM feedback work? As mentioned above, an intrinsic electric potential 

difference is present between probe and sample, the so-called contact potential difference (VCPD). In 

addition to it, a DC bias may also be applied in a controlled way between them (ϕDC). Last, the 

KPFM system excites the cantilever with a sinusoidal bias voltage of amplitude AAC. Therefore, the 

total potential difference (ϕ) between them is: 

 

                         

 

The electrostatic force sensed by the probe is: 
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It can be expressed as a function of three additive terms. The first term remains constant over time 

and is responsible for a cantilever bending, the second one varies with a frequency ω2 and the third 

one, with twice ω2. Remember that ω2 is the excitation frequency chosen for the KPFM feedback, 

in our case in the order of few kHz. The constants introduced in last equation are defined as:  
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The KPFM system uses a lock-in referenced to ω2 to extract the value of Fω, filtering out the other 

two terms. Then, it tries to nullify Fω by tuning the tip DC bias (ϕDC) in a controlled way. This 

nullification takes place when ϕDC=VCPD (see equation (3.3)), in such a way that the output of the 

                                                                                                                                                    
14 L. Nony, F. Bocquet, C. Loppacher and T. Glatzel, Nanotechnology 20 (2009) 264014 
15 C. Sommerhalter, T. Glatzel, T. W. Matthes, A. Jager-Waldau and M. C. Lux-Steiner, Applied Surface Science 157 

(2000) 263 
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KPFM feedback yields the contact potential difference between tip and sample. Since the CPD is 

compensated, no electrostatic interaction will be present and pure MFM images can be obtained. 

 

Equation (3.1) was derived from the capacitive energy between two parallel metal plates and is 

valid for CPD measurements on metallic surfaces. However, a space charge layer (SCL) is well 

known to be present on the surface of semiconductors and its effects have to be considered when 

measuring on a semiconductor surface. This is out of the scope of present thesis but an analysis of 

the electrostatic force between a metallic AFM probe and a semiconducting sample is given by 

Hudlet and co-authors 
16

, who derived an expression for the term oscillating at ω2 and concluded 

that the measured CPD for a semiconducting surface differs from the work function of the material 

due to the SCL near the semiconductor surface. 

 

It is important to note that the aforementioned description of the Kelvin mode only takes into 

account the long range character of electrostatic interactions, which is the relevant case in MFM 

experiments. However, atomically resolved KPFM images 
17,18

 testify that electrostatic forces also 

have a short range character. Equation (3.1) is improper to describe this contrast, first because the 

expression does not have a short range character and second because this expression derives from a 

classical electrostatic approach between continuous-like metallic bodies and hence does not take 

into account atomic fluctuations of the surface potential. In some works 
19,20

 there is strong 

evidence that short range electrostatic forces scale not only quadratically but also linearly with the 

applied bias voltage, which causes the compensating bias to neither reflect the tip surface CPD nor 

the local surface potential, but rather an effective value which is convoluted by the geometry of the 

tip. Recent theoretical studies on AM- and FM-KPFM suggested that both modes have the same 

limitation in spatial resolution in the sub-nanometer regime 
14

. 

 

- Experimental set-up 

 

All measurements presented in this chapter were performed using the frequency modulation KPFM 

mode with a sinusoidal electrostatic excitation at a frequency ω2=7 kHz and an excitation voltage 

AAC=500 mV. A sketch of the three feedback loops used in the experiments is shown in figure 3.1. 

The output signal coming out from the photodiode (normal force) and carrying the information 

about the cantilever oscillation is fed into the first lock-in amplifier, which is referenced to the 

frequency of the first eigenmode used for the topographic feedback (ωexc ≈ 75 kHz). It extracts 

                                                 
16 S. Hudlet, M. Saintjean, B. Roulet, J. Berger and C. Guthmann, Journal of Applied Physics 77 (1995) 3308 
17 S. Kitamura and M. Iwatsuki, Applied Physics Letters 72 (1998) 3154 
18 K. Okamoto, K. Yoshimoto, Y. Sugawara and S. Morita, Applied Surface Science 210 (2003) 128 
19 F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski and M. Szymonski, Physical Review B 77 (2008) 235427 
20 F. Bocquet, L. Nony, C. Loppacher and T. Glatzel, Physical Review B 78 (2008) 035410 



Chapter 3: Distinguishing electrostatic and magnetic interactions 

108 

 

information about both the oscillation amplitude and phase shift at this faster frequency; the first 

one is fed into the main feedback to control the tip-sample distance, whereas the second one is used 

by the PLL feedback to keep the cantilever oscillating at resonance 
21

. 

 

 

 

Figure 3.1: The three feedback loops. Schematics of the three simultaneous feedback loops used in the experiments: 

amplitude modulation AFM (AM-AFM) with a phase locked loop (PLL) and frequency modulation KPFM (FM-KPFM). 

 

So far, the operating mode is analogous to the standard PLL-assisted amplitude modulation mode, 

described in chapter 1. The main difference introduced by the FM-KPFM is a modulation in the 

phase signal coming out of the first lock-in. Remember that interactions cause the resonance 

frequency of the cantilever to shift (see eq. (1.12)). Thus, a sinusoidal tip biasing results in a 

periodic phase shift oscillating at the same frequency (ω2 ≈ 7 Hz). This phase shift signal is 

analyzed with the second lock-in to extract its oscillation amplitude at ω2 (which is actually the 

term Fω in equation (3.2)). The third feedback loop, i.e. the KPFM system tries to nullify the 

oscillation amplitude at ω2 (or Fω) by applying a DC tip biasing. When the DC bias equals the tip-

sample contact potential difference, no modulation in the phase shift signal is measured at ω2. 

 

                                                 
21 As was mentioned in chapter 1, the actual magnitudes used in the experimental set-up for these feedbacks are the in-

phase and quadrature components and not the amplitude and phase themselves. This allows for faster scanning speeds 

since no subsequent calculation is necessary. In any case, the use of a PLL ensures that no phase shifts are present so that 

the in-phase component equals the oscillation amplitude. 
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The reader might be confused about the fact that the modulation at ω2 is carried by the phase even 

when the PLL is enabled. The reason for that is the relatively long operating time of the phase 

locked loop compared to (1/ω2), which is in the order of 0.1 ms for the typical values used in the 

experiments. If one seeks fast scan speeds, high values of ω2 are desired. However, this modulation 

frequency should be far from the first eigenmode in order to avoid crosstalk and allow for the first 

(analog) lock-in to integrate over several cycles and filter out spurious resonances. In our 

experiments, a bandwidth of 8 kHz was used for the first lock-in (corresponding to 10 oscillation 

cycles of the first mode). This cutoff frequency represents the maximum appropriate value for ω2, 

as signals at higher frequencies will start being filtered out by the lock-in.  

 

Another possible way of implementing the FM-KPFM mode consists of using lower ω2, at the 

expense of decreased scan speeds. For slow enough modulations (ω2 < 1 kHz), the PLL is able to 

track this modulation and flatten the phase channel. Then, the output of the PLL and not the phase 

should be fed into the second lock-in to extract information about electrostatics. Using such slow 

modulations lets the first lock-in integrate over a much larger number of cycles. However, a 

drawback of this option is that the signal modulated at ω2 must go through additional electronics, 

i.e. the PLL itself, so additional noise may be introduced in the measurement. 

 

2. Distinguishing interactions by a MFM-KPFM combination 

 

To estimate the eventual overlap of the two conservative interactions that can take place in some 

cases, we studied a series of straight and L shaped cobalt nanostripes grown by focused electron 

beam induced deposition (FEBID) by the group of Prof. J. M. de Teresa’s at the University of 

Zaragoza. The straight elements, 5 μm long and 500 nm wide, have thicknesses ranging from 10 

nm to 400 nm. In addition, the L shaped structures have a long arm of 10 μm and a short one of 5 

μm, their width varying from 125 nm up to 2 μm with thickness between 50 nm and 200 nm. The 

sample preparation is analogous to the one described in chapter 2.2, refer to it for more detail. In 

the experiments, homemade MFM probes with a 25 nm cobalt layer were used (see chapter 4 for 

more information). Results shown here were published during the second year of my thesis 
22

. 

 

During the FEBID fabrication process, charge accumulation takes place in the substrate. Secondary 

electrons generated when the electron beam hits the substrate may not have enough energy to 

overcome the work function of the surface and penetrate the bulk. As a consequence, they may 

become trapped in the surrounding area of the stripes. Some of these secondary electrons can reach 

                                                 
22 M. Jaafar, O. Iglesias-Freire, L. Serrano-Ramón, M. R. Ibarra, J. M. de Teresa and A. Asenjo, Beilstein Journal of 

Nanotechnology 2 (2011) 552-560 
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the surface near the scanning area, even at distances of more than 1 μm, with enough energy to 

partially decompose gas molecules, producing a parasitic deposit or a so called “halo”. However, 

the decomposition of the precursor gas in this halo is not complete. As a consequence, an insulating 

material is formed around the wires whose major components are C and O (with Co content below 

20%). Secondary electrons may also get trapped in the halo, consequently increasing the surface 

potential. In addition, a thin native oxide layer (around 2 nm) covers the Co thin film as soon as 

samples are exposed to ambient atmosphere. These insulating side effects enhance charge 

accumulation in the deposit region, thus changing its surface potential. 

 

 

 

Figure 3.2: Straight and L shaped stripes. (a) & (c) Topography and (b) & (d) frequency shift images corresponding to 

the cobalt planar wires and L shaped structures, respectively. No tip-sample bias was applied. The oscillation amplitude 

was 5 nm during the topographic scan and 8.5 nm during retrace scan. 

 

Figure 3.2 shows topography and frequency shift maps at a retrace distance of 30 nm for both 

patterned structures, after magnetic saturation along the horizontal direction in the images. 

Intuitively and due to their strong shape anisotropy, a characteristic single domain (dipole like) 

magnetic contrast is expected for the straight stripes, while a more complex configuration might be 

present in the L shaped structures. In the first case, this typical bright-dark contrast at the end of the 

wires can be observed, whereas a fancy structure seems to be deduced from the frequency shift 

image in the L shaped stripes. The latter might be interpreted as a longitudinal DW along the 

longest side of the nanostructure, thus revealing the existence of an unexpected strong transversal 

magneto-crystalline anisotropy. In addition, contrast is observed in the non-magnetic substrate. 
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In order to check their reliability as MFM images, the presence of electrostatic interactions due to 

eventual charging effects must be evaluated. A first simple test consists of recording the cantilever 

frequency shift as the tip-sample bias ϕDC is swept. As explained in former section, the electrostatic 

force gradient has a parabolic dependence on the voltage difference. From equation (3.2) and 

without exciting the cantilever at a second frequency ω2: 

 

     

  
  

 

 
 
   

   
             

 

By substituting this into equation (1.12) one gets: 

 

    
  

   
 
   

  
 

  

   
 
     

  
  

  

   
 
   

   
             

 

Such quadratic dependence of Δω on the bias is expected and indeed observed in figure 3.3, where 

the bias was changed while keeping the tip at the same position. For ensuring this condition, the 

topographic feedback was enabled during the sweep. Two parabolas were obtained, placing the tip 

over the substrate and over the stripe shown in the upper part of figure 3.2.a. The maximum of a 

parabola is indicative of the bias voltage necessary for nullifying the contact potential difference 

(CPD) between the tip and sample, since:  

 

     

    
  

  

   
 
   

   
                  

        

    
            

 

These values were found to be ϕDC=320 mV in the central part of the stripe and ϕDC’=-300 mV in 

the substrate (fig. 3.3). Any different tip bias results in a decrease of the resonance frequency, as a 

result of the attractive interaction. Note that a change of over 3 Hz is recorded in the oscillation 

frequency, as the bias is swept from -1.5 to 0 V. The fact that lower frequency shifts are commonly 

observed in standard MFM experiments highlights the risk of misinterpreting data.  

 

Figure 3.3: Δω vs bias. Frequency shift dependence on the tip-sample bias, obtained (black curve) in the central part of 

the stripe shown in the upper part of figure 3.2.a and (red curve) with the tip placed over the substrate. 
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The implementation of the KPFM feedback is shown in figure 3.4, where the uppermost row shows 

the topography of one element of each kind, with their corresponding frequency shift images 

(KPFM off) right below in the second row. Turning on the KPFM feedback allows for separating 

the information on magnetostatic and electrostatic interactions into frequency shift (fig. 3.4.c, g) 

and CPD images (fig. 3.4.d, h), respectively. In the case of straight wires, the unexpected contrast 

observed previously in the substrate turns out to have an electrostatic origin. A more dramatic 

effect is observed in the case of L shaped stripes, where the pure MFM image (fig. 3.4.g) shows a 

nice vortex wall structure, which was completely hidden beneath electrostatics when no Kelvin 

loop was used. Notice the scale bar range difference between both experiments. The CPD images 

clearly show the areas raster scanned by the electron beam during the sample fabrication and reveal 

the existence of charge accumulation processes. 

 

 

 

Figure 3.4: The Kelvin implementation. Topography of a (a) straight and (e) L shaped stripe. Corresponding excitation 

frequency images taken with the KPFM feedback (b) & (f) disabled and (c) & (g) enabled. (d) & (h) Contact potential 

difference (CPD) images reflecting charge accumulated during the fabrication process. 
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It thus becomes evident that one must be careful when interpreting MFM images under certain 

circumstances. First, whenever a fabrication technique is used that may cause charging effects in 

samples, in particular when dealing with insulating substrates. Second, when dealing with samples 

with a low net magnetic moment, since small electrostatic interactions might cover up magnetism. 

Last, when trying to determine whether a sample presents magnetic behavior 
23

. In all these cases, 

the use of a MFM-KPFM combination is strongly recommended. 

 

2.1. Applying external fields with the MFM-KPFM combination 

 

Having shown the MFM-KPFM implementation to work reliably, we will proceed to apply external 

magnetic fields and record the evolution of the domain configuration. Figure 3.5 presents pure 

MFM maps of one of the L shaped planar wires, under the influence of a variable in-plane (IP) field 

applied along the horizontal direction of the images. For relatively large fields – in the order of 100 

mT – the magnetic element is shown to be in a nearly saturated state (fig. 3.5.a and c) and the 

magnetic moments, pointing parallel to the field direction, give rise to a bright-dark contrast across 

the short arm of the L. The remanent configuration that is left after removing the field is a single 

domain state with the spins following the geometrical shape. The polarity is determined by the 

direction of the previous saturating field (fig. 3.5.b and d).  

 

Compared to the topographic data (figure 3.5.f), there seems to be a sample widening in the MFM 

and CPD images. This might be due to the presence of the halo mentioned in the description of the 

sample fabrication. Notice that contrast is also observed in the halo surrounding the short arm when 

small fields are applied, as observed in figures 3.5.b and d, revealing that magnetic material has 

also been deposited there. Although no current was flowing through the electromagnet, a remanent 

field of 5 mT is present. Finally, in spite of the large field range used in the experiment, no 

remarkable change is observed in the CPD images shown in figures 3.5.e and h (which correspond 

to the situations in a and d), as is expected since the work function does not depend on external 

fields (at least, in mesoscopic physics as is the case). 

 

                                                 
23 D. Martínez-Martín, M. Jaafar, R. Pérez, J. Gómez-Herrero and A. Asenjo, Physical Review Letters 105 (2010) 

257203 
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Figure 3.5: MFM-KPFM with applied fields (I). Evolution of the magnetic structure in an L shaped stripe, as a function 

of an external field applied along the in-plane direction indicated in (g). The field sequence shows successive pure MFM 

images measured at (a) -100 mT, (b) -5 mT, (c) 100 mT and (d) 5 mT. The two CPD images displayed, for fields of (e) -

100 mT and (h) 0 mT, show no difference. 

 

In this kind of L shaped nanostructures, magnetic fields are commonly applied with a relative 

misalignment in order to nucleate DWs on purpose. This is the case introduced in figure 3.6, where 

a sequence of MFM and CPD images is shown for a different L shaped structure, as the horizontal 

field is swept. The first configuration observed (fig. 3.6.b) is the as-grown magnetic state and 

shows two DWs separating three domains. This domain structure rapidly disappears as the external 

field is increased up to saturation (fig. 3.6.c-d) and a single domain structure is present on the way 

down back to remanence (fig. 3.6.e). The as-grown magnetic state is not observed anymore in the 

absence of field. However, the effect of the field misalignment becomes relevant during the 

magnetization reversal process since a DW is not only nucleated – as in the aligned case, where it 

propagates and annihilates much faster than the microscope scan speed – but remains present for a 

large range of fields (fig. 3.6.f-g). Finally, this single DW disappears and the sample reaches 

saturation along the opposite direction (fig. 3.6.h). Again, no remarkable changes are observed in 

the corresponding contact potential difference images, as the magnetic field is varied. Notice that 

the contrast present in all the images shown has the same scale. 
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Figure 3.6: MFM-KPFM with applied fields (II). (a) Topography of another L shaped stripe and (b)-(h) sequence of 

MFM and corresponding CPD images, showing the evolution under an IP field with a misalignment of around 10 º. 

 

Thus, a reliable implementation of the MFM-KPFM combination has been demonstrated and 

utilized to obtain the domain structure of L shaped stripes, as well as the reversal mechanisms 

involved for small misalignments of the external field. Notice that, due to the strong charging 

effects, it would not have been possible to obtain such information without the simultaneous use of 

the KPFM feedback. 

 

2.2. 3D modes with the MFM-KPFM combination 

 

In chapter 2, a particular procedure was introduced (the so-called 3D modes), in which MFM 

experiments were carried out with the tip continuously scanning along the same profile of the 

sample, while the applied field was changed in small steps. As a result, useful Δf(X, H) images 

were obtained that allow quantifying critical fields, such as the switching field of stripes with a bi-

stable behavior. This operating mode can also be implemented using the KPFM feedback, which 

turns out to be very useful in the case of single domain nanostructures with strong charging effects. 

Good examples of these are the straight cobalt stripes described in section 2.2. In particular, figure 

3.7 shows three of the stripes whose switching fields were quantified in figure 2.14 using the 3D 

modes, while simultaneously cancelling out electrostatics.  

 

As can be seen in figure 3.7.b, charges trapped on the sample surface cause again standard MFM 

maps to give mixed information about the magnetic properties and the surface potential. The Kelvin 

loop separates both contributions (fig. 3.7.c-d) and a real MFM image is obtained. A halo of 
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magnetic material is again observed surrounding the planar nanowires and it even shows a 

magnetization orientation similar to the one in the stripes. Performing now a 3D modes 

measurement along one of the nanostructures yields an image like the one shown in figure 3.7.e. 

There, a sudden jump is observed in the frequency shift channel for a certain value of the applied 

field, which corresponds to the magnetization reversal. On the contrary, no significant change is 

seen in the CPD image (fig. 3.7.f), as expected. 

 

 

 

Figure 3.7: 3D modes with the MFM-KPFM combination. (a) Topography and (b) corresponding frequency shift image 

of three single domain Co nanostripes. (c) Pure MFM and (d) CPD images obtained after enabling the KPFM controller. 

3D modes (e) frequency shift and (f) CPD maps measured in one nanostructure to extract its switching field. 
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All the images shown in figure 3.7 were recorded using a homemade MFM probe, in order to 

minimize the stray field emerging from the tip and thereby the influence over the sample. By doing 

this, more realistic values of the switching field can be obtained. Therefore, that experiment is a 

good example of a simultaneous combination of different implementations presented in this thesis: 

the use of homemade probes with reduced influence in the sample (chapter 4), the switching field 

quantification in single nanostructures by means of the 3D modes (chapter 2.2) and the 

implementation of the MFM-KPFM operating mode (chapter 3). 

 

3. MFM-KPFM combination for calibration of MFM probes 
 

An interesting application of this MFM-KPFM combination is presented in this section. It was 

developed in collaboration with the group of Dr. O. Kazakova from the National Physical 

Laboratory (NPL), with the aim of evaluating the magnetic field gradient emanating from an MFM 

tip using graphene Hall sensors. It has given rise to two research articles published during the final 

part of my doctoral thesis 
24,25

. 

 

The collaborating group is interested in reaching quantitative magnetic force microscopy 

measurements by being able to perform meticulous calibration of MFM probes. Microscopic Hall 

sensors are suitable for such probe calibration and have already been used 
26,27,28

, but in particular 

graphene based Hall devices benefit from high sensitivity 
29

 and robustness to large biasing 

currents 
30

. However, electrostatic forces exerted between the current-biased device and the 

metallically coated probe give rise to parasitic electric fields 
31

. The resulting measurement of the 

transverse Hall voltage is thus the superposition of both electric and magnetic field contributions, 

making it difficult to accurately determine the tip’s stray field. In our work, the implementation of 

the MFM-KPFM combination is applied to eliminate the parasitic electric field between both 

conductors seeking a precise calibration method of probes.  

 

                                                 
24 V. Panchal, Ó. Iglesias-Freire, A. Lartsev, R. Yakimova, A. Asenjo and O. Kazakova, IEEE Transactions on 

Magnetics 49 (2013) 3520-3523 
25 R. K. Rajkumar, A. Asenjo, V. Panchal, A. Manzin, Ó. Iglesias-Freire and O. Kazakova, Journal of Applied Physics 

(58th Conference on MMM) 115 (2014) 172606 
26 A. Thiaville, L. Belliard, D. Majer, E. Zeldov and J. Miltat, Journal of Applied Physics 82 (1997) 3182 
27 H. Guillou, A. D. Kent, G. W. Stupian and M. S. Leung, Journal of Applied Physics 93 (2003) 2746 
28 V. N. Matveev, V. I. Levashov, V. T. Volkov, O. V. Kononenko, A. V. Chernyh, M. A. Knjazev and V. A. Tulin, 

Nanotechnology 19 (2008) 475502 
29 V. Panchal, K. Cedergren, R. Yakimova, A. Tzalenchuk, S. Kubatkin and O. Kazakova, Journal of Applied Physics 

111 (2012) 07E509 
30 J. Moser, A. Barreiro and A. Bachtold, Applied Physics Letters 91 (2007) 3 
31 A. Baumgartner, T. Ihn, K. Ensslin, G. Papp, F. Peeters, K. Maranowski and A. Gossard, Physical Review B 74 (2006) 
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Figure 3.8: Epitaxial graphene devices. (a) Optical image of a 5 µm device showing the gold leads (including gates) and 

the patterned resist protecting the graphene. (b) Topography and (c) surface potential images of a 0.6-µm wide device. 

 

One-two layer epitaxial graphene was grown on the Si-terminated face of a nominally on-axis 4H-

SiC(0001) substrate at 2000 °C and 1 bar argon gas pressure in a sublimation furnace. At high 

temperatures, the SiC crystal is decomposed layer by layer causing the silicon atoms to sublimate, 

leaving the carbon atoms behind to form the graphene honeycomb lattice. The resulting material is 

n-doped, owing to charge transfer from the interfacial layer. Further details on the fabrication and 

characterization have been reported 
32

. Double-cross devices were defined in three steps, involving 

electron beam lithography, oxygen plasma etching and thermal deposition of Cr/Au electrical 

contacts (fig. 3.8.a). Prior to experiments, contact mode AFM was used to clean the devices of 

resist residues, as the resist is known to dope graphene and affect the transport properties 
33,34

. 

 

Four different devices were used here, with the specifications shown in table 3.i. The sensitivity of 

the sensors, in the form of their Hall coefficient (RH = VH/IbiasB), was determined by sweeping a 

DC magnetic field and measuring the Hall voltage for variable bias currents. However, MFM 

probes generate inhomogeneous fields that are concentrated in relatively small areas, so that the 

largest devices may become inappropriate and yield noisier measurements. 

 

Size 

(μm) 

R4 

(kΩ) 

RH 

(Ω/T) 

ne 

(cm–2) 

μ 

(cm2/Vs) 

Bmin at Ibias = 60 μA 

(μT/√Hz) 

0.6 29.5 296 2.1×1012 803 4.9 

1 33.6 838 7.5×1011 998 3.7 

10 22.7 715 8.7×1011 170 3.7 

15 26.2 1022 6.1×1011 3124 1.3 

 

Table 3.i: Transport measurements for epitaxial graphene devices with a width of 0.6-15 μm. R4 is the 4-point resistance, 

RH is the Hall coefficient, ne is the electron density, μ is electron mobility and Bmin is the minimal detectable field. 

                                                 
32 C. Virojanadara, M. Syväjarvi, R. Yakimova, L. Johansson, A. Zakharov and T. Balasubramanian, Physical Review B 

78 (2008) 1-6 
33 O. Kazakova, V. Panchal and T. Burnett, Crystals 3 (2013) 191–233 
34 S. Lara-Avila, K. Moth-Poulsen, R. Yakimova, T. Bjørnholm, V. Fal’ko, A. Tzalenchuk and S. Kubatkin, Advanced 

Materials 23 (2011) 878-882 
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In this work, the MFM probe acts as a scanning gate that modifies the transversal Hall voltage by 

means of its localized stray field. When scanning a DC current biased Hall sensor in the dynamic 

mode, an oscillating Lorentz force is exerted on the electrons that gives rise to an AC transverse 

voltage (fig. 3.9). This output signal (VXY) is filtered with an external lock-in amplifier referenced to 

the actual oscillation frequency of the cantilever and recorded at each pixel. For doing so, the 

normal force signal detected by the photodiode of our microscope is fed into the external lock-in 

reference input. In addition to the magnetic interaction, there will most likely be a surface potential 

difference between the graphene layer and the tip apex. Therefore, as the probe scans, electrons are 

also subject to oscillating Coulomb forces. The response of the Hall sensor to the parasitic electric 

field indeed masks the magnetic field response, making accurate measurements of the magnetic 

signal difficult. However, these fields can be eliminated by enabling the KPFM feedback 

simultaneously, as will be shown later. Under these circumstances, the VXY values measured with 

the external lock-in correspond to the transversal voltage amplitude induced by the tip during one 

oscillation cycle. In other words, it gives information about differences in the values of the stray 

field generated by the tip at two points: the closest and the furthest ones. 

 

 

 

Figure 3.9: Schematics of the measurement set-up used in the experiments. A transversal alternating voltage VXY is 

induced by the tip in the graphene cross, consequence of Coulomb and Lorentz deviations of electrons, at the oscillation 

frequency. An external lock-in is used to extract the information. 

 

First, the case of a disabled KPFM feedback is considered. The response of graphene Hall device to 

the inhomogeneous fields generated by a homemade probe with a 20 nm thick Co coating, as a bias 

current of Ibias= +70 A is driven across the 600 nm device, is displayed in figure 3.10.a. The 

dominating features in the VXY map are peaks at the corners of the active sensing area. When the 

probe is gating above corners 1 & 3 (corners 2 & 4) of the sensor, the flow of electrons is diverted 

towards VB (VA), resulting in a rise (drop) in VXY. The corner effect can thus be understood by 

considering electrostatic deflections of electrons, originating in the probe-sample capacitive 
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coupling. Analogous contrasts are also obtained when scanning these graphene devices with non-

magnetic metallic probes, as was done with Pt/Ir coated probes. In essence, these features are 

identical to those observed in scanning gate microscopy experiments and are well documented 
31,35

. 

 

 

 

Figure 3.10: Hall voltage. Experimental transverse Hall voltage images of the 600 nm wide device at Ibias = +70 µA, 

obtained with a 20 nm Co coated homemade probe with the KPFM feedback loop (a) disabled and (b) enabled. White 

lines outline the contour of the device. (c) Profiles obtained along the dashed lines as indicated in (a)-(b). (d) 

Dependence of VXY on the biased current as measured at the device centre (point A in (b)). Measurements in (d) 

performed for a commercial MESP probe. 

 

When the current direction is reversed to +70 µA, the voltage polarity flips at the corners (fig. 

3.11.a-d), as it also happens to the signal at the center of the cross (fig. 3.11.a and b). This effect is 

described in figures 3.11.e-h, where local deviations of electrons are sketched. In the case of a 

nullification of the probe-sample CPD, the VXY response is a consequence of only the modulated 

magnetic stray field at the oscillation frequency. This is the case shown in figure 3.10.b, where the 

aforementioned features at the corners are suppressed and the remaining Hall voltage can be 

associated to Lorentz forces. The measured values of the Hall voltage are significantly smaller than 

in the previous case, as the magnetic contribution to the electron deflection is usually less intense.  

 

The black profile in figure 3.10.c shows a maximum coupling to the probe stray field when the 

probe is located in the central region of the graphene cross, yielding a rather homogeneous value of 

VXY. The Hall voltage measured under these circumstances is shown to increase linearly with the 

                                                 
35 L. Folks, A. S. Troup, T. D. Boone, J. A. Katine, M. Nishioka, M. Grobis, G. J. Sullivan, A. Ikhlassi, M. Field and B. 

A. Gurney, Journal of Physics: Condensed Matter 21 (2009) 255802 
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biased current (fig. 3.10.d), the expected trend for Lorentz force driven voltages. The smooth 

change in the slope of VXY observed as the tip approaches the device edges extends over distances 

larger than 500 nm, as seen in figure 3.10.c. As soon as the probe approaches the cross edge by 

around 250 nm, VXY decays smoothly until it finally vanishes when the tip is located around 250 nm 

outside from the cross. This yields a way to estimate the effective radius of influence of different 

MFM probes, as it gives information about the effective area over which the stray field is able to 

deflect electrons to the lateral electrodes of the device.  

 

 

 

Figure 3.11: Effect of the bias current direction. SGM mapping of the transverse voltage signal in the 600 nm wide 

graphene Hall cross with a bias current of (a) Ibias = –70 µA and (b) +70 µA. KPFM feedback loop was disabled. White 

lines outline the contour of the device. (c) and (d) Line profiles obtained along the dashed lines as indicated in (a) and 

(b), respectively. Schematic of the current distribution when the probe (Vprobe < Vsample) locally gates at corners 1 and 2 at 

bias current of (e)-(f) Ibias<0 and (g)-(h) Ibias >0. The blue circle represents the location of the probe and arrows 

represent the flow of electrons. 
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Investigations into the orientation of the probe magnetization can provide unambiguous proof of 

carriers being affected by the Lorentz force. The maps in figure 3.12.a-b, obtained with the KPFM 

feedback on, show the polarity of the signal on the device to reverse as the probe magnetization is 

switched by application of an external magnetic field. Small peaks at the corners of the Hall device 

– whose polarity remains unchanged when the magnetization of the tip is reversed – can be still 

observed, proving the separate nature of electrostatic and magnetic signals. We can thus conclude 

that the voltage measured using the MFM-KPFM combination is the response to the Lorentz force 

resulting from the probe stray magnetic field alone. 

 

 

 

Figure 3.12: Effect of the probe magnetization. SGM mapping of the transverse voltage signal in 0.6-μm wide Hall 

cross. Images were taken using a homemade probe magnetized (a) downwards and (b) upwards, with the KPFM 

feedback loop on. The bias current is Ibias = –70 µA. (c) Line profiles obtained along the dashed lines as shown in (a) and 

(b). 

 

 

Summarizing, in this chapter we demonstrated the successful and simultaneous implementation of 

MFM-KPFM measurements. We gave evidence of the relevance that charge accumulation effects 

may have when trying to identify the magnetic structure of certain samples and provided a ways to 

separate electrostatic from magnetostatic interactions, avoiding misinterpretation of data. By 

applying external fields, we obtained the real evolution of the magnetic states, whereas the CPD 

images remained unchanged. Last, a particular application for scanning gate microscopy is 

provided, in which graphene Hall sensors were used to estimate the stray field of MFM probes.  

(a) (b) (c)
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Chapter 4: Homemade MFM tips for specific purposes 
 

As it has already been mentioned in different sections throughout this manuscript, homemade MFM 

sensors fabricated in our lab were used to characterize specific samples; this chapter describes the 

fabrication and characterization of such homemade probes. We will briefly compare their lateral 

resolution to that of commercial probes and, then, some additional examples of their usefulness for 

specific purposes will be presented. Last, micromagnetic simulations will show the field 

dependence on distance and the relevance of the apex geometry on the stray field. A report 

describing the performance of these probes is currently in preparation. 

 

Conventional MFM probes consist of pyramid-like Si or SiN tips with a ferromagnetic thin film 

coating. Plenty of literature can be found where authors try to obtain enhanced resolutions by 

engineering probes. Several works focused on reducing the physical size of the magnetic material 

of the tip, either by using focused ion beam (FIB) milled tips 
1,2

, electron beam deposited tips 
3,4

 or 

stencil-deposited metal dots onto an AFM tip 
5
. In another approach, probes with carbon nanotubes 

(CNTs) have been fabricated for MFM imaging either by mechanical attachment 
6,7,8

 or direct 

growth on commercial pyramid tips 
9
. Although good control in terms of angle and position can be 

achieved when attaching CNTs to Si tips by using nanomanipulators 
10

, it requires sophisticated and 

time-consuming processes.  

 

Other approaches used magnetic nanowires 
11

 or coated carbon nanocones 
12

 to improve the 

detection of small domains. In general, all these methods involve a considerable amount of time, 

effort and the use of advanced fabrication techniques for engineering the tips; in addition, the 

achievable resolution is not greatly enhanced compared to commercial tips so their applicability is 

limited to particular cases of interest. 

 

                                                 
1 G. N. Phillips, M. Siekman, L. Abelmann and J. C. Lodder, Applied Physics Letters 81 (2002) 29 
2 L. Gao, L. P. Yue, T. Yokata, R. Skomski, S. H. Liou, H. Takahoshi, H. Saito and S. Ishio, IEEE Transactions on 

Magnetics 40 (2004) 2194 
3 G. D. Skidmore and E. D. Dahlberg, Applied Physics Letters 71 (1997) 3293 
4 Y. M. Lau, P. C. Chee, J. T. L. Thong and V. Ng, Journal of Vacuum Science and Technology A 20 (2002) 1295 
5 A. R. Champagne, A. J. Couture, F. Kuemmeth and D. C. Ralph, Applied Physics Letters 82 (2003) 1111 
6 N. Yoshida, M. Yasutake, T. Arie, S. Akita and Y. Nakayama, Japanese Journal of Applied Physics 1 41(2002) 5013 
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Intrinsically related to the lateral resolution is the magnetic sensitivity of the probe. In order to 

achieve better signal-to-noise ratios, one may want larger amounts of magnetic material to be 

deposited at the tip apex. Unfortunately, this results in larger tip radii and subsequent lower lateral 

resolution; furthermore, the influence in the sample magnetic state will be increased. Depending on 

the specific properties of each sample, a balance between resolution and sensitivity must be found. 

For this reason, different kinds of commercial MFM probes are available for sale. Specific low 

moment or side coated probes (having lower amounts of ferromagnetic material) can be found at 

the expense of an enhanced price over 50 €/probe. In addition, best lateral resolution is achieved 

with super-sharp tips at a cost over 100 €/probe. 

 

The importance of choosing a proper tip is shown in figure 4.1, where two lithographed samples of 

Ni80Fe20 circular dots (25 nm thick and 1 μm in diameter) were imaged using commercial probes. A 

standard sensor (fig. 4.1.a) yielded MFM images with strong attractive contrast in the central 

regions of the dots, which was caused by reorientation of spins away from the sample plane due to 

the excessive stray field. On the other hand, a commercial low moment probe (fig. 4.1.b) displayed 

the real magnetic structure, with bright and dark points reflecting the core polarity of the single 

vortex states present in each dot. Notice the difference in the scale bars of both magnetic images.  

 

 

 

Figure 4.1: Influence of the stray field of MFM probes. Ni80Fe20 circular dots 1 μm in diameter and 25 nm thick, 

measured using (a) a standard Nanosensors PPP-MFMR probe, where the magnetic state is modified due to the 

excessive stray field, and (b) a low moment Nanosensors PPP-LM-MFMR sensor, where single vortices with different 

polarities can be observed. 

2.0µm

 115.00 nm

 0.00 nm

1.6µm

 75.00 nm

 0.00 nm

 4.00 Hz

 -9.00 Hz

(a) (b)
 2.00 Hz

 -2.50 Hz



Chapter 4: Homemade MFM tips for specific purposes 

125 

 

Unfortunately, even the stray field emerging from these low moment commercial probes becomes 

too large for some samples and result in irreversible changes in their magnetic state. Our goal is to 

go a step further and be able to tune the tip used for each case, particularly regarding the 

irreversible influence of the stray field in soft magnetic samples. Therefore, this work is not 

focused on pushing the limits of MFM resolution; instead, we aim to fabricate customized tips with 

high lateral resolution and a reduced influence in the sample, in a fast and low cost way, in the 

order of 20-25 €/probe. As will be shown, both objectives have been achieved. 

 

1. Fabrication and characterization 
 

These homemade tips are fabricated by sputter-coating commercial AFM sensors (Nanosensors 

PPP) with a polycrystalline Co thin film, in a home-built high-vacuum chamber and with a specific 

incidence angle that allows covering up one side of the pyramid. The deposition parameters are 

carefully chosen to yield highly flat surfaces with small grain size, which ensures higher lateral 

resolutions for the MFM tips. A thorough study of the influence that these parameters have in the 

Co growth is described in M. Jaafar’s thesis 
13

, as well as a description of the experimental set-up. 

Starting from a base pressure of 5∙10
-6

 mbar, argon gas is introduced into the chamber until a 

pressure of 1.0∙10
-2

 mbar is reached. Inert gases are usually employed as the sputtering gas because 

they tend not to react with the target material and because of their high molecular weight that 

causes higher sputtering rates. Plasma is then generated using an AC magnetron sputtering with an 

input power of 100 W and is confined on the target surface by a permanent magnet located behind 

the target surface. Positively charged Ar
+
 ions are accelerated toward the negatively biased 99.99 % 

pure Co target, resulting in material being sputtered and deposited onto the side walls of the tips.  

 

 
 

Figure 4.2: Deposition of the magnetic coating. Commercial AFM tips are sputter-coated with a polycrystalline Co film. 

 

                                                 
13

 Doctoral thesis of Miriam Jaafar (Autonomous University of Madrid, 2009) 
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Sputtering is not a highly directional technique; nevertheless, there is a preferential direction of 

deposition. A residual magnetic film was observed to cover up most part of the tip and cantilever; 

however, calibration with AFM reveals this residual thickness to be less than 1 nm. Different 

thicknesses have been used, depending on the properties of the studied sample; however, we will 

focus here on the most commonly utilized ones: 20 nm and 25 nm.  

 

No capping layer is subsequently deposited onto the Co film. Although the outtermost atomic 

layers of cobalt are well known to oxidize in ambient conditions, we believe this affects a very 

superficial region of the coating and the oxide does not avoid obtaining good imaging results. In 

fact, experiments performed on purpose four months after deposition revealed no measurable loose 

of sensitivity. Furthermore, as it was demonstrated in sections 3.2 and 3.3, these probes allow for 

Kelvin Probe Force Microscopy measurements even without deposition of a metallic capping film. 

It is worth pointing out that this methodology represents a fast, accessible and rather cheap process. 

A time lapse of around 1 hour is needed to reach the high vacuum conditions specified above. The 

plasma onset is instantaneous and the deposition step takes 1-2 minutes. Although we sputter coat 

few tips at the same time, tens of them might be placed in a region where the deposition rate can be 

considered to be homogeneous, within the small home built chamber at our disposal. In addition, 

very good reproducibility is found and the probes remain functional for months. One drawback 

they present is a slightly reduced lifetime against crashes onto the sample surface, probably due to 

the lower magnetic material present at the apex. However, similar effects have been observed using 

super sharp commercial probes as well. 

 

Using these deposition conditions, a 20 nm thick Co layer was sputtered onto an AFM chip 

(Nanosensors PPP) and the resulting topography is shown in figures 4.3.a-c. The reason for 

imaging the chip is to get a realistic idea of the Co growth onto the silicon tip. A resulting flat 

surface with a root mean square (RMS) roughness of (0.25 ± 0.05) nm is obtained. The grain size, 

extracted from the autocorrelation function along the fast scan direction, is approximately 20 nm. 

These values were found not to change in great measure for the typical thicknesses used to coat the 

magnetic sensors. 

 

The lower row of figure 4.3 describes the magnetic properties of the cobalt thin film. The MFM 

image in figure 4.3.d shows the as grown magnetic state of the metallic layer, where a predominant 

in-plane magnetization with cross-tie 
14

 domain walls is observed. The hysteresis loops (fig. 4.3.e), 

measured at room temperature by VSM under maximum applied fields of 1.7 T, confirm the 

preference for the magnetization to orient in the sample plane. A high remanent magnetization of 

                                                 
14 A. Hubert and R. Schäfer, “Magnetic Domains” (Springer, Berlin 1998) 
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82% the saturation value is found in figure 4.3.e when the field is applied IP. This, together with 

the shape anisotropy taking place when the Co layer is deposited onto a sensing tip, helps the 

magnetic moments to remain mainly oriented along the pyramid surface. However, the orientation 

of the spins at the end of the tip will depend on the apex shape and on the way the cobalt layer 

covers it up. There is substantial variability in the apex shape from tip to tip, which is intrinsic to 

the fabrication methods. In addition, the normal angle at which cobalt reaches the surface can cause 

inhomogeneities in its thickness at the very end of the tip. Thus, knowing the exact configuration 

seems to be a hard task. 

 

 

 

Figure 4.3: The cobalt coating. (a) (5x5) μm2, (b) (750x750) nm2 and (c) (375x375) nm2 topographic images of a 20 nm 

thick Co layer grown onto an AFM chip (Nanosensors PPP) under the conditions used for coating the tip. (d) (5x5) μm2 

MFM image of the same sample, showing a predominant IP magnetization with the presence of cross-tie domain walls. 

(e) In-plane (IP) and out-of-plane (OOP) hysteresis loops show the preference of the magnetization to remain IP. 

 

After deposition, the resulting home-coated MFM probes were characterized with a standard hard 

disk, using the 3D modes explained in chapter 2.2. As sketched in figure 4.4.a, a hard disk is 

mapped and conventional topographic and MFM images are first obtained (fig. 4.4.b). Then, the 

slow scan direction is disabled; instead, an external OOP field is swept after each fast scan. The 

resulting Δf(X,H) map shows a reversal in the magnetic contrast, which is attributed to a flip in the 

magnetization of the tip and is used to quantify its switching field (fig. 4.4.c-d). A transition regime 

is often observed close before the switching field, in which a poorly defined contrast can be seen. 

This is caused by local rotation of spins at the very end of the probe and depends on the relative 
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angle between the cantilever and the sample surface. Interesting effects associated to this 

reorientation of the magnetic moments at the apex will be studied in chapter 5. 

 

 

 

Figure 4.4: Switching field of MFM tips. (a) Applying OOP fields with an electromagnetic, (b) topographic and MFM 

images are obtained. (c) Using the 3D modes, a contrast inversion reflects the switching field of the probe. (d) Evolution 

of the contrast in the 3D mode image for two regions with opposite stray field polarities. Note: the red profile in (d) has 

been shifted to positive fields for practical purposes. No smoothing has been applied to data. 

 

Using this approach, the extracted mean switching field for 20 nm thick tips (from a total of 30 

measurements including three different homemade probes) yields                      . 

This value is similar to those for commercial probes 
13

 and allows for reliable MFM measurements 

in a wide range of applied fields. A significant variability is observed, which can be attributed to 

several factors. First, the interaction with a magnetic sample is used to extract this useful parameter 

of the probes. Repeating the same experiment at different tip-sample distances alters the influence 

that the sample stray field has in the apex. In addition, even if the same parameters are used 

(oscillation amplitude and tip-sample separation), dissimilar regions of the sample will influence 

the sensor in a different manner. As it was already mentioned, the relative tip-sample angle turns 
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out to play its role as well. Former factors can be controlled to some extent. However, although a 

good reproducibility has been achieved, the resulting coating at the tip apex varies slightly from tip 

to tip. Nevertheless, eventual changes are expected to take place in the tip geometry and 

composition during the realization of the experiments the tips are intended for. Thus, we believe 

this reported variability in the switching field value not to be particularly relevant. 

 

2. Lateral resolution 
 

In this section, we present a comparison of the MFM lateral resolution between the homemade 

sensors presented above and three different sorts of commercial probes. The first one is a low cost 

model, BudgetSensors Multi75M, whose price is comparable to the estimated cost of our 

homemade ones. However, they lack good resolution and are then suitable for testing experiments 

or samples with domains hundreds of nanometers in size. The second one, Nanosensors PPP-LM-

MFMR, has a reduced amount of magnetic coating on it and is appropriate for relatively soft 

samples (see fig. 4.1.b). They show an improved performance, as compared to previous tips, but 

their cost is significantly increased. The third option is the so-called “super sharp” MFM tips, 

Nanosensors SSS-MFMR, which are specific for performing high resolution magnetic force 

microscopy measurements. However, their price is twice as high as for the second kind of tips.  

 

For these experiments, a very high density hard disk prototype with perpendicular anisotropy was 

used, based on a CoCrPt alloy and courtesy of Toshiba. The domain size in it is around 25 nm. 

Three brand new probes of each kind were chosen and standard MFM images were measured with 

an oscillation amplitude of 14 nm at a retrace distance of 15 nm from the topographic setpoint. The 

best results obtained for each case are shown in figure 4.5. In the last row, data from a homemade 

probe with a layer thickness of 25 nm are shown. Having a look at the column on the left, where 

(2x2) μm
2
 images are displayed, the lower resolution of both the Multi75M and Nanosensors PPP-

LM-MFMR probes is readily seen. On the contrary, the super-sharp tips seem to have a similar 

performance. Even more evident becomes the difference with the two first kinds when the image 

size is decreased down to (500x500) nm
2
, as seen on the right column. In the case of Multi75M, 

only large domains – composed of large series of neighboring domains with parallel magnetization 

– are resolved (fig. 4.5.a). Using Nanosensors PPP-LM-MFMR tips, quite better results are 

obtained (fig. 4.5.b) but the lateral resolution is far from being enough to resolve individual 

domains. In agreement with its label name, the super sharp tips yield the best resolved images of all 

commercial probes (fig. 4.5.c). Nevertheless, at least as good results are obtained with the 

homemade sensors, as observed in figure 4.5.d. Very good lateral resolution is achieved and 

domains are resolved.  
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Figure 4.5: The comparison. Lateral resolution obtained with (a) BudgetSensors Multi75M, (b) Nanosensors PPP-LM-

MFMR, (c) Nanosensors SSS-MFMR and (d) homemade tips with a 25 nm thick Co coating on the front sides. Images on 

both columns are the same size: (2x2) μm2 (left) and (0.5x0.5) μm2 (right). 

 

 5.48 Hz

 -5.52 Hz

 4.41 Hz

 -4.63 Hz

(a)

Homemade Probe 25 nm Co

BudgetSensors Multi75M

 5.78 Hz

 -5.91 Hz

 4.39 Hz

 -3.97 Hz

Nanosensors PPP-LM-MFMR

(b)  12.04 Hz

 -12.04 Hz

 11.56 Hz

 -11.56 Hz

(c)

Nanosensors SSS-MFMR

 6.69 Hz

 -6.39 Hz

(d)

 5.87 Hz

 -5.89 Hz



Chapter 4: Homemade MFM tips for specific purposes 

131 

 

Depending on the sample features, one might need to even further increase the lateral resolution. 

This could be achieved by reducing the cobalt thickness deposited onto the AFM tips, at the 

expense of reducing their magnetic sensitivity. Figure 4.6 displays MFM images of the same hard 

disk with a homemade tip having a 20 nm thick coating. As can be seen in figure 4.6.d, domains 

are perfectly resolved. It is important to note that pictures taken with different probes correspond to 

different regions of the same hard disk. In particular, the ones obtained with the 20 nm thick 

coating describe an area of the disk where domains have alternating orientations (i.e. a region 

where no information is recorded), whereas in the other cases groups of neighboring domains with 

parallel orientations are common, indicating that some information is stored there. 

 

 

 

Figure 4.6: The 20 nm cobalt tip. MFM images of the same high density HD, recorded with homemade probes with (a) a 

25 nm thick Co coating and (b) a 20 nm Co coating. Images on both columns are the same size: (2x2) μm2 (left) and 

(0.5x0.5) μm2 (right). 
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A latter proof of the lateral resolution of this 20 nm thick coated MFM tip is shown in figure 4.7. 

There, a high resolution topographic image of the hard disk surface displays grains in the order of 

10 nm in lateral size, a remarkable resolution even for standard AFM probes (fig. 4.7.a). Its 

corresponding MFM image shows a series of bright and dark contrasts associated to successive 

magnetic domains with OOP magnetization (fig. 4.7.b). The frequency shift along the profile 

drawn in the MFM image is displayed in figure 4.7.c and proves the distance between domains to 

be around 25 nm. No smoothing has been applied to the profile data. The price one has to pay to 

reach such a high lateral resolution is a lower magnetic sensitivity. In the case shown in figure 4.7, 

the magnetostatic interaction between the tip and the hard disk is large enough to ensure MFM 

experiments of specific low moment samples are feasible with that tip. However, this is not always 

the case and lower sensitivities are sometimes obtained. 

 

 

 

Figure 4.7: The spatial resolution. (a) Topography of the high density HD, recorded with a 20 nm homemade tip. The 

lateral resolution is around 10 nm. (b) Corresponding MFM image showing single domains with alternating OOP 

orientations. (c) Frequency shift profile along the line shown in (b) that gives an inter-domain distance of ~ 25 nm. 

 

3. Experimental examples 
 

Succesful applications of the MFM sensors described in this chapter have already been shown in 

sections 2.2, 2.4, 3.2 and 3.3, the latter two proving their capability to separate electrostatics from 

magnetostatics using the MFM-KPFM combination. In addition to them, two practical examples 

are given below, where both a remarkable lateral resolution and low magnetic disturbance are 

achieved. In the first one, more detail is given about the DWs present in the Co stripes described in 

section 2.4. In addition, images are shown that achieve chemical sensitivity with an outstanding 

lateral resolution of 5 nm. The second example tries to give an idea of the reduced stray field 

associated to these probes. A metastable state is studied in polycrystalline cobalt circular dots, 

where two vortices mediate the magnetization reversal process. This work is part of a collaboration 

with Dr. Farkhad Aliev, from the Universidad Autónoma de Madrid. 
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3.1. Study of domain walls in Co stripes with competing anisotropies 

 

As was mentioned in chapter 2.4, previous works found in the literature on nanostripes with 

perpendicular anisotropy lack good resolution and no information about the domain walls can be 

inferred. Being able to resolve the DW structure unveils the processes involved in the 

magnetization reversal. This has been accomplished by using a 20 nm home-coated tip. 

 

We already reported the different domain structures present in these stripes. In addition, the 

magnetization reversal mechanism taking place was thoroughly described for the particular case of 

the 750 nm wide stripe, where single vortex DWs mediated the process (see figure 2.31 for more 

details). The good performance shown by the homemade sensors described here led us to study in 

more detail the structure of the domain walls. For the case of the stripe just mentioned, high 

resolution MFM images were taken and are presented in the bottom row of figure 4.8. In the 

remanent configuration, two single vortex DWs are placed very close to each other and remain 

quite the same for small field variations (fig. 4.8.a-b). As the field increases further, the vortex in 

the lowermost DW moves from the right side of the stripe (fig. 4.8.b) to the left one (fig. 4.8.c) and 

subsequent contrast inversion takes place along the wall. The observance of a contrast reversal in a 

DW is a proof of its vortex character. Interestingly, even although the other domain wall 

annihilated during the process and is not present anymore, the remaining one is located at the same 

position.  

 

 

 

Figure 4.8: Domain wall ripple. (top) Topographic and (bottom) MFM images of the 750 nm wide epitaxial Co stripe. A 

ripple structure with a period of around 130 nm can be observed in the single vortex DWs. 

 

The resolution of the magnetic images is such that domain wall corrugations become even 

noticeable in figures 4.8.a-b. Instead of showing a straight shape, those walls describe a wavy path 

that is resolved in the experimental images, from which a periodicity of around 130 nm is 

estimated. We believe this domain wall ripple to minimize the total energy of the system and to 

arise from the internal structure of the cobalt layer.  
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In addition to this beautiful result, we studied the DWs present in slightly wider stripes. Figure 4.9 

displays images of three different walls present in the 850 nm wide stripe in its remanent 

configuration, after saturation along the main axis. A more complex configuration seems to be 

present, as compared to the single vortex walls described so far. At first sight, these three DWs do 

not seem to be of the same kind; however, by taking a careful look it is possible to infer the same 

spin configuration in each one of them.  

 

 

 

Figure 4.9. Double vortex walls in Co stripes. (top) High-resolution MFM images of the 850 nm wide stripe, at 

remanence, and (bottom) simulated images, showing DWs with two vortices at the position indicated with red circles. 

 

Further insight into the spin distribution within the DWs is provided by micromagnetic simulations. 

The contrast observed in the simulated images shown in figure 4.9 reproduces experimental data to 

a good extent. Relevant information we extract from them is the existence of two vortices within 

the walls, whose location is highlighted with red circles. Thus, we suggest the cross-like regions 

observed in the experimental images to arise from the presence of two vortices. 

 

As is demonstrated in figure 4.10, two different kinds of DWs are simultaneously present in the 

same stripe, formed by either one or two vortices. No evident correlation seems to exist between 

the two kinds and both appeared repeatedly along the nanostructure. In general, for stripes of 

similar widths and for a large range of fields around remanence, single and double vortices DWs 

are formed. Resolving the micromagnetic structure present in these stripes opens up the possibility 

of using simulations to get a closer idea about the mechanisms involved. Thus, the effort made in 

developing sensors that allow for achieving very well defined images has translated into added 

information one can extract from conventional MFM measurements. 

 

(a) (b) (c)
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Figure 4.10: Two kinds of DWs at the same time. In this MFM image of the 850 nm wide element, it is possible to see 

single and double vortex walls in the remanent state. 

 

Having shown the capability of these sensing tips to study the magnetic properties of samples, we 

will now give another brief example regarding their chemical sensitivity. During the topographic 

scan, strong Δf variations are often observed, a good example of which is exhibited in figure 4.11. 

According to the famous Cleveland’s formula (refer to chapter 5 for further information), if one 

assumes both the PLL and the topographic feedbacks to work ideally, figures 4.11.b and e yield a 

map of the energy dissipation during the experiment. In general, different materials are expected to 

interact and dissipate energy in different ways so these images might be interpreted as 

compositional maps. Different materials seem to be present: the cobalt forming the stripe, the 

silicon substrate and grains of an adsorbed material on top of the cobalt. 

 

 

 

Figure 4.11: Chemical sensitivity. Material sensitivity of the homemade tips when measuring the cobalt stripe 1.6 μm 

wide described in section 2.4. (a) & (d) Topography and the corresponding (b) & (e) frequency shift maps during the 

same scan. (c) & (f) MFM images of the same region.  
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A well defined dark stain covering a big part of the magnetic stripe is present in figures 4.11.b and 

e. Its origin could be the presence of a different material adsorbed on the cobalt or even underneath; 

the fact that the stain does not extend over the substrate seems to indicate that the unexpected 

substance was adsorbed after the sample fabrication. Less repulsive force gradients originate from 

the tip-stain interaction, as compared to the interaction with the remaining materials present in the 

sample. In this sense, chemical sensitivity can be achieved with a high lateral resolution. Eventual 

charging and electrostatic effects are unlikely, as no relevant frequency shifts are recorded during 

the retrace scan (figure 4.11.c, f). Notice that, apart from a series of higher grains, no remarkable 

feature is observed within the stain region in the topographic images. Fortunately, this accidental 

adsorption does not have any influence in the magnetic behavior of the sample, as is deduced from 

the MFM images.  

 

An additional example of the 350 nm wide stripe is provided in figure 4.12. Taking a look at the 

frequency shift map obtained this time during the topographic scan (fig. 4.12.b), two features stand 

out. The first one is the lateral resolution achieved; the second one is the sensitivity to discern 

between the different materials present in the sample. The outstanding detail of this image becomes 

even more evident when zooming in, as is shown in figure 4.12.d. There, a grain as small as 5 nm 

is resolved and yields a frequency variation of 190 Hz compared to the surrounding region. This 

requires the PLL to apply a voltage of 1.95 V – in order to track the resonance frequency of the 

cantilever – over a noise level of around 5 mV, representing a signal-to-noise ratio of around 400 

for such a tiny particle. 

 

Although remarkable as well, the corresponding magnified topography lacks such outstanding 

detailed information (fig. 4.12.c). Thus, higher resolution seems to be achievable through the 

dissipation map; this issue will be further discussed in chapter 5. It is important to note that figure 

4.12.b and d show raw data without manipulation. In addition, we recall that experiments were 

carried out in ambient conditions. 
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Figure 4.12: Lateral resolution in chemical sensing. (a) Topography and (b) frequency shift images of the 350 nm wide 

stripe (see section 2.4) recorded during the topographic scan. (c) & (d) Magnified images of the framed regions in (a) & 

(b), respectively. (e) Profile drawn in (d), where a peak around 5 nm in width yields a signal-to-noise ratio of 400. 

 

3.2. Observation of magnetic vortices in Co circular dots 

 

In this second brief example, we study the formation of vortices in square arrays of circular Co dots 

that were fabricated by electron beam lithography (EBL) and lift-off techniques. The 

polycrystalline dots are 20 nm thick and 1 μm in diameter and their separation distance is 1 μm. 

This collaboration gave rise to a paper published during the first year of my thesis 
15

 and a second 

one is currently in preparation 
16

. 

 

Even although magnetic vortices were theoretically predicted long time ago 
14,17

, the vortex core 

was not experimentally observed until quite recent magnetic force microscopy 
18

 and spin polarized 

tunneling microscopy 
19

 measurements. The interest in this particular spin configuration arises from 

the possibility of its implementation as a key element in a new type of high density storage media 
20

 

                                                 
15 F. G. Aliev, D. Dieleman, A. A. Awad, A. Asenjo, O. Iglesias-Freire, M. García-Hernández and V. Methlushko, 

Proceedings – 12th International Conference on Electromagnetics in Advanced Applications (2010), 160-163 
16 Ó. Iglesias-Freire, A. A. Awad, V. Methlushko, F. G. Aliev and A. Asenjo (in preparation) 
17 C. Kittel, Review of Modern Physics 21 (1949) 541 
18 T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto and T. Ono, Science 289 (2000) 930-932 
19 A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern and R. Wiesendanger, Science 298 (2002) 577 
20 S. Bader, Review of Modern Physics 78 (2006) 1 
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and the introduction of vortices in spin polarized current driven spintronic devices such as vortex 

based spin torque oscillators 
21

, as well as its possible implantation in logic operation devices 
22

. 

Although a single vortex configuration has already been shown in the equilibrium state of figure 

4.1.b, some experimental and theoretical works 
23,24,25 

report on the possibility of having an 

intermediate double vortex configuration in circular magnetic dots, for a wide range of fields 

between saturation and the single vortex state.  

 

Initial attempts to measure this sample with low moment commercial probes were unsuccessful. 

After trying with homemade tips of different thicknesses, the best results were found for the 20 nm 

thick coating. In order to support the idea of having two vortices, micromagnetic simulations were 

used to simulate the reversal process in a cylindrical nanostructure 1035 nm in diameter and 20 nm 

in thickness, using a cubic cell size of (5x5x5) nm
3
. On the way from saturation, they predict the 

formation of a double vortex structure, in which both vortices interact with each other and describe 

a correlated movement with both an azymuthal and radial components.  

 

As usual when dealing with lithographed samples, the effects of the resist used during the 

patterning process can be observed in the topographic image shown in figure 4.13. Nevertheless, 

dots with well defined circular shapes are in general seen. The resulting MFM measurements under 

the influence of an IP magnetic field, as well as the simulated images obtained with OOMMF, are 

also presented in the same figure. The experiment shows a beautiful domain structure, in which a 

leaf-like contour line defines the frontiers between regions with different spin orientations (red 

arrows have been plotted in two of the simulated images to help with the interpretation). They can 

be interpreted as hybrids between Néel and vortex domain walls, in which the magnetization 

remains in the sample plane with the exception of the singularities at the vortex cores.  

 

The two vortices (highlighted with red circles in the first simulated image) have opposite chiralities 

and evolve in a synchronous way describing trajectories that seem to be correlated to each other. In 

the first MFM image of the sequence, both vortices have recently nucleated and their cores are 

located at the center of the cross-like contrasts present in the top-left and bottom-right regions of 

the dot. As the field is swept, both cores move along the edges of the leaf-like feature to the 

opposite side of the dot in a symmetric way. During this reversal process, the leaf-like feature in 

the center gets wider and distorted, so that vortices do not annihilate at the exact opposite points 

                                                 
21 V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Branganca, O. Ozatay, J. C. Sankey, D. C. Ralph and R. A. 

Buhrman, Nature Physics 3 (2007) 498-503 
22 R. P. Cowburn and M. E. Welland, Science 287 (2000) 1466 
23 T. Pokhil, D. Song and J. Nowak, Journal of Applied Physics 87 (2000) 6319 
24 I. L. Prejbeanu, M. Natali, L. D. Buda, U. Ebels, A. Lebib, Y. Chen and K. Ounadjela, Journal of Applied Physics 91 

(2002) 7343 
25 C. A. F. Vaz, M. Kläui, L. J. Heyderman, C. David, F. Nolting and J. A. C. Bland, Physical Review B 72 (2005) 

224426 
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from where they nucleated. Finally, they approach the edge of the nanostructure and annihilate, 

leaving the main component of the IP magnetization along the vertical direction and reversed from 

the initial situation. Notice the outstanding agreement observed between the experiment and 

simulations. Not only the leaf-like feature is experimentally observed but also evolution of the 

vortices position is predicted.  

 

 

 

Figure 4.13: The double vortex state. Topography, MFM images and dynamic simulated states of a cobalt dot 1 μm in 

diameter and 20 nm thick, taken under an IP field along the vertical direction. The field sequence in the MFM maps was: 

-5 mT, 0 mT, +3 mT (upper row), +5 mT, +7 mT, +10 mT and +20 mT (lower row), after negative saturation. 

 

Again, simulations prove to be a helpful tool for the interpretation of MFM images. This reversal 

process has already been reported 
24

 and the authors were able to successfully describe the 

mechanism involved. For doing so, experiments were done scanning the tip at height distances of 

100-200 nm, resulting in low resolution images that are presented highly equalized to sharpen the 

domain boundaries. In another report 
23

, authors claims to have recorded the reversal process of 
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single and double vortex states by means of MFM in Ni80Fe20 circular dots of variable thicknesses; 

however, none of them is actually achieved since the stray field of the tip in their experiments is 

too strong and induces rotation of spins in the soft sample. A study on tip-induced MFM artifacts 

will be described later in section 5.3. 

 

In our case, it was possible to obtain simultaneously topographic and magnetic maps of this 

metastable state with a remarkable detail, even when the vortices were located close to the 

morphological edges. The reduced influence of our sensing tips allowed tracking the topographic 

profile and obtaining MFM images at a lift height of 30 nm over the tip-sample distance used 

during the topographic scan, resulting in a considerable enhanced definition in the magnetic images 

reported in figure 4.13. Thus, a combination of reduced influence and high resolution has been 

achieved while studying a sample that is very sensitive to external perturbations. 

 

4. Micromagnetic simulations 
 

With the idea of getting a general overview of the sensors described in this chapter, 3D simulations 

were carried out to estimate their stray field and are briefly discussed here. The ferromagnetic 

coating in most commercial MFM probes is usually deposited onto the whole tip, whereas only one 

side is mainly covered in our case. Therefore, two different geometries were designed for the 

simulations: the first one consists of a hollow cone with a 16 nm thin wall and a semi-angle of 10 º 

(fig. 4.14.a), whereas the second one corresponds to a half of the former region (fig. 4.14.b).  

 

 

 

Figure 4.14: The simulated tips. View of the simulated (a) conical and a (b) semi-conical tips. 

(a) (b)Conical Semi-Conical

448 nm

80 °
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A spherical apex with a 16 nm radius was defined at the end of the nanostructures and made to join 

the conical region in a continuous way. This radius is a bit larger than the nominal value (≈ 10 nm) 

given by the manufacturer of the AFM probes, onto which the magnetic coating is deposited. The 

final thickness is 16 nm in both cases and the standard parameters for polycrystalline cobalt were 

used (MS=1.4∙10
6
 A/m, k1=0 and A=3∙10

-13
 J/m). Due to computing restrictions, only the last 448 

nm of the sensing tip were simulated, with a cell size of (2 x 2 x 4) nm
3
, and an additional empty 

volume 60 nm in height was included below the apex. In order to account for the influence of the 

remaining part of the tip that is not considered here, a boundary condition was introduced that 

defines a magnetic field Bz=1 T applied to those cells in the uppermost layer of figure 4.14, in 

which magnetic material is present. This bounding value does not affect other regions of space, 

apart from those spins at the border of the tips. 

 

 

 

Figure 4.15: The remanent state. Orientation of spins in the remanent state at the apex of (a) the conical and (b) the 

semi-conical tips. (c) Simulated decay of the axial component of the stray field for both tips, as a function of distance. 

 

After saturating the tips along the axial direction, the field was switched off and the most stable 

distribution of the magnetization was obtained. Then, the remanent stray fields emerging from both 

tips were calculated in the empty volume up to distances of 60 nm from the apex. In both cases, the 

magnetic moments at the apex have a predominant OOP component, as can be seen in figures 

4.15.a and b. The OOP component of the field is often considered crucial as it can irreversibly 

modify the magnetic state of the measured sample. Figure 2.15.c shows the decay with distance of 

0 10 20 30 40 50 60
0

200

400

600

800

B
Z
 (

m
T

)

Distance from apex (nm)

 Conical

 Semi-Conical

(a) (b)

(c)

Z

X



Chapter 4: Homemade MFM tips for specific purposes 

142 

 

the OOP stray fields of both probes. A significantly stronger axial field is generated by the conical 

probe, which can be attributed to the larger amount of magnetic materials present in the tip.  

 

The IP component can also be relevant depending on the domain structure, a good example of 

which is the vortex configuration – much more sensitive to IP fields. A comparison between the 

spatial distributions of BX is shown in figure 4.16, corresponding to a separation distance of 20 nm 

from the apex. The tip apex is located at the center of the XY plane and the same color bar has been 

used for both cases, making it easier to compare them. Again, lower field values are attributed to 

the semi-conical probe. 

 

 

 

Figure 4.16: The X component. Isometric view of BX at a separation distance of 20 nm from the tip apex, for (a) the 

conical and (b) the semi-conical probes. The apex is placed in the origin of the XY plane. 

 

Nevertheless, in order to account for the total IP component of the field, the modulus 

BIP=(BX
2
+BY

2
)

1/2
 must be considered. This is shown in figure 4.17 in separate columns for each 

geometry, again at a separation distance of 20 nm. The maximum IP fields are reached at points not 

right below the tip apex but displaced laterally around 20 nm from the tip position. A radial 

symmetry is observed for the conical shape, which in turn suggests that the use of cubic cells does 

not introduce relevant errors in the results (fig. 4.17.a).  

 

On the contrary, an asymmetric field originates from the semi-conical sensor, with the highest 

values reached at the opposite side of the magnetic coating (fig. 4.17.b). Note that, as sketched in 

figure 4.15.b, the magnetic material is present in the region of space where X<0. As can be 

observed by zooming-in on the central region of the map (fig. 4.17.d), the points of lowest IP field 

are not located right below the apex position; instead, they are displaced by a few nanometers to the 

side where the magnetic coating covers the AFM probe. 
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Figure 4.17: The IP component. Color map of the IP component of the stray field coming out from the (a) conical and 

(b) semi-conical, at a distance of 20 nm. 

 

Thus, with these brief calculations we showed that, given a fixed deposition of ferromagnetic 

material, semi-conical geometries interact in a reduced way with the sample. In addition, spins at 

the apex of this semi-conical like MFM probes are predicted (and indeed observed) to be more 

sensitive to external perturbations, making them good candidates for the study of magnetic 

dissipation, as will be discussed next in the following chapter. The asymmetry found with this half 

coated probes is not considered to be relevant, since spins at the apex have a predominant OOP 

component. Thus, MFM measurements reflect mainly the Z component of the magnetization. 

 

As conclusions, in this chapter we described the fabrication and characterization of homemade 

MFM sensors, using a fast and low cost method that allows us tuning the probe to the sample 

characteristics. A remarkable lateral resolution, both topographic and magnetic, is achieved. In 

addition, a reduced stray field was demonstrated by measuring the evolution of a double-vortex 

state in Co dots, while tracking the topography during the measurement. Enhanced chemical 

sensitivity is also shown for the case of Co stripes, in which a resolution of 5 nm is reached with a 

signal-to-noise ration of 400. Last, micromagnetic simulations suggest half coated probes to 

generate a reduced stray field, as compared to fully coated tips of the same thickness. 
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Chapter 5: Extracting useful information from magnetic 

dissipation 

 

Measuring dissipation in scanning force microscopy relies on extracting physical information from 

either tip or sample by recording variations in the cantilever oscillation. In general, non-

conservative interactions give rise to a decrease in the oscillation amplitude of the lever, as some 

energy is transferred in every oscillation cycle into dissipative processes. The first demonstration of 

dissipation experiments was reported by Denk and Pohl 
1
, who analyzed the resonance of an 

oscillating cantilever with a metallic tip in electrostatic interaction with a heterostructured 

semiconducting sample. In that experiment, the cantilever oscillation was damped by Joule 

dissipation of charge carriers, which were moved by the oscillating electric field produced by the 

tip vibration, an effect that was already commented in chapter 3. The authors pointed out that the 

damping deduced from the resonance analysis could also be obtained from the excitation amplitude 

needed to maintain a constant oscillation amplitude.  

 

In general terms, there can be multiple causes for this dissipation of energy such as electron 

tunnelling 
2,3,4

, non-contact friction 
5
 or atom rearrangements induced by short range interactions 

between tip and sample 
6,7,8

. Atomic resolution has also been obtained in dissipation experiments 

with non-contact dynamic force microscopy, the first report of them studying the Si(111) 7x7 

surface 
9
. Quantitative dissipation measurements generally show a large variation, in some cases 

not even agreeing on the relative magnitude 
10,11

. The accuracy and reliability of these results is 

controversial, as extensive studies have shown that spurious instrumental artifacts might be present 

during the experiment performance 
12,13

. 

 

                                                 
1 W. Denk and D. W. Pohl, Applied Physics Letters 59 (1991) 2171 
2 L. Cockins, Y. Miyahara, S. D. Bennett, A. A. Clerk, S. Studenikin, P. Poole, A. Sachrajda and P. Grütter, Proceedings 

of the National Academy of Science 107 (2010) 9496-9501 
3 S. D. Bennett, L. Cockins, Y. Miyahara, P. Grütter and A. A. Clerk, Physical Review Letters 104 (2010) 017203 
4 L. Cockins, Y. Miyahara, S. D. Bennett, A. A. Clerk and P. Grütter, Nano Letters (2012) 709-713 
5 M. Kisiel, E. Gnecco, U. Gysin, L. Marot, S. Rast and E. Meyer, Nature Materials 10 (2011) 119-122 
6 N. Oyabu, P. Pou, Y. Sugimoto, P. Jelinek, M. Abe, S. Morita, R. Pérez and Ó. Custance, Physical Review Letters 96 

(2006) 106101 
7 H. J. Hug and A. Baratoff, Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger and E. Meyer 

(Springer-Verlag, Berlin, 2002), p. 395 
8 S. Alireza Ghasemi, S. Goedecker, A. Baratoff. T. Lenosky, E. Meyer and H. J. Hug, Physical Review Letters 100 

(2008) 236106 
9 R. Lüthi, E. Meyer, M. Bammerlin, A. Baratoff, L. Howald, C. Gerber and H-J. Güntherodt, Surface Review Letters 4 

(1997) 1025 
10 L. Nony, A. Baratoff, D. Schär, O. Pfeiffer, A. Wetzel and E. Meyer, Physical Review B 74 (2006) 235439 
11 G. Langewisch, H. Fuchs and A. Schirmeisen, Nanotechnology 21 (2010) 345703 
12 A. Labuda, K. Kobayashi, D. Kiracofe, K. Suzuki, P. H. Grütter and H. Yamada, AIP Advances 1 (2011) 022136 
13 A. Labuda, Y. Miyahara, L. Cockins and P. H. Grütter, Physical Review B 84 (2011) 125433 
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In particular, dissipation in magnetic force microscopy has been studied by few groups in the 

world, mainly by the end of last century. It has been reported to arise from tip-induced 

magnetization changes in magnetic samples and this effect is commonly undesired when carrying 

out MFM experiments. If one assumes that the magnetic structure of the tip remains constant, then 

the localized dissipation signal can be attributed to magnetoelastic interactions, eddy currents or 

variations in pinning potentials. Remarkably, damping images usually show more details and seem 

to have a higher resolution than the force gradient images yielded by MFM. 

 

In this chapter, we describe our ongoing work on this field and present some results already 

obtained studying magnetic dissipation with MFM; this corresponds to the last and most innovative 

part of this thesis. On the one hand, we have observed that different phenomena can be responsible 

for this dissipation of energy and that a counterintuitive decrease of dissipation can take place in 

some specific cases by going closer to the sample. On the other hand, we demonstrate that care 

should be taken when interpreting MFM results, since dissipative processes can introduce features 

in the images that should not be considered as part of the sample’s domain structure. Remarkably, a 

method is shown to obtain 3D maps of the magnetic field emerging from the studied sample, with 

very high spatial resolution. 

 

1. Fundamentals beneath dissipation in AFM 
 

A very simple formula deduced by Cleveland and co-workers 
14

 is commonly used to calculate the 

energy dissipated in scanning probe force experiments. It relies on the fact that, in equilibrium, the 

average rate at which energy is fed into the cantilever must equal the average rate at which energy 

is dissipated by the cantilever and the interacting tip: 

 

                         (5.1) 

 

where we can express the instantaneous power as: 

 

  
  

  
 

      

  
 

     

  
          

 

                 describing the deflection from equilibrium of the end of the cantilever. The 

first term on the right side of equation 5.1 is attributed to energy dissipated by the body of the 

                                                 
14 J. P. Cleveland, B. Anczykowski, A. E. Schmid and V. B. Elings, Applied Physics Letters 72 (1998) 2613 
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cantilever moving in a viscous environment and is well modelled, to a first approximation, by a 

viscous damping of the form: 

 

                  (5.2) 

 

Integrating over a complete cycle, the average dissipated power yields: 

 

              
 

 
             

 

 

 
       

  
               

  
 

 

 
       

 
 

 

Notice that the viscous damping coefficient μ was implicitly considered to remain unchanged over 

time, i.e. over distance, so that it could be taken out of the integral. Experimentally, it is easier to 

calculate μ by measuring the cantilever spring constant k, the resonance frequency ω0 and the 

quality factor Q: 

 

  
 

    
 

so: 

               
       

      
 (5.3) 

 

On the other hand, the term on the left side of equation 5.1 describes the power delivered to the tip 

by the driver, which results in an elastic force such that: 

 

                                

 

where the sinusoidal displacement of the exciting piezoelectric is                           . A 

similar analysis for the average input power of the system yields 
15

: 

 

         
 

 
                              

 

 

  

 
      

  
                               

  
 

 

            

                                                 
15 The same result is obtained integrating:          

 

 
                                    

 

 
, since all the power 

input by the driving piezo is supposed to be transmitted to the oscillating lever. 
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        (5.4) 

 

As a result, combining equations 5.1, 5.3 and 5.4 we obtain Cleveland’s formula for the 

experimental dissipation of energy associated to tip-sample interactions: 

 

        
 

 
 
      

 
    

       

 
        

 

  
  (5.5) 

 

Note that the reason that Q and ω0 appear in equation 5.5 is to express the viscous damping 

coefficient μ in terms of experimentally accessible quantities. It does not imply that the resonant 

frequency nor the quality factor of the interacting cantilever remain the same, it only assumes that 

the viscous damping coefficient describing the damping of the body of the lever remains 

unchanged. 

 

Further simplifications depend on the operating mode used in the experiment. We distinguish 

between four different cases: 

 

 Amplitude modulation AFM (AM-AFM). In particular, if no phase locked loop (PLL) is 

used, the drive frequency is typically chosen to be ω0 and the free amplitude of the 

cantilever turns out to be            . With this: 

 

       
 

 
 
       

 
  

  

 
           

 

An important consequence of former equation is that, if the tip loses no energy, then the 

amplitude and the phase are not independent and          
 

  
 . In AFM experiments, 

phase imaging is performed with the amplitude held constant by the feedback loop used to 

map the topography, so it is only when the tip-sample interaction losses vary that phase 

contrast will be observed. However, this might not be the case during the retrace scan in 

MFM measurements as different interactions are present compared to the first scan. There, 
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since no feedback maintains the amplitude constant, conservative interactions such as 

magnetism also cause phase shifts that subsequently modify the oscillation amplitude A. In 

this situation, no separation between conservative and dissipative interactions can be made. 

 

 Amplitude modulation AFM with a PLL. If a PLL is implemented, another feedback 

loop tracks the resonance peak by setting    
  , so that: 

 

        
 

 
 
      

 
  

  

 
 

 

  
  (5.6) 

 

In this case, non-dissipative interactions connect changes in the resonance frequency to 

variations in the oscillation amplitude in the form      
  

 
. In other words, 

conservative interactions modify the elastic constant               
   

  
 in such a way 

that attractive forces “soften” the cantilever and give rise to larger amplitudes and 

vizeversa, for constant excitation signals as is usually the case in AM-AFM. Hence, during 

the topographic scan – and disregarding eventual errors in the main feedback – one can 

associate variations in the oscillation frequency to dissipative processes. Again, in MFM 

measurements one would expect changes in the oscillation amplitude due to non-

dissipative magnetostatic interactions that shift the resonance frequency. However, such 

variations are predicted to be very small and strong frequency shifts are necessary to 

register this effect. For instance, for a cantilever with a free resonance frequency ω0=70 

kHz and a free oscillation amplitude A0=10 nm, frequency shifts of 100 Hz result in an 

amplitude change of 15 pm, below the thermal noise level at room temperature. 

 

 Frequency modulation AFM (FM-AFM). In this operating mode, the one most 

commonly used when measuring in vacuum environments, a third feedback loop is used to 

keep the oscillation amplitude constant. For doing so, a variable P-I gain multiplies the 

excitation signal in a controlled way: 

 

                         

 

This variable gain R(t) accounts for eventual deviations of the amplitude from a chosen 

setpoint value: 
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It thus carries the information about energy losses of the lever. As a result, the mean 

dissipated power must be expressed as a function of this driving signal 
16

: 

 

        
 

 
 
       

 
  

    

      
 

 

  
  (5.7) 

 

where Vexc,0 is the voltage needed to maintain the oscillation amplitude far from the surface. 

Frequency shifts caused by pure conservative interactions provoke variations in the 

oscillation amplitude that are counterbalanced by tuning the voltage driving the 

piezoactuator. Topographic maps in FM-AFM correspond to surfaces of constant ω, so any 

feature observed in the Vexc is related to dissipative processes taking place during the 

topographic scan. 

 

 Drive-amplitude modulation AFM (DAM-AFM). This operating mode 
17

 is essentially 

equivalent to FM-AFM with the particularity that the topographic feedback does not keep 

the oscillation frequency constant but the excitation voltage instead. Thus, dissipative 

interactions during the topographic scan will now be recorded in the frequency shift 

channel. On the contrary, power losses will give rise to contrast in the driving voltage map 

during the MFM acquisition of data. 

 

1.1. Energy dissipation in magnetic materials 

 

The study of energy dissipation by means of magnetic force microscopy has been reported by few 

groups. It is based on the analysis of the oscillation damping to quantify the energy transferred 

from the tip to the magnetic sample and correlate it with some physical property. The first report 

was published by Grütter and co-workers 
18

, where they state that generation of phonons in the 

sample is an inevitable consequence, as the AC component of the stray field emerging from the tip 

leads to oscillations of the magnetic moments that create strain due to magnetoelastic coupling. In 

their model 
18,19

, dissipated energy in the order of tenths of fW is predicted, in agreement with their 

experimental results. As a proof of the usefulness of this magnetic dissipation imaging, the authors 

were able to distinguish between Bloch and Neél domain walls 
18,20

 by deducing the DW response 

                                                 
16 C. Loppacher, R. Bennewitz, O. Pfeiffer, M. Guggisberg, M. Bammerlin, S. Schär, V. Barwich, A. Baratoff and E. 

Meyer, Physical Review B 62 (2000) 13674-13679 
17 M. Jaafar, D. Martínez-Martín, M. Cuenca, J. Melcher, A. Raman and J. Gómez-Herrero, Beilstein Journal of 

Nanotechnology 3 (2012) 336-344 
18 P. Grütter, Y. Liu, P. LeBlanc and U. Dürig, Applied Physics Letters 71 (1997) 279-281 
19 Y. Liu, B. Ellman and P. Grütter, Applied Physics Letters 71 (1997) 1418-1420 
20 Y. Liu and P. Grütter, Journal of Applied Physics 83 (1998) 7333-7338 
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to in-plane and out-of-plane components of the tip stray field; additionally, they state to have 

detected magnetic structures in antiferromagnetically coupled multilayers not observable by 

standard magnetic force microscopy 
20

. 

 

There are other possible dissipative mechanisms besides magnetoelastic distortions of the 

crystalline lattice. Eddy currents originated in both tip and sample by the magnetic flux variation as 

the probes oscillates were estimated by Liu and co-workers 
19

 to dissipate 7 orders of magnitude 

less energy than magnetostrictive processes do, thus being out of the detection limit. However, 

eddy current damping is pointed out to be the major contribution to the dissipation observed over 

superconducting regions in Nb films 
21

. Proksch and co-workers 
22

 measured peak dissipation 

features of 300 fW at the domain wall positions; however, they interpret them as begin associated 

with irreversible domain wall motion induced by the oscillating tip in a repetitive way, seeming to 

reflect micromagnetic defects that act as pinning sites. The domains also showed significant 

dissipation in their experiment that was attributed to modulated rotation in the magnetization 

caused by the tip field. According to their estimations, even if the stray field of the MFM probe is 

larger than the bulk coercive field of a sample, local modifications to the domain structure may be 

reversible in the sense that the global demagnetizing forces from the unperturbed portions of the 

sample can be sufficient to correct for the localized influence of the tip once it has moved on to 

another area. Although not directly measuring energy dissipation, different groups 
23,24

 have been 

able to measure this tip-induced reorientation of spins in the sample by intentionally enhancing the 

tip-sample mutual influence. The local susceptibility was estimated by adding the contrasts of two 

MFM images obtained with reversed magnetization orientations. 

 

It is worth noting that the dissipation measured by MFM does not represent the entire magnetic 

power being dissipated by the probe. Because the cantilever is constrained to move vertically, 

lateral forces do not produce dissipation measurable via the amplitude drop. The energy dissipated 

in such processes is provided by the sample scanner instead and not by the piezoelectric driving the 

cantilever. It is also important to note that the cantilever provides a time averaged picture of the 

dissipated power and the measurable dissipation originates in processes being cycled repeatedly at 

the cantilever resonant frequency. Since the cantilever needs roughly Q oscillations to equilibrate, 

the response of the cantilever to a single, non-repeating event will be averaged over Q oscillations, 

causing it to appear Q times smaller than the same event happening repeatedly. In fact, a 

dissipation feature in an image might be a combination of repeated and single events.  

                                                 
21 M. Roseman and P. Grütter, Applied Surface Science 188 (2002) 416-420 
22 R. Proskch, K. Babcock and J. Cleveland, Applied Physics Letters 74 (1999) 419-421 
23 S. Foss, R. Proksch, E. D. Dahlberg, B. Moskowitz and B. Walsh, Applied Physics Letters 69 (1996) 3426-3428 
24 E. Zueco, W. Rave, R. Schäfer, A. Hubert and L. Schultz, Journal of Magnetism and Magnetic Materials 190 (1998) 

42-47 
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2. Negative dissipation gradients in magnetic force microscopy 

 

Here, we describe a study of the dependence of magnetic dissipation as a function of distance by 

means of MFM, an ongoing work in collaboration with Prof. Juan José Sáenz from Universidad 

Autónoma de Madrid. Experimental evidence is presented for a counterintuitive monotonous 

reduction of the dissipation as the distance between tip and surface decreases, so that increasing 

the tip-sample magnetic interaction can result in a reduction of magnetic losses. This behavior, 

which takes place when spins in the tip point parallel to those in the sample, can be understood in 

terms of hysteretic phenomena involved in the reorientation of the magnetic moments located at the 

tip apex. The magnetic response under an oscillating field is found to be strongly dependent on the 

polarity of the static stray field of the sample. Measured magnetic losses of few fW are in 

agreement with the quasi-static micromagnetic simulations performed by the collaborating group. 

This work is still open and will be submitted for peer reviewed publication in the next months. 

 

We set ourselves the goal to measure magnetic losses arising from a strongly coupled system 

comprised of a CoNi multilayer film and a commercial Nanosensors PPP-MFMR probe, as 

sketched in figure 5.1. The tip coercivity was previously measured to be about 35 mT by using the 

MFM based technique described in chapter 4. In order to reduce the capillarity effect between the 

tip and the sample surface, experiments were performed in low humidity conditions (below 5%). 

Hysteresis loops of the CoNi film reveal the existence of high perpendicular anisotropy with a 

coercive field of 165 mT and a remanent magnetization of 87 % the saturation value. The average 

domain size measured by MFM is around 140 nm for the demagnetized state.  

 

 

 

Figure 5.1: Description of the experiment. A sample with a strong OOP magnetization and average domain 

size of 140 nm has been studied. During the oscillation, the tip is subject to AC magnetic fields, as depicted 

in the hysteresis loop.  
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Topographic, oscillation amplitude and frequency shift images were recorded simultaneously with 

the tip scanning over the surface, as shown in figure 5.2, in ambient conditions. The amplitude 

modulation mode was used with a PLL enabled that tracks the resonance frequency, so that 

topography corresponds to constant oscillation amplitude images. Thus, contrast observed in the 

amplitude images taken during the topographic scan indicates deviations from the setpoint value 

and represents the main feedback error signal. As usual, a second scan is then performed retracing 

the topographic profile at a lift height of 30 nm, where the amplitude and frequency shifts can be 

obtained at a constant tip-sample distance with the main feedback disabled.  

 

The average power dissipated by tip-sample interactions can be obtained from data in figure 5.2, 

using equation (5.6). The spring constant was estimated to be k ≈ 1.6 N/m, the quality factor Q ≈ 

150, the natural resonance frequency f0 = 70220 Hz with a free oscillation amplitude A0 ≈ 16 nm. 

The resulting dissipation maps are displayed in figures 5.2.d and .h. Dissipative processes 

occurring at low distances seem to be dominated by van der Waals interactions, as a strong 

correlation is observed between the dissipation map in figure 5.2.d and the main feedback error 

(fig. 5.2.b). As it can be readily seen, the topographic feedback was not optimized and such 

deviations from a constant tip-sample distance cause higher topographic features to dissipate larger 

power. By having a look at figure 5.2.c, one can observe the magnetic domains mixed up with the 

topographic pattern in the frequency shift image taken at low distance. This interaction cross-talk 

could be partially due to the relatively large oscillation amplitudes used in the experiments (a 

setpoint value of 11 nm was used here) causing the tip to describe a trajectory along regions where 

different interactions are predominant. In any case, this confirms the strong magnetostatic coupling 

between tip and sample.  

 

On the contrary, during the 30 nm lifted scan the dissipation map (fig. 5.2.h) reproduces the MFM 

contrast (fig. 5.2.g) to a very good extent. In fact, as it is customary, a higher lateral resolution is 

achieved in the dissipation image 
18,22

, being able to resolve features below 10 nm in size (see the 

peak in fig. 5.2.e). Thus, energy dissipation at such separation distances is mainly caused by the 

mutual stray field influence in both the tip and the CoNi multilayer. Interestingly, an experienced 

MFM user quickly identifies some fancy stains in figure 5.2.g, also observed in figure 5.2.f. They 

have the same shape as the attractive domains but are a bit shifted from their positions to the 

bottom-right direction. Strikingly, the dissipation map reveals them to be the less dissipative areas 

of the image, whereas the highest power loss rates are found in their contour lines (fig. 5.2.h).  
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Figure 5.2: The sample (a) Topography and corresponding (b) & (f) oscillation amplitude, (c) & (g) 

frequency shift and (d) & (h) dissipation images of the CoNi multilayer film. (a)-(d) were measured while 

tracking the topography and (f)-(h) correspond to the 30 nm lifted scan. (e) Profile in the retrace dissipation 

image (h), showing a 5 fW peak with a lateral resolution below 10 nm. 
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These unusual features might be caused by sudden rotation of spins in the tip, once a sufficiently 

strong Z component of the sample stray field is reached. The shape anisotropy of an MFM probe 

forces its spins to point along a specific direction, usually considered to be perpendicular to the 

sample surface (Z axis). If the probe scans the surface at a non-perpendicular angle, a misalignment 

occurs between the stray field and the tip’s magnetization, so that for strong enough torques the 

magnetization should be able to rotate away from its shape induced position. This might happen 

close to the central areas of the attractive domains (see the strength of the magnetostatic coupling in 

the scale bar of figure 5.2.g), giving rise to an enhanced MFM contrast and a lower dissipation once 

the magnetic moments point parallel to the field. The highly dissipative contour lines indicate the 

transition regions where the magnetic torque reaches the critical value, in such a way that the 

magnetization flips from the two stable positions during one oscillation cycle in a reversible – 

though hysteretic – way. As will be described in more detail in section 5.3, care must be taken if 

one wants to extract conclusions from these MFM images as the fancy stains originate from 

processes taking place in the sensing probe and not in the sample. 

 

It was just mentioned that more attractive magnetostatic interactions yield less dissipative contrast. 

This makes sense thinking in terms of the system trying to reach a minimal Zeeman energy. 

Applying small AC fields to a sample close to its saturation state is not expected to cause much 

power loss, since the small susceptibility give rise to minor loops that barely show hysteretic 

behavior (see sketch in figure 5.1). On the contrary, larger susceptibilities occur on the repulsive 

side of a hysteresis loop, i.e. when the tip scans over a repulsive domain. Thus, AC fields should 

provoke a stronger damping in the cantilever oscillation in this case. Grütter and co-workers 
18

 

already realized the importance of the magnetization polarity with respect to the stray field 

direction to explain dissipation maxima and minima in their results.  

 

Keeping in mind this idea that the closer to saturation a sample is the less dissipation one expects, 

an accurate evaluation of the dependence of energy losses on distance was carried out using a 

variation of the 3D modes explained in chapter 2.2. In this case, the MFM probe was scanned along 

a specific direction parallel to the sample surface (X in figure 5.3.a) while the separation distance z 

was gradually decreased down to contact. Properly selecting the scan direction allows for 

visualizing the interaction with magnetic domains of alternating polarities as a function of distance. 

Oscillation amplitude and frequency shift data were recorded simultaneously and are shown in the 

left column of figure 5.3, together with the calculated dissipated power. On the right, profiles 

corresponding to their respective evolutions with distance are plotted for two cases: over an 

attractive and over a repulsive domain. Note that no topographic feedback was enabled during the 

realization of this experiment so the tip starts tapping the surface for different z values depending 

on the local roughness. In order to simplify the interpretation of MFM images, the horizontal axis 



Chapter 5: Extracting useful information from magnetic dissipation 

156 

 

on the profiles shown was renormalized so that zeros correspond to the distance at which the 

topography was recorded in figure 5.2, i.e.  AOSC (zpiezo=0) = 11 nm. Black contrast in figure 5.3.b 

(notice the scale bar) stands for amplitudes below this setpoint value, thus reflecting the 

topographic roughness of the surface. At such distances, the influence of magnetostatics is masked 

by van der Waals interactions and the amplitude is not sensitive to the domain polarity. 

 

The resonance frequency of the oscillating cantilever (fig. 5.3.a) reflects the long range character of 

the magnetostatic interaction with the CoNi sample, detectable at distances up to tens of 

nanometers far away from the surface. The domain polarity is also reflected in the amplitude image 

for a wide range of separation values (fig. 5.3.b). In addition, a significant difference in power loss 

is observed scanning over parallel and antiparallel domains; however, both curves in figure 5.3.c 

converge to the same value for distances around 75 nm. This means that, within the experimental 

noise, no domain sensitivity is present in the damping over such value, whereas the conservative 

interaction is still distinguishable in the frequency shift up to around 100 nm from the sample. 

Since noise is averaged and filtered out by statistics, a difference between domains is indeed 

observed in the experimental images for distances close to 150 nm.  

 

The dissipation profile for repulsive interactions shows a slight increase of 1-2 fW as the tip 

approaches the surface (black profile in the inset of figure 5.3.c). The same happens to the 

oscillation amplitude, which decreases by around 1 angstrom in the last 70 nm range displayed in 

the inset of figure 5.3.b before the probe starts tapping on the surface. On the contrary, a surprising 

negative dissipation gradient is clearly seen if an attractive interaction is present (red profile in 

figure 5.3.c). This means that, for a relatively large range of distances, the closer you get the less 

energy you need to make the tip oscillate.  

 

It may sound counterintuitive but if magnetic losses are dominant, that is something one could 

expect from the argument sketched before. Due to the oscillatory movement, the end of the tip is 

subject to minor cycles with their corresponding energy loss, superimposed on a DC bias field. 

Going towards the surface results in a fast raise of the stray field, which can be interpreted as an 

enhanced biasing towards the saturation region of the hysteresis loop. Under such circumstances, 

the area enclosed by the minor loop during one oscillation cycle decreases for lower gaps (see fig. 

5.1). However, a subtle consideration must be taken into account: even if the amplitude remained 

constant while approaching the surface, the field range that the probe is subject to would not. The 

field gradient is not homogeneous but increases rapidly for low distances. The same oscillation 

amplitude thus becomes equivalent to a much larger field range. For the limit of very small 

oscillations and a dipolar sample, the field range applied during the minor hysteresis loop increases 

so as to z
-4

.  
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Figure 5.3: 3D modes (I). The tip was scanned along a 1.5 μm distance parallel to the sample surface 

(horizontal axis) while varying the tip-sample separation by 150 nm (vertical axis). Left column: (a) 

Frequency shift, (b) oscillation amplitude and (c) dissipated power images. Right column: Profiles 

corresponding to the colored lines seen in the images on the left. Red/black profiles give information about 

the dependence on distance over an attractive/repulsive domain. The horizontal axis on the profiles was 

renormalized so that zero corresponds to the distance of the topography feedback. 

 

Although this argument provides a simple qualitative explanation for our experimental findings, the 

actual losses (i.e. the area enclosed within a minor hysteresis loop) must be estimated from a 
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microscopic model. The microscopic mechanisms behind the energy loss in minor hysteresis loops 

have been largely discussed in the literature 
25

 but are still far from being fully understood 
26

. In 

order to obtain some quantitative data, 3D micromagnetic calculations were performed using the 

OOMMF code. The tip was modeled as a square based pyramid (see fig. 5.4.a) coated with a 51 nm 

thick cobalt layer, with a saturation magnetization MS=1.4∙10
6
 A/m, a magnetocrystalline 

anisotropy constant K1=5.3∙10
5
 J/m

3
 and a exchange stiffness A=3.0∙10

-11
 J/m. The numerical 

calculations were performed using 3 nm side cubic cells. The sample was simulated as a 36 nm 

thick film and its magnetization was kept fixed during the simulation (MS
sample

=3.3∙10
5
 A/m), either 

parallel or antiparallel to the tip magnetization.   

 

 

 

Figure 5.4: Micromagnetic simulations. (a)-(b) Sketch of the tip-sample configuration used in the 

calculations for (a) attractive and (b) repulsive interactions. (c)-(d) Hysteresis loops in the tip-sample force 

as function of the separation distance during one oscillation cycle, obtained for the (c) parallel and (d) 

antiparallel configurations.  

 

To simulate the tip oscillation, the tip apex is initially located in the centre of the domain (of width 

138 nm) and 21 nm above the sample surface, moved down to a tip-sample separation of 9 nm 

using 3 nm steps and, then, it is retracted back to the initial position. In the initial magnetic 

                                                 
25 D. C. Jiles and Y. Melikhov, “Modeling of nonlinear behavior and hysteresis in magnetic materials”, Handbook of 

magnetism and advanced magnetic materials (Wiley Online Library, 2007) 
26 A. Berger, S. Mangin, J. McCord, O. Hellwig and E. E. Fullerton, Physical Review B 82 (2010) 104423 
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configuration of the tip, all spins are pointing downwards and in every step the magnetization is 

fully relaxed before moving the tip; this final magnetization being the starting configuration for the 

next step. We repeat the approach and retract cycle twice, but only use the second one in order to 

avoid ‘memory’ effects of the initial magnetic configuration. The tip magnetization presents a 

hysteretic behavior and so does the magnetic force between the two objects. Let us label the z 

component of the magnetic force during the approach and retract curves, at a given separation 

distance, as Fz,↓ and Fz,↑, respectively. Deviations of the force from the average value during the 

second cycle (ΔFz,↓=Fz,↓−Fz and ΔFz,↑=Fz,↑− Fz) are depicted in figures 5.4.c-d for both cases, 

where the average force is Fz=(Fz,↓+Fz,↑)/2. 

 

In order to quantify the dissipated power, an oscillation frequency similar to the experimental case 

was chosen, namely f=75 kHz. The resulting values are P↓↓=1,2 fW for parallel and P↓↑= 1,4 fW for 

antiparallel domains, respectively. As in the experimental case, larger power losses take place when 

the sample domains point antiparallel to the magnetization in the tip. However, these values differ 

by two orders of magnitude from the measured dissipations presented above. Reasons for theses 

larger values might be the mutual influence and subsequent losses also taking place in the sample, 

larger field gradients and larger amounts of interacting spins being present in the real case. An 

additional source of damping could be caused by a raise of the viscous damping coefficient with 

decreasing distance, which was implicitly assumed to remain constant in equation 5.2. This 

increase can be explained in terms of the enhanced friction of the air layers as the gap between tip 

and sample diminishes, especially at very low separations.  

 

As both sorts of damping are expected to change gradually with distance, it thus becomes difficult 

to potentially separate their contributions. If, eventually, a considerable amount of spins suddenly 

flips as a consequence of the field emerging from the sample, a correlation to purely magnetic 

dissipation could be obtained. Such sudden jumps were indeed observed as dissipative contour 

rings in figure 5.2.h and magnetic energy losses in the order of a few fW are in good agreement 

with the experimental peak measured in figure 5.2.e. Thus, this simple model successfully explains 

energy dissipated by relatively small regions of the interacting tip.  

 

Useful information may also be extracted by studying the dependence on distance of such 

unusual dissipative rings. This is shown in figure 5.5, where a lower oscillation amplitude of 9 

nm was used. The three-dimensional regions subtended by these rings can be clearly distinguished 

in the three images shown, having parabolic cross sections. It was already mentioned that a 

stronger attraction takes place at points within this parabolic volume, which becomes evident if one 

compares the values of the red profiles in figures 5.5.a and 5.3.a (see insets). In addition, the 
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amplitude grows by over 1 nm and power losses drop pronouncedly, after the probe has entered 

this region. 

 

 

 

Figure 5.5: 3D modes (II). The tip was again scanned horizontally along 1.5 μm while sweeping the tip-

sample distance by 60 nm, with an oscillation amplitude of 9 nm. A bump and subsequent changes in the (a) 

frequency shift, (b) amplitude and (c) dissipation images (left column) and profiles in them (right column) 

are clearly visible. 

 

 -60.00 Hz

 -380.00 Hz

0 10 20 30 40
-1500

-1250

-1000

-750

-500

-250

F
re

q
u

e
n

c
y

 s
h

if
t 

(H
z
)

Piezo elongation (nm)

 Repulsive domain

 Attractive domain

10 20 30 40
-400

-350

-300

-250

-200

-150

 

 

 11.00 nm

 9.00 nm

 0.09 pW

 0.06 pW

(a)

(c)

(b)

X

Z

0 10 20 30 40
9,0

9,5

10,0

10,5

11,0  Repulsive domain

 Attractive domain

O
s

c
il

la
ti

o
n

 a
m

p
li

tu
d

e
 (

n
m

)

Piezo elongation (nm)

0 10 20 30 40
0,05

0,06

0,07

0,08

 Repulsive domain

 Attractive domain

D
is

s
ip

a
ti

o
n

 (
p

W
)

Piezo elongation (nm)



Chapter 5: Extracting useful information from magnetic dissipation 

161 

 

Interestingly, the contour lines observed in figure 5.2.h appear as a bump in the profiles plotted on 

the right column of figure 5.5. These humps reveal more attractive interactions with enhanced 

dissipation, which can be attributed to rotation of spins during the oscillation cycle. The height of 

the peak on the red dissipation profile shown in figure 5.5.c reveals a dissipated power of 7 fW, the 

same order of magnitude as the numerical prediction given above. Leaving behind the transition 

and going well into the parabolic region gives rise to a considerably larger dissipation drop, as 

compared to the former situation described in figure 5.5. This reflects a gradual reorientation of 

magnetic moments towards the sample stray field, instead of being sudden rotations. 

 

It is important to note that the same tip was used in all experiments shown throughout this work. 

Structural, geometric and even compositional changes at the tip apex are expected since a 

considerable number of force-versus-distance curves where performed going down to contact. Such 

changes caused variability in the observation of the rings; nevertheless, they were usually observed 

at some area of the sample. The reason why they were not present in figure 5.3 is that a particular 

scan direction was chosen. 

 

It is particularly interesting to study the shape of the parabolic cross sections described above and a 

practical application can be reached. In fact, physical information can be extracted from them. This 

will be commented on the very next section and micromagnetic simulations will be used to support 

our statements. 

 

In conclusion, we have measured the energy loss associated to hysteretic processes going on under 

the mutual influence of an MFM probe and a highly coupled magnetic sample with perpendicular 

anisotropy. Both are subject to minor hysteresis loops during each oscillation cycle, biased by the 

DC field at the mean tip-sample distance. The tiny amount of energy dissipated in this process can 

be measured during the MFM data acquisition and its evolution with varying distance may be 

studied. As a main consequence, a counterintuitive behavior of the dissipation versus the tip-

sample distance was found for the case of domains parallel to the magnetization in the probe. 

Micromagnetic calculations yield a dissipation value in the order of few fW, which is in agreement 

with power losses caused by relatively small amounts of spins flipping their magnetization. Large 

mutual influence reflects in much higher dissipations of the order of hundreds of fW. A similar 

drop of energy loss by decreasing distance is predicted for the case of ferroelectric materials with 

domains of opposite polarities, when using biased metallic probes, as long as the electrostatic 

mutual influence approaches the saturation regime of the hysteresis loops. 
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3. Tip-induced artifacts in MFM images 
 

This section concentrates on a specific application of the study of magnetic dissipation. It was 

developed during one of my stays in the group of Prof. P. H. Grütter at the McGill University of 

Montreal and resulted in one article published in the beginning of 2013 
27

. In it, we encourage 

MFM users to be careful when measuring under certain circumstances in order to avoid 

misinterpreting the contrast observed in magnetic force microscopy images by tip related artifacts. 

 

For this study, an array of permalloy dots, 20 nm thick and 1 μm in diameter, was electron beam 

evaporated through a SiN stencil (Protochips DTM-25232) on to a SiN membrane (Norcada 

NT025C). Images were obtained under an in-plane magnetic field and high vacuum conditions, 

using a home built magnetic force microscope in the host group operating in frequency modulation 

mode with a phase locked loop (NanoSurf, easyPLL). The MFM cantilever was oscillated in self-

oscillation mode with a phase shifter and a proportional-integral controller to maintain a constant 

oscillation amplitude. All measurements presented here were carried out using the same tip (Smart 

Tip SC-35-M, with spring constant k=2.8 N/m, resonance frequency f=67.5 kHz and quality factor 

10
4
), with a 35 nm thick CoNi coating deposited onto one of its sides. Unless otherwise specified, 

the oscillation amplitude was 10 nm.  

 

 

 

Figure 5.6: The sample. Frequency shift (upper row) and dissipation (lower row) images of a permalloy dot 

acquired under different magnetic fields using the same MFM probe at a scanning height of (a)–(c) 60 nm 

and (d) 190 nm. Size of the images: (1.2x1.2) μm
2
. Frequency shift values have been zeroed in the substrate. 

Dissipation maps were calculated using equation (5.7), since experiments were carried in high vacuum 

conditions (10
-6

 mbar) with an additional feedback that keeps the oscillation amplitude constant. 

                                                 
27 Ó. Iglesias-Freire, J. R. Bates, Y. Miyahara, A. Asenjo and P. H. Grütter, Applied Physics Letters 102 (2013) 022417 
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As it was studied in chapter 2, the ground state configuration of circular magnetic dots of such 

dimensions in relatively low applied fields (few mT) is the single vortex state. As seen in figure 

5.6.b, applying an in-plane magnetic field (insufficient to expel the vortex) results in the vortex 

being slightly displaced from the center. Notice that the corresponding dissipation images do not 

present any particular feature, apart from a faint contrast due to a slight tip-induced movement of 

the vortex (fig. 5.6.a-b). 

 

However, when performing constant-height MFM imaging with the same tip under higher IP 

magnetic fields, an unusual feature appears both in the oscillation frequency and dissipation 

channels (fig. 5.6.c-d). MFM images do not display the usual contrast observed for single domain 

nanostructure, were regions with concentration of magnetic poles yield only white-black areas at 

the ends of the magnetic element. There, this typical imaging contrast is superimposed on a 

relatively bright, homogeneous background observed only over the magnetic dot. This is due to a 

partial canting of the tip magnetization away from the vertical direction due to the external field 

and the subsequent sensitivity to both in and out of plane components of the stray field emerging 

from the sample, i.e., Δω=Δω(∂
2
Bx/∂z

2
, ∂

2
Bz/∂z

2
) (notation in figure 5.7). In addition, a ring 

appears at the right side of the dot, surrounding the area of attractive magnetic poles. 

 

 

 

Figure 5.7: The suggested explanation. Sketch of the proposed behavior of the MFM tip under an IP field 

(black arrow). (a) The softer domain at the apex is mainly oriented parallel to the external field direction. (b) 

In certain regions, the influence of the sample stray field can switch its magnetization. (c) Local directions of 

the external magnetic field (B), stray field from the sample (Bsample*) and effective field due to the magnetic 

coating on the tip side (Btip), in those situations presented in (a) and (b). (d) MFM image showing two rings 

highlighted by yellow arrows, in two different nanostructures. 
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As shown in figures 5.6.c-d, although there is a change in both the shape and size of the ring with 

varying tip-sample distance, the feature remains present. It is important to note that this behavior 

was reproducible for all the dots explored. A proof of that is presented in figure 5.7.d, where two 

rings of the same size are simultaneously present in two different nanostructures. Unfortunately, 

the (10 x 10) μm
2
 image was recorded with a pixel area of (40 x 40) nm

2
 and a lousy resolution was 

obtained. It indirectly gives an idea of the reduced lateral size of the ring walls, which is well below 

the specified pixel size. Furthermore, a remarkably low power loss is associated to them, in the 

order of tenths of fW and comparable to the experimental noise. Such high sensitivity was possible 

since experiments were carried out in vacuum conditions, where the enhanced quality factor of the 

oscillating cantilever (close to 70 times larger than in the experiments shown in previous section) 

allows for detecting much smaller changes.  

 

The unexpected lines in the magnetic images remind of the dissipative contour lines observed and 

described in previous section. This gives us a hint to explain this phenomenon, thus attributing 

them to the influence the sample has in the sensing probe that causes some spins to orientate along 

the local field once a critical value is reached. In the following, we will assume that the MFM tip 

has two different magnetic regions, as described in figure 5.7: the thin film deposited on one of 

the side walls of the pyramid and a magnetically softer region at the tip apex. The region at the 

apex may switch its magnetization due to the influence of the local magnetic field. This 

magnetization switching in the tip gives rise to a sudden variation of the magnetostatic interaction 

between tip and sample, causing changes in the cantilever dissipation as well as in the frequency 

shift, which is determined by the force gradient (Δω ≈ - ω0/2k ∙ ∂F/∂z). In this simple description, 

three different components contribute to the field at the tip apex: the external field (created by an 

external magnet and labeled as B in fig. 5.7), the effective field (accounting for exchange and 

magnetostatic couplings) created by the thin film deposited on the side wall (Btip in fig. 5.7), and 

the field emerging from the magnetic sample (Bsample*). Note that only the last contribution depends 

on the relative tip-sample position. 

 

Based on this simple tip model, we now present the results obtained from micromagnetic 

simulations using OOMMF, which were carried out for a permalloy dot with the same dimensions 

as in the experiment. The stray field emerging from the resulting spin distribution was calculated in 

an empty volume above it. Standard permalloy parameters (saturation magnetization MS=860 

kA/m, exchange stiffness A=13∙10
-12

 J/m, magnetocrystalline anisotropy K1=0 J/m
3
) and a cubic 

cell of side 5 nm were used. Figure 5.8.a shows the simulated equilibrium magnetization under an 

external field of B=60 mT applied along the horizontal direction, analogously to the experimental 

case. The magnetic field created by the sample under these conditions is evaluated and constant Bz
*
 

surfaces (or iso-surfaces) are analyzed. These iso-surfaces display all points in space where the Z 
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component of the sample stray field reaches a specific value. Different values of Bz
*
 show 

qualitatively similar behavior, an example of which is presented in figure 5.8.b. This corresponds to 

all points in the region above the sample in which the Z component of the stray field emerging from 

the Py dot is Bz
* 

= -14.0 mT. A certain field range of ± 0.3 mT around the central value is 

considered, which accounts for statistical deviations from the critical value. 

 

 

 

Figure 5.8: Simulations. (a) Simulated magnetization distribution of a Py dot under an external field of 60 

mT applied along the horizontal direction. (b) Magnetic field emerging from the magnetization distribution 

shown in (a). In black, the points in which Bz*=(-14.0 ± 0.3) mT. The orange region represents the Py dot. 

 

The predicted magnetic state of the Py dot is a quasi-saturated single domain state. The calculated 

iso-surface displays a parabolic shape that resembles the features observed in former section (see 

figure 5.5). The maximum lies above the region of the sample with a highest density of negative 

magnetic poles (since a negative value of Bz
*
 was chosen). This simulation strongly supports the 

assumptions made in previous section, where the magnetic field coming out of the sample was 

considered to be responsible for changes in the tip configuration. Let us now look for a deeper 

understanding of current results. Our MFM images were taken at constant height from the sample 

surface. Therefore, by taking slices of the calculated 3D paraboloid at different heights, we can 

compare their shape to the rings observed in the experimental images, as is done in figure 5.9. Both 

experimental data and simulations show that the ring shape becomes rounder and it gets smaller, as 

the separation distance increases. Furthermore, in both cases the ring wall widens as the probe 

withdraws and comes closer to the ceiling of the paraboloid, corresponding to a tip sample 

separation of around 250 nm. Note that no data treatment was performed trying to reproduce the 

experimental results. The bounding value used in this example, Bz
* 
= (-14.0 ± 0.3) mT, was chosen 

trying to get the best fit to the experimental data. 
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Figure 5.9: Experiment vs Theory. (left column) Frequency shift and (central column) dissipation data, 

compared to (right column) the simulations (XY-cross sections in figure 5.8.b), at increasing tip-sample 

distance. (Bottom) Profile along the black dashed line in the dissipation image at 100 nm yields a FWHM of 

7.6 nm. Size of the experimental images: (1.5x1.2) μm
2
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This outstanding agreement supports the proposed model. When the tip is far from the sample, 

spins in the softer region at the apex orient themselves along the direction of a strong external field 

(figure 5.7.a). Whenever a critical value of Bz
*
 (the Z component of the stray field emerging from 

the sample) is reached as the tip approaches the concentration of magnetic poles, a switching of the 

magnetization in the softer domain takes place (fig. 5.7.b). This switching causes the ring feature to 

appear both in the frequency shift and dissipation images and it thus should not be interpreted as 

part of the sample domain structure. In fact, the ring corresponds to a contour line of the critical 

field Bz
*
, suggesting that the observed phenomenon can be used to obtain 3D maps of the sample 

stray field. As observed in the profile plotted in figure 5.9, the spatial resolution reached for these 

features is below 8 nm at a lift height of 100 nm. This resolution was actually limited by the pixel 

size (7.8 nm). Notice that neither the MFM nor the power loss images show a significant change in 

the regions inside the rings in figure 5.9. There, magnetostatic interactions look similar and no 

significant dissipation is detected over the experimental noise, as compared to figures 5.2 and 5.5. 

This suggests that only a considerably small portion of the tip is flipping the spin orientation; as a 

consequence, the averaged magnetic interaction remains quite the same. In fact, the dissipation 

peaks measured in this work are around 20 times smaller than the ones presented in previous 

section. 

 

Further support for this tip-induced dissipation model comes from the fact that these rings appear 

solely on one side of the dot, i.e., the magnetization switching in the tip is dependent on the 

direction of the stray field from the sample. The tip magnetization is mainly oriented along the 

side wall of the pyramidal tip, indicated as the green region in figure 5.7.a. The magnetization at 

the apex switches only when both the Z components of Btip (effective field due to the tip side 

coating) and Bsample
*
 (sample stray field) are parallel and add to each other (fig. 5.7.b). On the other 

side of the sample, these two components point to opposite directions and the resulting field is thus 

insufficient to induce the switching. In the case when small fields are applied (fig. 5.6.a-b), the 

shape anisotropy of the tip suffices to keep the magnetization at the apex along the out of plane 

direction at every point. As a consequence, no ring is present in the images. 

 

The proposed model predicts another measurable effect: the width of the observed rings should 

depend on the oscillation amplitude. As sketched on the left column in figure 5.10, larger 

oscillation amplitudes should allow the tip to pass through the critical paraboloid for a wider range 

of pixels (effectively thickening the imaging “plane” in the Z direction) to produce wider rings. 

Successive measurements were performed at a mean scanning lift height of 230 nm for three 

different amplitudes. As expected, larger oscillation amplitudes reveal thicker rings (right column 

in figure 5.10). At large enough amplitudes, the tip crosses the critical iso-surface at every single 

point within the limits of the ring, yielding a disk instead (fig. 5.10.c and f). 
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Figure 5.10: Dependence of the ring on the oscillation amplitude. (a)–(c) X-Z cross sections from figure 

5.8.b (z>180nm is shown). (d)–(f) MFM images showing this effect, at a mean separation of 230 nm. 

 

In summary, we showed that MFM tips can be a source of artifacts that may lead to 

misinterpretation of domain configurations in magnetic samples. Our simple proposed model 

assumes an MFM tip structure with two distinct domain regions: a hard single domain covering 

most of the tip side wall and a small, softer domain at the tip apex whose magnetization can switch 

by the influence of the sample. The model can describe the rings observed in experimental MFM 

and dissipation data. We performed micromagnetic simulations to validate the proposed model, 

which yielded excellent agreement with the experimental observation. We also suggest that this 

kind of tip can measure three dimensional maps of the Z component of the magnetic field emerging 

from the sample. Remarkably, a very high spatial resolution below 8 nm at tip-sample distances 

over 100 nm was achieved and limited, in the case shown, by the pixel size. 
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Conclusions 
 

i - Magnetization reversal processes have been studied by Variable Field Magnetic Force 

Microscopy (VF-MFM) in different samples. First, the magnetostatic coupling between 

neighboring permalloy nanostripes separated 500 nm from each other is observed experimentally to 

not be significant. Micromagnetic simulation predict different couplings for stripes with small 

longitudinal or transversal separations, with a reversal that starts at the border of the simulated area 

and propagates in a chain reaction to the closest stripe. As a result, following article has been 

published: 

 

[1] Ó. Iglesias-Freire, M. Jaafar, L. Pérez, O. de Abril, M. Vázquez and A. Asenjo, Journal of 

Magnetism and Magnetic Materials 355 (2014) 152-157 

 

Second, a useful MFM-based operating mode has been introduced, in which the tip is scanning 

along one profile while the external field is changed. This allows for quantification of critical fields 

in individual nanomagnets and examples in single domain nanostripes have been presented. As a 

result, following paper has been published: 

 

[2] M. Jaafar, L. Serrano-Ramón, O. Iglesias-Freire, A. Fernández-Pacheco, M. R. Ibarra, J. M. 

de Teresa and A. Asenjo, Nanoscale Research Letters 6 (2011) 407 

 

Cylindrical Fe68Co27Cu5 nanowires with a modulated diameter have carefully been studied with 

VF-MFM. The resulting complex contrast has been interpreted as having two origins: the 

modulated shape -that causes the locally strong divergence of the magnetization- and 

morphological roughness arising from the growth of the grains -that yields weaker divergence. 

Simulations are used to help discern the single domain states from states with pinned domain walls. 

A paper reporting on these results will be submitted shortly. 

 

Epitaxial cobalt stripes grown onto vicinal Si substrate are shown to have a magneto-crystalline 

easy axis along the short side of the nanostructures. The evolution of the domain structure against 

the stripe width is studied and the reversal processes carefully detailed. In addition, a remarkable 

resolution is obtained that allows for identifying the walls as single or double-vortex DWs. This 

work has been published in the following article: 

 

[3] Yu. P. Ivanov, Ó. Iglesias-Freire, E. V. Pustovalov, O. Chubykalo-Fesenko y A. Asenjo, 

Physical Review B 87 (2013) 184410 
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Last, the domain structure of LSMO nanoislands is studied by MFM and compared to simulations. 

Depending on the dimensions, different structures are observed. The crystalline anisotropy is 

believed to play a role in the orientation of the single-domain smallest islands. This is described in: 

 

[4] J. Zabaleta, M. Jaafar, P. Abellán, C. Montón, O. Iglesias-Freire, F. Sandiumenge, C. A. 

Ramos, R. D. Zysler, T. Puig, A. Asenjo, N. Mestres y X. Obradors, Journal of Applied Physics 111 

(2012) 024307 

 

ii - Successful separation of electrostatic and magnetostatic signals has been demonstrated by 

introducing a Kelvin Probe Force Microscopy (KPFM) feedback during the MFM experiments. It 

has been used to extract the real domain configuration in cobalt stripes with strong electrostatic 

effects, a work that was published in 2011: 

 

[5] M. Jaafar, O. Iglesias-Freire, L. Serrano-Ramón, M. R. Ibarra, J. M. de Teresa y A. Asenjo, 

Beilstein Journal of Nanotechnology 2 (2011) 552-560 

 

In addition, this KPFM-MFM combination has allowed the characterization of magnetic stray field 

gradients emerging from MFM tips with graphene based Hall sensors, by getting rid of the spurious 

Coulomb deflections of electrons in the graphene layer. Two articles have resulted from this 

collaboration: 

 

[6] V. Panchal, Ó. Iglesias-Freire, A. Lartsev, R. Yakimova, A. Asenjo and O. Kazakova, IEEE 

Transactions on Magnetics 49 (2013) 3520-3523 

[7] R. K. Rajkumar, A. Asenjo, V. Panchal, A. Manzin, Ó. Iglesias-Freire and O. Kazakova, 

Journal of Applied Physics 115 (2014) 172606 

 

iii - A low time consuming and low cost method of customizing MFM probes has been presented. 

These homemade sensors show high performance, in terms of spatial resolution (having 

demonstrated magnetic lateral resolution below 25 nm), reduced stray field (by mapping a double-

vortex state in circular Co dots while tracking the topography) and chemical sensitivity (where a 

resolution of 5 nm with a signal-to-noise ratio of 400 was shown). Regarding the study of magnetic 

vortices in circular nanostructures, I co-authored the following article: 

 

[8] F. G. Aliev, D. Dieleman, A. A. Awad, A. Asenjo, O. Iglesias-Freire, M. García-Hernández y V. 

Metlushko, Electromagnetics in Advanced Applications (ICEAA), 2010 International Conference 

on, (2010) 160-163 
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iv - Last, by studying the magnetic energy losses caused by the oscillating tip-sample separation, 

we showed that MFM tips can be a source of artifacts that may lead to misinterpretation of domain 

configurations in magnetic samples. This work has been published in the following article: 

 

[9] Ó. Iglesias-Freire, J. R. Bates, Y. Miyahara, A. Asenjo and P. H. Grütter, Applied Physics 

Letters 102 (2013) 022417 

 

v - Finally, I have published two articles that illustrate the multidisciplinary character of this thesis 

and have not been mentioned before. The first one came out from a parallel work I carried out 

during one of my research stays at the McGill University. It deals with charge accumulation in FIB 

patterned SiN stencils, arising from implanted Ga
+
 ions, which strongly influenced the growth and 

magnetic properties of Ni97Fe3 nanostructures. The reference can be found in: 

 

[10] J. R. Bates, Y. Miyahara, J. A. J. Burgess, Ó. Iglesias-Freire and P. H. Grütter, 

Nanotechnology 24 (2013) 115301 

 

Last, I performed conductivity measurements in multiferroic nanocomposites using C-AFM, in the 

framework of a collaboration involving several research groups at the Material Science Institute of 

Madrid. It has recently been published in: 

 

[11] M. Algueró, J. Ricote, M. Torres, H. Amorín, A. Alberca, O. Iglesias-Freire, N. Nemes, S. 

Holgado, M. Cervera, J. Piqueras, A. Asenjo y M. García-Hernández, ACS Applied Materials & 

Interfaces 6 (2014) 1909 
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Conclusiones 
 

i – Se han estudiado procesos de inversión de la imanación en diferentes muestras, por medio de 

microscopía de fuerza magnética de campo variable. En primer lugar, se ha observado que el 

acoplamiento magnetostático entre nanohilos vecinos no es significativo para separaciones de 500 

nm. Simulaciones micromagnéticas predicen acomplamientos diferentes para elementos con 

pequeñas separaciones longitudinales o transversales, con una inversión que comienza en los 

extremos del área simulada y se propaga en una reacción en cadena al hilo más cercano. Como 

resultado, se ha publicado el siguiente artículo: 

 

[1] Ó. Iglesias-Freire, M. Jaafar, L. Pérez, O. de Abril, M. Vázquez and A. Asenjo, Journal of 

Magnetism and Magnetic Materials 355 (2014) 152-157 

 

En segundo lugar, se ha introducido un modo de medida basado en MFM en el cual la punta 

escanea continuamente un perfil topográfico determinado, mientras se varía gradualmente el campo 

externo. Ello permite la cuantificación de campos críticos en nanoestructuras individuales y se 

presentan ejemplos para el caso de nanohilos planos de cobalto. El siguiente artículo ha resultado 

de esta investigación: 

 

[2] M. Jaafar, L. Serrano-Ramón, O. Iglesias-Freire, A. Fernández-Pacheco, M. R. Ibarra, J. M. 

de Teresa and A. Asenjo, Nanoscale Research Letters 6 (2011) 407 

 

Además, se han estudiado nanohilos cilíndricos de Fe68Co27Cu5 con un diámetro modulado. El 

complejo contraste resultante ha sido atribuido a dos causas: la geometría modulada (que provoca 

una fuerte divergencia local de la imanación) y una rugosidad morfológica que surge del 

crecimiento de los granos cristalinos (y que provoca una divergencia más atenuada). Se han usado 

simulaciones para ayudar a distinguir los estados monodominio de estados con paredes de dominio 

ancladas. Planeamos enviar un artículo con estos resultados para su evaluación en una revista de 

prestigio en las próximas semanas. 

 

Por otro lado, se ha mostrado que nanohilos planos de cobalto epitaxial, crecidos sobre un sustrato 

de silicio vicinal, poseen un eje fácil magneto-cristalino a lo largo del eje corto de las 

nanoestructuras. Se ha detallado cuidadosamente la evolución de la estructura de dominios, en 

función de la anchura del nanohilo. Asimismo, se ha obtenido una resolución espacial destacable 

que permite indentificar las paredes de dominio como de tipo un vórtice o de doble vórtice. Este 

trabajo ha sido publicado en el siguiente artículo: 
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[3] Yu. P. Ivanov, Ó. Iglesias-Freire, E. V. Pustovalov, O. Chubykalo-Fesenko y A. Asenjo, 

Physical Review B 87 (2013) 184410 

 

Por último, se ha estudiado la estructura de dominios de nanoislas de LSMO mediante MFM y se ha 

comparado con simulaciones. Dependiendo de las dimensiones, se observan diferentes estructuras. 

Creemos que la anisotropía cristalina desempeña un papel en la orientación de las partículas más 

pequeñas, en estado monodominio. Esto se encuentra detallado en: 

 

[4] J. Zabaleta, M. Jaafar, P. Abellán, C. Montón, O. Iglesias-Freire, F. Sandiumenge, C. A. 

Ramos, R. D. Zysler, T. Puig, A. Asenjo, N. Mestres y X. Obradors, Journal of Applied Physics 111 

(2012) 024307 

 

ii – Se ha demostrado la separación exitosa de señales electrostática y magnetostática, mediante la 

introducción de un feedback Kelvin Probe Force Microscopy (KPFM) durante el experimento de 

MFM. Esta implementación se ha usado para extraer la configuración de dominios real en 

nanohilos planos de cobalto con fuertes efectos electrostáticos, un trabajo que fue publicado en 

2011: 

 

[5] M. Jaafar, O. Iglesias-Freire, L. Serrano-Ramón, M. R. Ibarra, J. M. de Teresa y A. Asenjo, 

Beilstein Journal of Nanotechnology 2 (2011) 552-560 

 

Además de ello, esta combinación de MFM-KPFM ha permitido caracterizar gradientes de campo 

magnético emanando de puntas de MFM mediante dispositivos Hall de grafeno, al deshacerse de 

las deflexiones coulombianas de electrones en la capa de grafeno. Dos artículos han resultado de 

esta colaboración: 

 

[6] V. Panchal, Ó. Iglesias-Freire, A. Lartsev, R. Yakimova, A. Asenjo and O. Kazakova, IEEE 

Transactions on Magnetics 49 (2013) 3520-3523 

[7] R. K. Rajkumar, A. Asenjo, V. Panchal, A. Manzin, Ó. Iglesias-Freire and O. Kazakova, 

Journal of Applied Physics 115 (2014) 172606 

 

iii – Se ha presentado un método rápido, simple y económico de personalizar puntas de MFM. 

Estas puntas caseras muestran un gran comportamiento en términos de resolución espacial 

(habiendo demostrado una resolución lateral magnética por debajo de 25 nm), reducido campo 

emergente (mediante el mapeado de un estado de doble vórtice en estructuras circulares de cobalto) 

y sensibilidad química (donde se ha mostrado una resolución de 5 nm con una relación señal/ruido 
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de 400). Con respecto al estudio de vórtices magnéticos en nanoestructuras circulares, soy coautor 

del siguiente trabajo: 

 

[8] F. G. Aliev, D. Dieleman, A. A. Awad, A. Asenjo, O. Iglesias-Freire, M. García-Hernández y V. 

Metlushko, Electromagnetics in Advanced Applications (ICEAA), 2010 International Conference 

on, (2010) 160-163 

 

iv – Además, mediante el estudio de pérdidas de energía magnética, hemos mostrado que las puntas 

de MFM pueden ser una fuente de artefactos que lleven a una interpretación errónea de las 

configuraciones de dominios en muestras magnéticas. Este trabajo ha sido publicado en el siguiente 

artículo: 

 

[9] Ó. Iglesias-Freire, J. R. Bates, Y. Miyahara, A. Asenjo and P. H. Grütter, Applied Physics 

Letters 102 (2013) 022417 

 

v – Finalmente, he publicado dos artículos que ilustran el carácter multidisciplinar de esta tesis y 

que no han sido mencionados anteriormente. El primero de ellos resultó de un trabajo paralelo 

desarrollado durante una de mis estancias de investigación en la McGill University. Trata sobre la 

acumulación de carga en máscaras de nitruro de silicio con un patrón fabricado por FIB, como 

consecuencia de los iones de Ga
+
 implantados, que influyen fuertemente en el crecimiento y 

propiedades magnéticas de nanoestructuras de Ni81Fe19. La referencia a este trabajo puede 

encontrarse en: 

 

[10] J. R. Bates, Y. Miyahara, J. A. J. Burgess, Ó. Iglesias-Freire and P. H. Grütter, 

Nanotechnology 24 (2013) 115301 

 

Por último, realicé medidas de conductividad en nanocompuestos multiferroicos, usando C-AFM, 

en el marco de una colaboración que involucra a varios grupos de investigación del Instituto de 

Ciencia de Materiales de Madrid. Ha sido recientemente publicado en: 

 

[11] M. Algueró, J. Ricote, M. Torres, H. Amorín, A. Alberca, O. Iglesias-Freire, N. Nemes, S. 

Holgado, M. Cervera, J. Piqueras, A. Asenjo y M. García-Hernández, ACS Applied Materials & 

Interfaces 6 (2014) 1909 



 

 
 

Madrid, April 2014

The cornerstone of this thesis is the use of magnetic

force microscopy to extract added information from

ferromagnetic samples. An extensive variety of materials

has been studied and is reported throughout the

manuscript. It is divided in five chapters, each of which

is devoted to a different subject. Magnetization reversal

processes are studied in samples governed by shape or

magneto-crystalline anisotropy. Examples of eventual

artifacts in MFM images are given, caused by whether

electrostatic effects or rotation of spins in the tip, and a

solution is given to avoid misinterpretation of data. A

fast, accessible and low cost way of fabricating MFM tips

with a remarkable performance is also presented and

practical applications are shown. In addition, the most

innovative part of this thesis focuses on the study of the

energy dissipated by spins in the MFM tip to extract

information from the magnetic properties of the sample.


