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[1] On 21 May 2003 a submarine earthquake occurred
near Algiers producing a tsunami that propagated northward
and reached the Balearic Islands and the Levantine coast of
the Iberian Peninsula within an hour. Despite that the
generated tsunami was moderate, sea level variations inside
certain harbors at the Balearic Islands were significant,
producing severe damage to moored boats. Available
tsunami records in the affected harbors are examined to
estimate amplifications factors of arriving waves and
spectral characteristics of the source. Comparison between
background and tsunami oscillations at various sites
allowed separation of the tsunami source properties from
local topographic effects. The fundamental period of the
reconstructed source spectrum is 21 min, which is in close
agreement with that found by Alasset et al. (2006) based
on modeling the tsunami initiation. Citation: Vich, M., and
S. Monserrat (2009), Source spectrum for the Algerian tsunami of
21 May 2003 estimated from coastal tide gauge data, Geophys.
Res. Lett., 36, 1.20610, doi:10.1029/2009GL039970.

1. Introduction

[2] North Algeria is a known active and hazardous
seismic zone in the western Mediterranean basin. Seismic
activity in this region is associated with the boundary
between the Eurasian and African plates [Hamdache et
al., 2004]. On 21 May 2003 at 18:44 UTC a strong
submarine shallow thrusting earthquake occurred at 7 km
to the north of Zemmouri, about 50 km northeast of Algiers
(Figure 1) producing a tsunami that affected the nearby
coastal countries (i.e., Spain, France and Italy), but did not
affect the Algerian coast [Meghraoui et al., 2004]. The
earthquake claimed 2271 human lives and injured more than
10000 while the tsunami sunk 10 boats and 10 more were
damaged in the Balearic Islands (Spain) harbors. Due to its
high social impact several studies have been done primar-
ily focused on the earthquake [Hamdache et al., 2004;
Bouhadad et al., 2004; Delouis et al., 2004]. Alasset et al.
[2006] modeled the tsunami initiation and propagation in
order to test different seismic sources for the event. Syn-
thetic waves were compared with coastal observations and
concluded that the most plausible tsunami source should
have a period of 20 min. However the authors compared
model outputs with in situ coastal observations when they
are surely strongly influenced by the local topographic
response. The same tsunami event recorded at different
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places, even at nearby locations, may have completely
different spectra, being these spectra mainly controlled by
the natural resonance response of the bay or inlet where the
tsunami is measured. On the other hand, different tsunamis
events recorded at the same place usually present similar
spectral contents. This fact has been confirmed by many
authors (e.g., Miller [1972], Soloviev and Kulikov [1987] and
Baptista et al. [1992], among many others) suggesting that
the energy related to the tsunami source is mostly shaded by
the usually more energetic topographic contribution.

[3] Furthermore, the particular characteristics of the dam-
ages produced by this tsunami, being only relevant in some
very specific locations, reinforce the hypothesis of the major
role played by the local harbor topography in the amplifi-
cation of the sea level oscillations.

[4] The aim of this paper is to study the 21 May 2003
tsunami through the wave data recorded during the event on
the coastline stations in the north-western Mediterranean
region with the purpose to separate source and topographic
effects. Rabinovich [1997] proposed a simple and ingenious
method to separate source effects from topography by
simply estimating the spectral ratios of tsunami to back-
ground spectra. This technique removes the major contri-
bution of local resonance effects and provides as a result
those energetic contents which are not associated with local
topography. A very similar technique was applied success-
fully by Monserrat et al. [1998] to atmospherically gener-
ated seiches (meteotsunamis).

[s] The data set used for this study, along with a brief
description of the spectral analysis techniques is presented
in section 2. In section 3, the topographic response for every
location is obtained and compared with the tsunami energy
contents. The spectral ratios between tsunami and back-
ground are also used to compute the best estimation of the
external tsunami source reaching the Balearic Islands and
the Levantine coast of the Iberian Peninsula. A summary
and some major conclusions are outlined in section 4.

2. Available Data and Methodology

[6] After the earthquake occurred in 21 May 2003 near
Algiers, tsunami waves propagated northwards reaching the
Balearic Islands and the Levantine coast of the Iberian
Peninsula approximately 60 min after the main shock in
the earthquake epicenter. Observed sea level oscillations
reached at one specific location (Sant Antoni harbor, Balea-
ric Islands) peak-to-through amplitude of more than 2 m.
The sea level variations produced during this event are
available at three sites in the Balearic Islands (Sant Antoni,
Ibiza and Palma) and at two other sites in the Iberian
Peninsula (Malaga and Valencia) (see Figure 1 for the
location of the instruments). The sampling interval is of
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Figure 1. Zone of interest of the Western Mediterranean. The star denotes the epicenter location (Zemmouri) of the
21 May 2003 earthquake that produced the tsunami. The tide gauges locations are represented by circles for the 5 min
sample interval instruments and by squares for the 2 min ones.

5 min for those tide gauges owned by Puertos del Estado
(Ibiza, Malaga and Valencia) and 2 min for Sant Antoni
(property of the University of the Balearic Islands) and
Palma (from the mareograph network property of the
Instituto Espaiiol de Oceanografia).

[7] Raw data, available from April to June, 2003, is
pre-processed to identifying outliers and discontinuities,
afterwards is also de-trended and tides (67 components)
subtracted. Figure 2 shows two days of sea level residuals
recorded at the five available stations at the time of the
tsunami. The major tsunami characteristics as recorded at
the five sites are summarized in Table 1.

[8] The duration interval of the tsunami event has been
selected to be of 2 days (2880 min), which implies a length
series of 1440 points for those instruments with 2 min
sampling interval and 576 points for those sampled every
5 min. Since the records have different sampling intervals,
the duration interval selection implies a compromise between
having a time series long enough to still have significant
degrees of freedom when spectral techniques are applied
while the interval of significant oscillations occupies a
significant part of the tsunami event (see Figure 2). When
comparative analyses are required the time series with 2 min
sampling interval should be re-sampled or, alternatively, the
5 min sampling interval time series interpolated every 2 min.
As the second option would require artificially including
non measured data in the analysis with the only advantage
of increasing the Nyquist frequency up to 4 min ', the first
option has been selected implying that all the spectra are
computed with a Nyquist frequency of 10 min~".

[o] When applying the method suggested by Rabinovich
[1997] to separate source from topographic effects, a
background spectrum needs to be defined for every station.
In order to minimize the possible effects that could arise
from the selection of this background period, a set of six
intervals with weak atmospheric activity and no seismic

forcing with the same duration of the tsunami event are
selected. These background intervals have been selected
when sea level amplitudes remain small during the whole
interval.

3. Data Analysis

[10] Spectra of the six backgrounds are estimated for each
location using a Kaiser-Bessel window of 128 points with
half-window overlapping resulting in 21 degrees of free-
dom. In principle background spectra may differ if the
harbor response is sensitive to the characteristics of the
forcing conditions, such as the angle of incidence of ocean
waves. Harbors may oscillate differently under varying
conditions. However, it is found that the six spectra are
very similar for each station, which suggests that using their
mean value as the background spectrum for every location
will introduce minor effects in the purpose of computing the
event-background spectral ratios.

[11] The spectra for the Zemmouri 2003 tsunami event
and the mean background for the five available stations are
shown in Figure 3. Tsunami and background spectrum
shapes at any given location are very similar, although
tsunami spectra are clearly more energetic. On the other
hand, the spectra of different sites have significant differ-
ences at high frequencies, showing the resonance influence
of local topography.

[12] Topographic response for every site is better identi-
fied in the background spectra where the natural oscillations
are not obscured by the energetic characteristics of the
forcing. Tide gauge at Sant Antoni is located inside an inlet
with a fundamental resonant mode of 18 min. Ibiza spec-
trum is a little more complicated with major peaks at 58,
25 and 15 min. Palma shows a major peak at 75 min with
some minor response at 20—30 min. Valencia presents two
major peaks at 32 and 15 min and Malaga does not show
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Figure 2. De-tided (residual) sea level variations at Sant
Antoni, Ibiza, Palma, Malaga and Valencia at the time of the
tsunami (UTC).

any clear resonant peak at its background spectrum. Tsunami
spectra energetic contents results as a combination of
topographic response and the tsunami forcing.

[13] Following Rabinovich [1997] the ratio between the
tsunami spectrum and the one of the corresponding back-
ground gives information on the external tsunami source.
The method is explained with detail by Rabinovich [1997]
and is only briefly outlined here.

[14] The observed spectrum during the tsunami (Spzs(w))
as a function of frequency (w) may be considered as the sum
of the energy associated with the tsunami source (Sy(w))
and the energy of the background oscillations (Sp(w))

SOBS(W) = Sr(w) + Sg(w) (1)

If we assume that the topographic responses 7(w) are the
same during the tsunami and background periods (this may

VICH AND MONSERRAT: SOURCE SPECTRUM FOR THE ALGERIAN TSUNAMI

L20610

be not strictly true and should be confirmed at posteriori),
then:

("J)ET((“J) 2)

Where Ef{w) and Ep(w) represent the external forcing
during the tsunami and background conditions respectively.

[15] The spectral ratio between the tsunami and back-
ground period is then:

ET((U)
EB(UJ)

Rw) =220

+1 3)

Therefore assuming that Ez(w) is a universal function of
frequency

Ep(w) = Cw™2, (4)

where C is a constant increasing with decreasing water
depth and depending on atmospheric activity, the spectral
ratio may be considered as an estimation of the energy
content of the external incoming waves during the tsunami.

[16] If this reasoning is correct, the tsunami-background
spectral ratios should be therefore independent of the
instrument location and entirely related to the forcing. In
fact those aspects common to all the spectral ratios may be
interpreted as a signal of the initial tsunami disturbance after
the earthquake and the differences as any modification of
the original forcing during the propagation. Thus spectral
ratios for nearby stations are expected to be more similar
than those obtained for relatively far away instruments.

[17] The spectral ratios for the three instruments at the
Balearic Islands are shown in Figure 4a and those computed
for the instruments at the Levantine coast of the Iberian
Peninsula in Figure 4b. Spectral ratios are more energetic at
the Balearic Islands as a result of the expected loose of
energy as the tsunami travelled towards the northwest. The
five spectral ratios present many similarities, mostly be-
tween nearby stations but even between relatively far away
sites. These similarities give confidence to the methodology
used. The clearest signal reflected in the spectral ratios is the
presence of a significant peak at 21 min together with two
secondary ones at 42 and 14 min. The strong similarities
found between relatively far away instruments suggest that
tsunami spectral contents were only slightly distorted during
the propagation and that tsunami properties for different
angles of propagation are for this case very similar.

[18] In order to highlight those aspects of the spectral
ratios related to the forcing and separate them from any

Table 1. Properties of the 21 May 2003 Tsunami as Recorded at the Different Stations®

Tsunami Arrival Tsunami Travel Maximum Wave Time Maximum Tsunami
Time (UTC) Time (min) Height (cm) Waves (UTC) Periods (min)
Sant Antoni 19:44 60 201.2 21:04 21,18
Ibiza 19:29 45 76.3 21:19 58, 40, 25, 15
Palma 19:34 50 116.6 21:34 75, 40, 21
Malaga 21:50 186 249 23:30 35,20
Valencia 20:10 86 52.8 23:20 32,15

*Tsunami travel times have been computed assuming the earthquake occurred at 18:44 UTC.
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Figure 3. Spectra at each tide gauge for the tsunami (solid) and background (dashed). The main peaks are marked with

their corresponding period.

signal associated with the tsunami propagation, a mean
value of these spectral ratios has been computed. It should
be noticed that the most energetic signal influences the
mean value computation, for this reason the mean spectral
ratio is also computed separately for the instruments at the
Balearic Islands and for those located at the Iberian Penin-
sula. The comparison between the regional and the global
mean spectra (Figure 4c) emphasizes similarities in the
forcing.

[19] As expected, the Balearic mean is more similar to the
global mean than the Iberian one, due to its higher energy,
but they all present almost the same shape with very defined

peaks at the same periods of 14, 21 and 42 minutes. The
difference in spectral ratio values between Balearic and
Iberian coast is most probably due to the already mentioned
propagation energy loss.

4. Summary and Concluding Remarks

[20] The methodology developed by Rabinovich [1997]
to separate source and topographic effects from coastal
measurements is applied to the coastal data recorded at
the Balearic Islands and Iberian Peninsula after the 21 May
2003 Algerian tsunami. The sea level spectra during the
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Figure 4. Tsunami-background spectral ratios for (a) the Balearic Islands stations and (b) the Levantine coast at Iberian
Peninsula. (c) Mean values are computed for each region and for the total.
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tsunami show the expected topographic influence. However,
tsunami-background spectral ratios show many resemblan-
ces between stations despite some instruments were located
relatively far away.

[21] Once topographic effects have been removed, spec-
tral ratio similarities should be related to the tsunami source
characteristics and the differences addressed to the tsunami
changes experienced during propagation. The most relevant
differences between computed ratios are in the total energy
content. This is probably due to the expected energy loss
associated with the tsunami propagations since the Levan-
tine stations are farther away than the Balearic from the
earthquake epicenter. On the other hand all the ratios present
the same relevant peaks, the major one at 21 min, and two
weaker ones at 14 and 42 min. This 21 min main peak is
consistent with the 20 min period obtained by Alasset et al.
[2006] when modeling the initial tsunami properties with
seismical models.

[22] As a way to highlight the common aspects in the
spectral ratios an averaged has been computed for the region
of the Balearic Islands, the Iberian Peninsula coasts and the
full region. This average may be considered as the best
estimation of the external tsunami source affecting the coast
and should be taken into account when seeking the best fit
between synthetic and observed data by the modelers.

[23] Lastly, despite the fact that the response of a tsunami
around an island group can be extremely complex and many
factors may play a key role, such as the position of the
harbor or its orientation [Fritz and Kalligeris, 2008; Fritz et
al., 2008], the results presented here give a clue to explain
why the observed tsunami waves were particularly large at
Sant Antoni when compared with other harbors in the
region. The resonant normal mode for this harbor is about
18 min, very close to the tsunami source main peak, so the
external tsunami energy may have been optimally amplified
at this site by resonance.
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