## Image techniques: New approaches in metal homeostasis

brought to you by 🇓 🕻

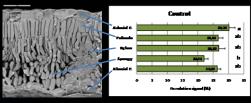
provided by Digital

Department of Plant Nutrition, Aula Dei Experimental Station (CSIC), Apdo. 13034, E-50080 Zaragoza, Spain.

#### **INTRODUCTION**

Plant physiological processes take place in a complex cellular environment. Organs are complex structures made up of different tissues with distinct cell types. Traditional biochemistry involves the analysis of bulk samples containing a mixture of heterogeneous tissues, leading to a non correct interpretation of the results. This averaging effect can only be overcome by increasing the spatial resolution of analysis to a tissue- or even cell-specific level, in other words, by using image techniques.

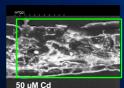
#### **ELECTRON MICROSCOPY**


#### LT-SEM (peach leaves)

metadata, citation and similar papers at core.ac.uk

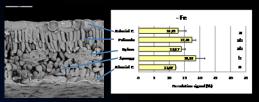
#### **TEM** (sugar beet leaves)

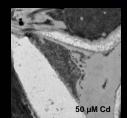
#### **SEM** (sugar beet leaves)


#### Control SPAD = 39.7 [Fe] = 95 mg Kg<sup>-1</sup>



-Fe





**Surface imaging** 



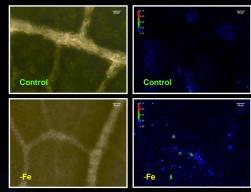
**Elemental mapping** 

-Fe SPAD = 11.5 [Fe] = 70 mg Kg<sup>-1</sup>





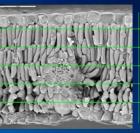
300 µM Zn


Ca

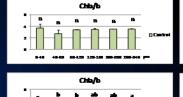
#### **FLUORESCENT MICROSCOPY**

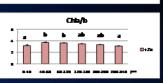
#### Zn localization (pecan leaves)

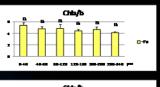
# Negative Control Control Zinpyr-1 Negative Control Elorotic Zinpyr-1 Zinpyr-1

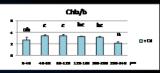

### Apoplastic pH image analysis (peach leaves)




# PARADERMAL CRYOSECTIONING


Pigments (sugar beet leaves)




1. 0-40 μm Adaxial E.
2. 40-80 μm Palisade
3. 80-120 μm Palisade
4. 120-160 μm Spongy
5. 160-200 μm Spongy
6. 200-240 μm Abaxial E.







