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Abstract9

A software tool useful for the numerical computation of surface irrigation and

fertigation in furrows and furrow networks was developed. The model solves

the complete one-dimensional St-Venant equations together with the transport

equation of a passive solute. The flow equations and the solute advection are

solved with a high resolution TVD explicit Eulerian scheme. The solute dis-

persion is solved with a centered implicit Eulerian scheme to avoid further re-

striction in the allowable time step. The computational speed of the model is

high in isolated furrows. In cases of large furrow networks over extended irriga-

tion times the model is slower but affordable computational speed is achieved.

The computational model has been designed to be robust, intuitive and able to

supply useful visual results. Both the executable and the source code, as well

as the examples presented can be downloaded, edited and distributed under a

BSD type license.
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1. Introduction11

Engineering studies of surface irrigation systems begin with an evaluation12

of current performance based on field-measured data in order to determine the13

applied amount of the irrigation water. The interest is in the distribution of14

infiltrated water along the field in order to evaluate whether water contributed15
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to satisfy the irrigation requirement and how much was lost by deep percolation16

and runoff. The ultimate objective is to identify recommendations that result17

in acceptable levels of irrigation performance under the expected range of field18

conditions.19

In the last decades computer based models were developed to support this20

analytical process. The most usual simulation engines, WinSRFR (Clemmens21

and Strelkoff, 1999) and SIRMOD (Walker, 2003), can be configured to model22

basins, borders, and furrows, all under the assumption of one-dimensional flow.23

This means that all flow characteristics vary only with distance along the field24

length and time, i.e. not across the field width. For borders and basins, the25

models are applicable to situations where the side-fall is negligible in comparison26

with the applied depth, infiltration and roughness are relatively uniform across27

the field width, and inflow is distributed. With furrows, simulations consider28

only a single furrow and, therefore, neighboring furrows are assumed identical.29

Any variation in properties from furrow to furrow must be modeled separately.30

Their simulation engines solve the one-dimensional unsteady open-channel flow31

equations coupled with empirical/semi-empirical equations describing infiltra-32

tion and channel roughness. The governing equations represent the physical33

principles of conservation of mass and momentum. Given the relatively low34

velocities and Froude numbers that characterize surface-irrigation flows, their35

simulation engines often solve truncated forms of the momentum equation. The36

zero-inertia (force equilibrium) version assumes only pressure gradients, friction,37

and gravitational forces acting on the flow. Examples of recent applications of38

these models can be Bautista et al. (2009b,a) or Ebrahimiam and Liaghat (2011).39

It is difficult to find published, easy and user friendly software tools based on40

other similar models as, for instance, Mailapalli et al. (2009) or Soroush et al.41

(2013).42

Water flow simulation in open channels and rivers has been a topic of in-43

terest recently and many numerical advances can be found. They include the44

presence of transcritical flow, bed slope changes, non-oscillatory high order cal-45

culations (Burguete and Garćıa-Navarro, 2001), unsteady boundary conditions46

2



(Burguete et al., 2006), solute transport (Burguete et al., 2007a) and dominant47

friction terms (Burguete et al., 2007b, 2008). In order to extend those devel-48

opments to furrow irrigation simulation, specific models have been adapted to49

formulate friction, solute dispersion, infiltration and junctions in furrows and50

furrow networks (Burguete et al., 2009a,b).51

The objective of the present work is the development of a software tool52

to simulate the complete water flow dynamics and solute transport in furrows53

and furrow networks with a basis on the exhaustive verification and validation54

performed in Burguete et al. (2009a,b). The software surcos has been designed55

to incorporate the cited modelling improvements in a user friendly, reliable,56

robust and efficient tool.57

First, the governing equations used are outlined in order to state the nota-58

tion. Second, the numerical scheme used in the simulation engine is detailed to59

enable an easy reproduction of the model. Then, the main components of the60

software interface are presented. Finally, some examples of use are included to61

illustrate the performance.62

The model and the examples presented in this work are distributed (Burguete63

et al., 2013a,b) as free software under a Berkeley Software Distribution (BSD)64

type license with available and editable source code.65

2. Physical model66

2.1. Shallow-water model67

The one-dimensional system formed by the cross sectional averaged liquid68

and solute mass conservation, momentum balance in main stream direction,69

infiltration and solute transport in prismatic open channels can be expressed in70

conservative form as (Burguete et al., 2009a):71

∂~U

∂t
+
∂ ~F

∂l
= ~I + ~Sc +

∂ ~D

∂l
, (1)

where ~U is the vector of conserved variables, t is the time, ~F the flux vector, l72

the longitudinal coordinate, ~I the infiltration vector, ~Sc the source term vector,73
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and ~D stands for solute dispersion:74

~U =











A

Q

As











, ~F =











Q

g I1 +
Q2

A

Qs











, ~Sc =











0

g A (S0 − Sf )

0











,

75

~I =











−P I
0

−P I s











, ~D =











0

0

KlA
∂s
∂l











, (2)

with A the wetted cross sectional area, Q the discharge, s the cross sectional76

average solute concentration, g the gravity acceleration, S0 the longitudinal77

bottom slope, Sf the longitudinal friction slope, Kl the longitudinal solute dis-78

persion coefficient, I the infiltration rate, P the cross-sectional wetted perimeter79

and I1 represents pressure forces.80

The furrows are modeled as pervious prismatic channels of trapezoidal cross81

section as represented in Figure 1. In this case, the pressure integral becomes82

(Burguete et al., 2009a):83

I1 =
B0 h

2

2
+
Z h3

3
, (3)

The set of equations is completed with the laws for infiltrated volume of water84

and solute (Burguete et al., 2009a):85

∂α

∂t
= P I,

∂φ

∂t
= P I s, (4)

with α the volume of water infiltrated per unit length of furrow and φ the mass86

of solute infiltrated per unit length of the furrow.87

The Jacobian matrix of the flow can be expressed as (Burguete et al., 2009a):88

J =
∂ ~F

∂~U
=











0 1 0

c2 − u2 2u 0

−u s s u











, (5)

where u = Q
A is the cross sectional average velocity, c =

√

g A
B is the velocity of89

the infinitesimal waves and B is the cross section top width. This matrix can90
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Figure 1: Trapezoidal furrow geometry. h is the water depth, W the distance between furrows,
zb the bottom level, H the furrow depth, B0 the base width and Z the tangent of the angle
between the furrow walls and the vertical direction.

be made diagonal (Burguete et al., 2009a):91

J = PΛP−1, P =











1 1 0

λ1 λ2 0

s s 1











, Λ =











λ1 0 0

0 λ2 0

0 0 λ3











, (6)

with Λ the eigenvalues diagonal matrix, P the diagonalizer matrix and λk the92

Jacobian eigenvalues corresponding to the propagation characteristic celerities:93

λ1 = u+ c, λ2 = u− c, λ3 = u. (7)

2.2. Furrow infiltration model94

The infiltration rate is calculated using the Kostiakov-Lewis model modified95

by Burguete et al. (2009a) in furrows:96

I = Ic +K a
( α

KW

)
a−1

a

, (8)

where K is the Kostiakov constant and a is the Kostiakov exponent, both em-97

pirical parameters depend on soil type, soil water and compaction, and Ic is the98

saturated infiltration long-term rate (Walker and Skogerboe, 1987).99

2.3. Friction model100

The friction slope can be modeled by means of the Gauckler-Manning law101

(Gauckler, 1867; Manning, 1890) that, for a furrow of trapezoidal cross section102
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is (Burguete et al., 2009a):103

Sf =
n2Q |Q|

(

B0 + 2h
√
1 + Z2

)4/3

(B0 h+ Z h2)
10/3

. (9)

The program surcos can calculate the friction with the model proposed in104

Burguete et al. (2007b, 2008), that in furrows with trapezoidal cross section is105

(Burguete et al., 2009a):106

Sf =
ǫ (b+ 1)2 d2 b |Q|Q

g

{

B0

(

hb+
3
2 −

√
h d1+b

)

+ 2Z

[

hb+5
2 −db+5

2

b+ 5
2

− 2
3d

1+b
(

h
3
2 − d

3
2

)

]}2 ,

(10)

where b is a fitting exponent of the vertical profile of flow velocity, d is a charac-107

teristic length of the bed roughness irregularities, ǫ is a dimensionless parameter108

of aerodynamical resistance depending only, in turbulent flows, on the rough-109

ness shape. In furrows, b = 0.27 is used based in rivers measurements (Burguete110

et al., 2007b). This friction law is only valid for h > d. If h < d a zero velocity111

condition (Q = 0) is imposed.112

2.4. Solute dispersion model113

The diffusion coefficient contains all the information related to molecular or114

viscous diffusion, turbulent diffusion and dispersion derived from the averaging115

process. A model suggested in Rutherford (1994) will be used for practical116

applications:117

Kl = 10
√

g P A |Sf |. (11)

3. Numerical model118

3.1. Mesh119

In every furrow, the discrete mesh longitudinal coordinates are defined as:120

li =
i− 1

N − 1
L, (12)

with li the longitudinal coordinate, N the number of cells discretizing the furrow121

and L the furrow length. The size of every cell δli and the distance between122
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Figure 2: Possible geometry configurations in surcos: (a) isolated furrow (Nfurrows = 0),
where only the distribution furrow is simulated, (b) furrow irrigation network (Nfurrows > 0).
The recirculation furrow is optional.

cells δli+(1/2) is defined as:123

δli+(1/2) = li+1 − li =
L

N − 1
,

124

δli =
L

N − 1
, (i < N and i > 1), δl1 = δlN =

1

2

L

N − 1
. (13)

The program surcos can only be used for furrows of uniform slope. The grid125

cells bed level is computed by interpolation from the furrows end points.126

3.2. Sub-steps127

The numerical scheme used in this paper is based on a seven sub-steps algo-128

rithm very similar to the proposed in Burguete et al. (2009a):129

1. In the first sub-step, the flow equations and the advective part of the130

transport equation are discretized with the explicit scheme:131

~Ua
i = ~Un

i +∆tn

(

~Sc − ∂ ~F

∂l

)n

i

. (14)

2. In a second sub-step the solute diffusion term is discretized implicitly:132

~U b
i = ~Ua

i +∆tn

(

∂ ~D

∂l

)b

i

. (15)
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3. In a third sub-step infiltration is discretized as follows:133

~U c
i = ~U b

i +∆tn ~Ici . (16)

4. In a fourth sub-step, the source terms are added with an implicit dis-134

cretization:135

~Ud
i = ~U c

i + θ∆tn
(

~Sd
i − ~Sc

i

)

. (17)

where θ = 0.5 is the parameter controlling the degree of implicitness of136

the source term.137

5. In a fifth sub-step, the boundary conditions are applied at the inlet, outlet138

and external mass sources ~Ue
i .139

6. In a sixth sub-step, the furrow confluences (characteristic of level furrow140

networks) are computed to obtain ~Uf
i .141

7. Finally, the solute solubility is considered to obtain the conserved variables142

~Un+1
i at the next time step.143

3.3. First sub-step: surface flow and transport144

This sub-step is limitant for the time step size compatible with the numerical145

stability of the schemes used in the present code (Burguete et al., 2009a). The146

time step size is selected according to:147

∆tn = tn+1 − tn = CFL min
i

(

min
(

δli+(1/2), δli−(1/2)

)

maxk
(∣

∣λki
∣

∣

)

)

, (18)

with CFL the dimensionless Courant-Friedrichs-Lewy number (Courant et al.,148

1928).149

A numerical limitation of the friction source term is performed in order to150

avoid non-physical friction forces (Burguete et al., 2008):151

(g ASf δl)
n
i+(1/2) = min

[

(g ASf )
n
i+1 + (g ASf )

n
i

2
δli+(1/2),

152

(Qδl)ni+(1/2)

∆tn
− δ

(

Q2

A

)n

i+(1/2)

− (g δI1)
n
i+(1/2)

]

, (19)
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where the notation δfi+(1/2) = fi+1 − fi and fi+(1/2) = (fi+1 + fi)/2 has been153

used. Defining the Jacobian eigenvalues with the Roe’s (Roe, 1981; Burguete154

et al., 2009a) averages:155

λi+(1/2) =

√

Ai+1 λi+1 +
√
Ai λi

√

Ai+1 +
√
Ai

, si+(1/2) =

√

Ai+1 si+1 +
√
Ai si

√

Ai+1 +
√
Ai

. (20)

Then, defining the first order upwind coefficients as:156

δF = −g A (δzb + Sf δl)− δ

(

Q2

A
+ g δI1

)

, o±k =
1

2

[

1± sign
(

λ
k
)]

,

157

δw1 =
−λ2 δQ+ δF

λ
1 − λ

2 , δw2 =
λ
1
δQ− δF

λ
1 − λ

2 , δw3 = δ (Qs)− s δQ,

158

G±
1 = o±1 δw1 + o±2 δw2, G±

2 = o±1 λ
1
δw1 + o±2 λ

2
δw2, G±

3 = sG±
1 + δw3,

(21)

the high order TVD coefficients as:159

ψ(r) = max[0, min(2, r), min(r, 2 r)],

160

L±
1 =

1

2

(

1∓ ∆t

δl
o±1 λ

1
) −λ2G±

1 +G±
2

λ
1 − λ

2 ,

161

L±
2 =

1

2

(

1∓ ∆t

δl
o±2 λ

2
)

λ
1
G±

1 −G±
2

λ
1 − λ

2 ,

162

L±
3 =

1

2

(

1∓ ∆t

δl
o±3 λ

3
)

(

G±
3 − sG±

1

)

,

163

(

Ψ±
k

)

i+(1/2)
= ψ

(
(

L±
k

)

i+(1/2)±1
(

L±
k

)

i+(1/2)

)

, R±
1 = Ψ±

1 L
±
1 +Ψ±

2 L
±
2 ,

164

R±
2 = λ

1
Ψ±

1 L
±
1 + λ

2
Ψ±

2 L
±
2 , R±

3 = sR±
1 +Ψ±

3 L
±
3 , (22)

and the artificial viscosity coefficient as in Burguete and Garćıa-Navarro (2004):165

νni+(1/2) = max
k







1
4

[

δ(λk)− 2
∣

∣

∣
λ
k
∣

∣

∣

]

i+(1/2)
, if (λk)ni < 0 and (λk)ni+1 > 0;

0, otherwise;

(23)
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the second order in space and time TVD scheme (Burguete et al., 2007a) can166

be written as:167











A

Q

As











a

i

=











A

Q

As











n

i

+
∆tn

δli











−











R+
1

R+
2

R+
3











n

i−(3/2)

−











R−
1

R−
2

R−
3











n

i+(3/2)
168

+











G+
1 +R+

1 − ν δA

G+
2 +R+

2 − ν δQ

G+
3 +R+

3 − ν δ(As)











n

i−(1/2)

+











G−
1 +R−

1 + ν δA

G−
2 +R−

2 + ν δQ

G−
3 +R−

3 + ν δ(As)











n

i+(1/2)











,

(24)

and, at the boundary points:169











A

Q

As











a

1

=











A

Q

As











n

1

+
∆tn

δl1











−











R−
1

R−
2

R−
3











n

5/2
170

+











G−
1 +R−

1 + ν δA

G−
2 +R−

2 + ν δQ

G−
3 +R−

3 + ν δ(As)











n

3/2











,

171










A

Q

As











a

2

=











A

Q

As











n

2

+
∆tn

δl2











−











R−
1

R−
2

R−
3











n

7/2
172

+











G+
1 +R+

1 − ν δA

G+
2 +R+

2 − ν δQ

G+
3 +R+

3 − ν δ(As)











n

3/2

+











G−
1 +R−

1 + ν δA

G−
2 +R−

2 + ν δQ

G−
3 +R−

3 + ν δ(As)











n

5/2











,

173










A

Q

As











a

N−1

=











A

Q

As











n

N−1

+
∆tn

δlN−1











−











R+
1

R+
2

R+
3











n

N−(5/2)
174

+











G+
1 +R+

1 − ν δA

G+
2 +R+

2 − ν δQ

G+
3 +R+

3 − ν δ(As)











n

N−(3/2)

+











G−
1 +R−

1 + ν δA

G−
2 +R−

2 + ν δQ

G−
3 +R−

3 + ν δ(As)











n

N−(1/2)











,
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









A

Q

As











a

N

=











A

Q

As











n

N

+
∆tn

δlN











−











R+
1

R+
2

R+
3











n

N−(3/2)
175

+











G+
1 +R+

1 − ν δA

G+
2 +R+

2 − ν δQ

G+
3 +R+

3 − ν δ(As)











n

N−(1/2)











. (25)

3.4. Second sub-step: solute dispersion176

Defining:177

(KlA)i+(1/2) = min
[

(KlA)i , (KlA)i+1

]

, (26)

the following Eulerian implicit centered scheme is used to solve the surface flow178

solute dispersion:179

[

δl1A
b
1 +

(

KlA∆tn

δl

)b

3/2

]

sb1 −
(

KlA∆tn

δl

)b

3/2

sb2 = δl1A
a
1 s

a
1 ,

180

−
(

KlA∆tn

δl

)b

i−(1/2)

sbi−1

181

+

[

δliA
b
i +

(

KlA∆tn

δl

)b

i−(1/2)

+

(

KlA∆tn

δl

)b

i+(1/2)

]

sbi

182

−
(

KlA∆tn

δl

)b

i+(1/2)

sbi+1 = δliA
a
i s

a
i ,

183

−
(

KlA∆tn

δl

)b

N−(1/2)

sbN−1 +

[

δlN Ab
N +

(

KlA∆tn

δl

)b

N−(1/2)

]

sbN

184

= δlN Aa
N saN , (27)

being a tridiagonal system of N equations with N variables (sbi ) at every furrow185

solved with a Gaussian elimination algorithm.186

3.5. Third sub-step: infiltration187

In a third step, the contribution of the infiltration term is incorporated as188

in Burguete et al. (2009a):189

∆αb
i = min(A, ∆tn P I)bi , Ac

i = Ab
i −∆αb

i , Ac
i s

c
i =

(

Ab
i −∆αb

i

)

sbi ,
190

αc
i = αb

i +∆αb
i , φci = φbi +∆αb

i s
b
i . (28)
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3.6. Fourth sub-step: source terms191

In the fourth sub-step an implicit discretization of the source terms is ap-192

plied. Taking into account that only the momentum equation contains source193

terms, the mass conservation and the solute transport equations are trivial in194

this step :195

Ad
i = Ac

i , (As)di = (As)ci . (29)

The friction laws considered are singular, tending to infinity for small values196

of the water depth, which can introduce numerical instabilities in transient197

calculations. A threshold value for the depth hmin will be used in order to198

avoid those situations. Below that value, the discharge will be set to zero. We199

use:200

• hmin = 0.01 m for the Manning friction model.201

• hmin = d for the power law velocity model.202

otherwise, a friction factor r = r(A) =
Sf

|Q|Q depending only of A is defined for203

the considered friction models, leading to a simple second order equation for the204

water discharge. Therefore, discharge is evaluated according to:205

Qd
i =



















0,
(

hdi ≤ hmin

)

;

Qc
i + g θ∆tn

{

[A (S0 − r |Q|Q)]
d
i

− [A (S0 − r |Q|Q)]
c
i} ,

(

hdi > hmin

)

;

(30)

3.7. Fifth step: boundary conditions206

3.7.1. Inlet and outlet207

The program surcos always assumes the the furrows are closed at both ends.208

This is achieved by means of:209

Qe
1 = Qe

N = 0. (31)

3.7.2. Mass sources210

All the mass inflows, both of water or solute, are treated in surcos as internal211

source points. A water inflow point at the location ~rin with a discharge Qin(t) is212
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dealt with by searching the nearest i-th grid cell where the following is assigned:213

Ae
i = Ad

i +
1

δli

∫ tn+1

tn
Qin(t) dt; (32)

or, in case of having a solute inflow point:214

(As)ei = (As)di +
1

δli

∫ tn+1

tn
Qin(t) dt. (33)

In the rest of the grid cells nothing is altered:215

~Ue
i = ~Ud

i . (34)

3.8. Sixth sub-step: furrow junctions216

We will concentrate on furrow junctions of the ”T” type, that is, involving217

only a main furrow and a perpendicular secondary furrow. In this way, the218

momentum addition from the tributary furrow is in the normal direction to the219

main flow and viceversa.220

The main hypothesis used to solve at the junction area is that the main221

furrow grid cell involved at the junction (j) as well as the secondary furrow grid222

cell involved (k) share a unique water surface level and a unique value of solute223

concentration. The total volume of water V e
junction and mass of soluteMe

junction224

at the junction cells are therefore (Burguete et al., 2009a):225

V e
junction = Ae

k δlk +Ae
j δlj , Me

junction = (As)ek δlk + (As)ej δlj . (35)

By requiring the conservation of water volume and the uniform surface water226

level zfs , a second order equation for this variable can be written in a trapezoidal227

furrow geometry:228

[

B0 + Z
(

zfs − zb
)]

k

(

zfs − zb
)

k
δlk +

[

B0 + Z
(

zfs − zb
)]

j

(

zfs − zb
)

j
δlj

229

= V e
junction. (36)

This formulation immediately leads to the values of Af
i and Af

k . On the other230

hand, the requirements of solute mass conservation and uniform concentration231

at the junction result in:232

sfj = sfk =
Me

junction

V e
junction

. (37)
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The rest of the grid points not involved in the junction are not altered in233

the present sub-step:234

~Uf
i = ~Ue

i . (38)

3.9. Final sub-step: solute solubility235

Finally, the fertilizer instantaneous solubility S is considered. No dissolution236

velocity is assumed. Definingmi as the solid mass deposed at cell i, the following237

is performed:238

S ≥ sfi and mn
i = 0 ⇒ sn+1

i = sfi , mn+1
i = 0;

239

S ≥ sfi and mn
i ≤

(

S − sfi

)

Af
i δli ⇒ sn+1

i = sfi +
mn

i

Af
i δli

, mn+1
i = 0;

240

S ≥ sfi and mn
i >

(

S − sfi

)

Af
i δli ⇒ sn+1

i = S,

241

mn+1
i = mn

i −
(

S − sfi

)

Af
i δli;

242

S < sfi ⇒ sn+1
i = S, mn+1

i = mn
i +

(

sfi − S
)

Af
i δli. (39)

The solubility only affects the solute concentration. The rest of the variables243

remain unchanged:244

An+1
i = Af

i , Qn+1
i = Qf

i . (40)

4. Interface245

This section describes the windows interface in surcos. The simulation engine246

has been coded in standard C-language. The graphical interface has also been247

coded in C-language using some multiplatform free libraries:248

Gettext: to support different international languages. Currently english, span-249

ish, french and italian versions are available.250

GTK+: to show the interactive windows.251

OpenGL / FreeGLUT: to display the graphical results.252

Libpng: to save the graphical plots.253
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The program has been tested in multiple operative systems: Windows XP1,254

Windows 71, Debian Linux, FreeBSD, OpenBSD, NetBSD, DragonflyBSD and255

OpenIndiana.256

4.1. Main window257

The main window appears when launching the program and is used as basic258

interface with the user. It contains the links to get access to the rest of the259

windows. Using the buttons in table 1 it is possible to get access to the different260

utilities in the program.261

Figure 3: Initial and main window in the application surcos.

Table 1: Description of the different actions offered by the main menu surcos.

Button Role
Open Open a window to load a project
Configure Open a window to configure the project
Execute Run the simulation
Plot Open a window for results visualization
Summary Open a summary window
Help Information
Quit Exit the application

4.2. Configuration window262

The window to configure a simulation can be accessed by pressing on the263

button Configure. Some panels can be accessed in this window.264

4.2.1. Geometry configuration panel265

Program surcos simulates irrigation in a quadrilateral network of furrows or266

in a isolated furrow. The geometry configuration panel (see figure 4), can be267

used to edit the project topographic data by means of the coordinates of the268

four vertices that define the furrow plot.269

1Windows XP and Windows 7 are trademarks of Microsoft Corporation.
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Figure 4: Geometry configuration panel.

As displayed in figure 4, the distribution furrow runs between points 1 and270

2 and the recirculation furrow, if any, can be defined between points 3 and 4.271

The irrigation furrows are assumed in the normal direction to the former. In272

cases of isolated furrow only the distribution furrow between points 1 and 2 is273

simulated.274

4.2.2. Furrow configuration panel275

Figure 5: Furrow configuration panel.

The panel displayed in figure 5 allows to define the geometric properties of276

the furrows as divided in three types: distribution, recirculation and irrigation277

furrows. The different options appear as active or inactive depending on the278
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previous definition of the furrow in our project. The available characteristics279

to edit are all displayed in figure 5. In cases of isolated furrow simulations the280

number of irrigation furrows must be set to 0 and the furrow characteristics281

must be set at the distribution furrow.282

4.2.3. Inlet configuration panel283

The panel shown in figure 6 can be used to configure the total water and284

fertilizer inlet to the furrow system. Every inlet is assigned to a location point285

where the flow is applied, and is characterized by the initial and the final appli-286

cation times of a constant discharge. Note that, if the point assigned falls out of287

a furrow, the program finds the nearest position within a furrow. The discharge288

is volumetric rate flow for the water and a mass flow rate for the fertilizer. It289

is possible to define more complex inlet hydrographs by means of a sequence of290

inlet discharges at the same point.291

Figure 6: Inlet configuration panel.

4.2.4. Fertilizer configuration panel292

The solubility characteristics of the fertilizer can be set too.293

4.2.5. Probes configuration panel294

The panel displayed in figure 7 can be used to define the number of probes295

and their location in the plot. Note that, if the point assigned falls out of a296

furrow, the program finds the nearest position within a furrow.297
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Figure 7: Probes configuration panel.

4.2.6. Advanced parameters configuration panel298

The panel shown in figure 8 contains advanced options to configure the299

numerical simulation, as follow:300

Figure 8: Advanced parameters configuration panel.

Maximum simulation time: Usually, surcos runs the simulation from the initial301

conditions up to the moment all the applied water has infiltrated in the302

terrain. In order to avoid excessively long simulation times, this param-303

eter can be used to state a horizon or target time. From that limit, the304

computation stops even though some water still remains on the surface.305
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CFL: Dimensionless numerical parameter proportional to the time step size306

used by the resolution method. It takes values between 0 and 1 for nu-307

merical stability reasons. Values close to 1 are optimal. Excessively low308

values can slow the computation.309

Data saving cycle: Simulation time interval used to save series of numerical310

results in a file. It is possible to have n = ts
pv

snapshots of the irrigation311

event, with ts the simulation time and pv the data saving cycle.312

Cells number for distribution furrow (between irrigation furrows): Number of313

computational cells in the distribution/recirculation furrow between two314

irrigation furrows. A diagram can be shown in figure 9. In cases of isolated315

furrow this is the number of cells of the mesh.316

Cells number for irrigation furrows: Number of computational cells in every317

irrigation furrow. See an example in figure 9. More cells implies better318

quality in the results and slower computations.319

Distribution furrow

Recirculation furrow

Irrigation
furrows

r

r

r

r

r

r

r

r

r

r

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

❜

Cell
nodes

✲
❅

❅
❅

❅■

✟✟✟✟✟✙

Figure 9: Mesh example on a furrow network. This example has 6 irrigation furrows, 5 cells at
the distribution furrow between irrigation furrows (•) and 11 cells at every irrigation furrow
(◦).

4.3. Simulation320

After the configuration, the simulation of the project is performed by press-321

ing the button Execute in the main menu.322
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4.4. Results visualization323

4.4.1. Graphical results324

A window showing a graphical plot of the numerical results can be accessed325

by pressing the button Plot. The graphics are controlled from the window326

shown in figure 10, where an interactive dial can be used to move forward and327

backward in time the evolution of the variables represented. It is also possible328

to choose the furrow, the variable and the probe to view. The program offers329

the possibility to save the graphical results by pressing the button Save at the330

bottom of the window. The image of the plot appearing on the graphical window331

in that moment, as the shown in next section in figures 15-17, is saved in a png332

format.333

Figure 10: Plot selection window

Program surcos produces three types of plots. The first is a plan view of the334

furrow network, with the possibility to display the distribution in the network.335

The second graphical option is a Cartesian xy-plot of the longitudinal profile336

along different furrows. The third graphical option is a time evolution of the337

variables in the different probes. The variables that can be plotted are those in338

table 2.339

Some examples of these graphics provided by the program are shown in the340

next section (figures 15-17).341

4.4.2. Summary342

The access to the summary is through the button Summary. This is useful343

to produce a brief text report with the description of the irrigation configuration344

and the most relevant results obtained. An example is displayed in figure 11.345

The results include the surface, infiltrated and percolated water and fertilizer346

mass both in the irrigation furrows and in the distribution/recirculation furrows.347
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Table 2: Variables to view on the plots.

Variable Units Furrows Furrow Probe
network profile evolution

Surface water depth m x x x
Surface fertilizer concentration kg m−3 x x x
Infiltrated water volume m2 x x -

per unit furrow length
Infiltrated fertilizer mass kg m−1 x x -

per unit furrow length
Discharge m3 s−1 - x -
Surface water volume m2 - x -

per unit furrow length
Surface fertilizer mass kg m−1 - x -

per unit furrow length
Surface water and bed levels m - x -
Irrigation advance and recession times s - x -

The infiltrated water mass in the soil remains available to the crops by retention348

forces, contrary to the percolated water.349

The uniformity of distribution of water (UW25) and of the fertilizer (UF25)350

follows the ratio between the infiltration average of the 25% of the less irrigated351

points and the total infiltration average:352

UW25 =

∑

αi<25%

min (αi, RiW )

∑

i

min (αi, RiW )
, UF25 =

∑

φi<25%

min

(

φi,
RiW φi
αi

)

∑

i

min

(

φi,
RiW φi
αi

) , (41)

with R the water retention capacity of the soil. In furrow networks the unifor-353

mity of distribution is calculated only in the irrigation furrows.354

Finally, the efficiency is computed as the infiltrated mass in the irrigation355

furrows divided by the total applied mass. Therefore, both the percolated mass356

and the solid mass of solute, as well as the mass infiltrated in the distribu-357

tion/recirculation furrows in cases of furrow networks, are considered losses in358

the estimation of the efficiency.359

5. Results360

This section is devoted to the presentation of examples of the numerical361

results produced by the model in several scenarios of fertigation in furrows362
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Figure 11: Summary of the input data (top) and results (bottom).

and furrow networks. All the necessary input files for these examples can be363

downloaded from Burguete et al. (2013a) or Burguete et al. (2013b).364

5.1. Simulation of 9 fertigation scenarios in a level isolated furrow365

A single zero slope furrow with total length 30 m is first presented. The366

furrow cross section is trapezoidal with B0 = 0.17 m, Z = 1.2, H = 0.27 m367

and W = 1 m. A low retention capacity soil (0.06 m) is assumed with a368

roughness Gauckler-Manning n = 0.015 m s−1/3 and infiltration parameters369

K = 0.0032 m s−a, a = 0.42 and f0 = 0 m s−1. The water inlet point is located370

at the upstream end (l = 0 m) whereas the fertilizer inlet point is assumed at371

l = 1 m. In all the scenarios 0.9 m3 of water are applied as well as 0.9 kg of372

fertilizer with a solubility S = 10 kg m−3. The fertilizer is applied at a constant373
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rate but during application times of different duration. The final irrigation time374

(ts) used is the one required for the total infiltration of the surface water. The375

discretization parameters are the grid size δl = 1 m and the time step that is376

ruled by the CFL = 0.9 in all the simulations. The computational time spent377

in the 9 scenarios has been 0.37 s on a desktop PC with Intel Core i5 3.2 GHz378

processor without any parallelization.379

Table 3 contains the detail of the different inlet discharge values as well as380

the initial (ti) and final (tf ) application times. The final irrigation time and381

the distribution uniformity results are also included. Figure 12 is the plot of382

the longitudinal profile of infiltrated water and solute. Better uniformity values383

are obtained with larger inlet discharges. The application of the fertilizer 1 m384

away from the water inlet point reduces the fertilizer uniformity as the fertil-385

izer infiltration upstream the application point is negligible. The distributed386

fertilizer application strategies (in scenarios 2, 5 an 8 it is applied during the387

first half-period whereas in scenarios 3, 6 and 8 it is applied during the second388

half-period) reduce considerably the fertilizer uniformity in general.389

Table 3: Final irrigation time, discharges, application times and water/fertilizer uniformity
for scenarios 1-9.

Water Fertilizer
Scenario ts Qin ti tf UW25 Qin ti tf UF25

s m3 s−1 s s % kg s−1 s s %
1 1020 0.002 0 450 88.72 0.002 0 450 65.43
2 1020 0.002 0 450 88.72 0.004 0 225 42.39
3 1020 0.002 0 450 88.72 0.004 225 450 68.42
4 858 0.005 0 180 95.37 0.005 0 180 71.85
5 858 0.005 0 180 95.37 0.010 0 90 59.31
6 858 0.005 0 180 95.37 0.010 90 180 22.12
7 830 0.010 0 90 96.58 0.010 0 90 71.69
8 830 0.010 0 90 96.58 0.020 0 45 54.22
9 830 0.010 0 90 96.58 0.020 45 90 5.26

5.2. Simulation of 12 fertigation scenarios in a furrow network390

This set of scenarios (10 to 21) is concerned with the simulation in a plot391

120 m x 200 m with a network of 120 irrigation furrows. A low infiltration392

soil with the Kostiakov-Lewis parameters K = 1.0 · 10−3 m s−a, a = 0.2 and393

Ic = 1.0 · 10−6 m s−1 is assumed. The roughness model (10) has been used394
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Figure 12: Longitudinal profiles of volume of water (a) and mass of solute (b, c and d)
infiltrated per unit length of furrow for the scenarios 1-9.

with the typical furrow values ǫ = 0.03 and d = 0.02 m. The irrigation furrows395

are assumed of trapezoidal cross section given by B0 = 0.17 m, Z = 1.67,396

H = 0.20 m, W = 1 m and with a longitudinal slope S0 = 0.0001. Level397

distribution and recirculation furrows are assumed (S0 = 0) with a cross section398

given by B0 = 0.37 m, Z = 1.67, H = 0.25 m and W = 1.2 m. A total399

water volume of 2160 m3 and 1080 kg fertilizer with solubility S = 1 kg m−3
400

are applied during 20 hours. In scenarios 10-13 water is applied at an extreme401

point in the distribution furrow. In scenarios 14-17 it is applied at the mid-point402

of the distribution furrow and in scenarios 18-21 water is applied simultaneously403

at the two end points of the distribution furrow. On the other hand, in scenarios404

10, 14 and 18 the fertilizer is applied during 20 hours, in scenarios 11, 15 and405

19 it is applied during the first 10 hours and in scenarios 12, 16 and 20 it is406

applied in the last 10 hours. In all scenarios, water and fertilizer are applied407

at the same location except in scenarios 13, 17 and 21, where the fertilizer is408
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applied suddenly at the beginning time on 9 equally distributed points along409

the distribution furrow. Figures 13 and 14, and table 4, show the sketch of the410

water and fertilizer application in the different scenarios.411

Distribution furrow

❆
❆❯

s

Water inlet

✑✸

s

s

s

Scenarios 10-13 Scenarios 14-17 Scenarios 18-21

Figure 13: Water application in scenarios 10-21.
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Scenarios 18-20 Scenarios 13, 17 and 21

Figure 14: Fertilizer application in scenarios 10-21.

In all cases, the total irrigation lifetime required by complete infiltration of412

surface water takes about 46-47 hours. For the numerical simulation, a grid413

spacing δl = 1 m was used in all scenarios, leading to 24480 cells. The time step414

was controlled by CFL = 0.9.415

Figure 15 shows a snapshot of the program with a distribution map of the416

surface water depth in scenario 10 at t = 43200 s.417
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Table 4: Water and fertilizer applications for scenarios 10-21.
Water Fertilizer

Scenario ti tf Inlets Inlets ti tf Inlets Inlets
h h number location h h number location

10 0 20 1 Corner 0 20 1 Corner
11 0 20 1 Corner 0 10 1 Corner
12 0 20 1 Corner 10 20 1 Corner
13 0 20 1 Corner Suddenly at t = 0 9 Distributed
14 0 20 1 Middle 0 20 1 Middle
15 0 20 1 Middle 0 10 1 Middle
16 0 20 1 Middle 10 20 1 Middle
17 0 20 1 Middle Suddenly at t = 0 9 Distributed
18 0 20 2 Corners 0 20 2 Corners
19 0 20 2 Corners 0 10 2 Corners
20 0 20 2 Corners 10 20 2 Corners
21 0 20 2 Corners Suddenly at t = 0 9 Distributed

Figure 15: Map of the water depth for scenario 10 at t = 43200 s as displayed by the program
surcos.

Figure 16 shows a snapshot of the program with the longitudinal surface and418

infiltrated water depth profiles in the 60th furrow for scenario 10 at t = 3240 s.419

Figure 17 shows a snapshot of the program with the time evolution of the420

surface water depth and concentration at a point located in the mid point of421

the distribution furrow for scenario 10.422
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Figure 16: Longitudinal profile of the surface and infiltrated water in the 60th irrigation furrow
for the scenario 10 at t = 32400 s displayed by the program surcos.

Figure 17: Time evolution at a probe located at the center of the distribution furrow for
scenario 10 as displayed by the program surcos.
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Table 5 presents the irrigation times as well as water and fertilizer efficiency423

and uniformity achieved for scenarios 10-21. The water application efficiency424

is excellent in all cases, with a zero percolation flow. The fertilizer application425

efficiency is also excellent except in scenarios 13, 17 and 21 where some of the426

fertilizer is not dissolved. The water distribution uniformity is good (> 76%)427

and improves when the inlet is located at the distribution furrow midpoint or428

end points (≈ 87%). The fertilizer distribution uniformity is also good when429

it is applied together with water (scenarios 10, 14 and 18). The fractional430

application of the fertilizer in the first or second half of the application time431

reduces the uniformity. It is worth noting that the strategy of spatial fertilizer432

distribution along 9 points in the distribution furrow not only reduces efficiency,433

due to the non-dissolved solid fraction, but also produces a loss in uniformity434

in these scenarios.435

Table 5: Final irrigation times as well as water and fertilizer efficiency and uniformity achieved
for scenarios 10-21.

Water Fertilizer
Scenario ts EW UW25 EF UF25

hh:mm % % % %
10 46:39 98.58 76.86 98.58 76.86

11 46:39 98.58 76.86 98.91 4.77
12 46:39 98.58 76.86 98.01 10.33
13 46:39 98.58 76.86 74.47 1.81
14 46:19 98.55 87.37 98.55 87.37

15 46:19 98.55 87.37 98.78 34.08
16 46:19 98.55 87.37 98.31 33.63
17 46:19 98.55 87.37 65.51 0.97
18 46:19 98.55 87.34 98.55 87.34

19 46:19 98.55 87.34 98.79 33.27
20 46:19 98.55 87.34 98.14 32.90
21 46:19 98.55 87.34 74.13 0.22

The time used by a 2.8 GHz Intel Core i7 desktop computer to run the 12436

scenarios in four parallel processes, in order to do an optimal use of the four437

CPU cores, was 14 h : 02 min, about one hour per simulation.438

6. Conclusions439

This work has presented program surcos. The core of the program is a well440

tested mathematical model including shallow water flow and solute transport441
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solved using a second order TVD scheme. The verification and validation of442

the numerical model can be found in previous publications (Burguete et al.,443

2009a,b). The model is adapted to furrow fertigation and implements an infil-444

tration equation that automatically adjusts to variations in the wetted perime-445

ter, a roughness equation based on an absolute roughness parameter, and an446

equation for the estimation of the longitudinal diffusion parameter. The model447

also incorporates a specific treatment of the boundary conditions formulated to448

ensure perfect global mass conservation. The model goes eyond furrow irrigation449

and fertigation to furrow networks by means of a simple and computationally450

efficient approach to the junction conditions, considered as internal boundaries.451

Numerical tests have been used to assess the model properties for the cal-452

culation of both water level and solute concentration front advance, and to453

evaluate the performance of the treatment of boundary conditions and junc-454

tions. The results of these tests have confirmed the adequacy of the model to455

address the problems of unsteady flows with solute transport in single channels456

and junctions in channels.457

The model shows very adequate for the prediction of both water movement458

and infiltration as well as fertilizer transport. Several water and fertilizer appli-459

cation points and times have been used in order to prove the applicability of the460

model in a level furrow network. All the simulations lead to numerical results461

that are characterized by lack of numerical oscillations and perfect water volume462

conservation. The analysis of the different cases leads to the main conclusion463

that it works well, it is reliable, fast and very easy to use. This program can be464

a useful tool for the optimization of surface irrigation and fertigation in furrows465

and furrow networks.466

The present model surcos improves previous developments by offering the467

possibility to model water flow and solute transport in furrow junctions and468

furrow networks. The model and the examples presented in this work are dis-469

tributed (Burguete et al., 2013a,b) as free software under a BSD type license470

with available and editable source code.471
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Notation472

α = volume of water infiltrated per unit length of furrow,473

∆ = time increment,474

δ = spatial increment,475

δwk = first order upwind coefficients,476

ǫ = dimensionless parameter of aerodynamical resistance,477

θ = parameter controlling the degree of implicitness of the source term,478

Λ = flow Jacobian eigenvalues diagonal matrix,479

λk = flow Jacobian eigenvalues,480

ν = artificial viscosity coefficient,481

φ = mass of solute infiltrated per unit length of the furrow,482

Ψ±
k = high order TVD coefficients,483

ψ = high order TVD flux limiter function,484

A = wetted cross sectional area,485

a = Kostiakov model exponent,486

B = cross section top width,487

B0 = furrow base width,488

b = fitting exponent of the vertical profile of flow velocity,489

CFL = dimensionless Courant-Friedrichs-Lewy number,490

c = velocity of the infinitesimal waves,491

~D = solute dispersion vector,492

d = characteristic length of the bed roughness irregularities,493

EF = fertilizer efficiency,494

EW = water efficiency,495

~F = flux vector,496

G±
k = first order upwind coefficients,497

g = gravity constant,498

H = furrow depth,499

h = water depth,500

hmin = depth threshold value to allow water discharge,501
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I = infiltration rate,502

~I = infiltration vector,503

I1 = pressure force integral,504

Ic = saturated infiltration long-term rate,505

J = Jacobian matrix of the flow,506

K = Kostiakov model constant,507

Kl = longitudinal solute dispersion coefficient,508

L = furrow length,509

L±
k = high order TVD coefficients,510

l = longitudinal coordinate,511

Mjunction = total mass of solute at the junction cells,512

mi = solid mass deposed at i-th cell,513

N = number of cells discretizing a furrow,514

o±k = first order upwind coefficients,515

P = cross-sectional wetted perimeter ,516

P = flow Jacobian diagonalizer matrix,517

Q = discharge,518

Qin = inflow discharge,519

R = water retention capacity of the soil,520

R±
k = high order TVD coefficients,521

r = friction factor,522

~rin = inflow point location vector,523

S = fertilizer instantaneous solubility,524

S0 = longitudinal bottom slope,525

~Sc = source term vector,526

Sf = longitudinal friction slope,527

s = cross sectional average solute concentration,528

t = time,529

tf = final application time,530

ti = initial application time,531

ts = final irrigation time required to complete infiltration,532
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~U = vector of conserved variables,533

UF25 = fertilizer low quarter uniformity,534

UW25 = water low quarter uniformity,535

u = cross sectional average velocity,536

Vjunction = total volume of water at the junction cells,537

W = distance between furrows,538

y = transversal coordinate,539

Z = tangent of the angle between the furrow walls and the vertical direction,540

z = vertical coordinate,541

zb = bed level,542

zs = surface water level.543
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