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Abstract 

In this research work, the production of undoped and silver (Ag) doped zinc oxide (ZnO) thin 

films for food packaging applications was developed. The main goal was to determine the 

influence of coatings morphology and thickness on the antimicrobial performance of the 

produced samples. The ZnO based thin films were deposited on PET (Polyethylene 

terephthalate) by means of DC reactive magnetron sputtering. The thin films were characterized 

by optical spectroscopy, X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) 

and Scanning Electron Microscopy (SEM). The antimicrobial performance of the undoped and 

Ag-doped ZnO thin films was also evaluated. The results attained have shown that all the 

deposited zinc oxide and Ag-doped ZnO coatings present columnar morphology with V-shaped 

columns. The increase of ZnO coatings thickness until 200nm increases the active surface area 

of the columns. The thinner samples (50 and 100 nm) present a less pronounced antibacterial 

activity than the thickest ones (200-600nm). Regarding Ag-doped ZnO thin films, it was 

verified that increasing the silver content decreases the growth rate of E. coli. and decreases the 

amount of bacteria cells present at the end of the experiment. 
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1. Introduction 

More natural, safer and higher quality consumable products have been seen as a 

market demand of huge importance in what concerns the Food Packaging Industry. 

Foodborne illnesses and death is rising worldwide, particularly in developed 

countries[
1
]. Indeed, data from the Foodborne Diseases Active Surveillance Network 

(Food Net) states that comparing 2007 with 2004-2006, the estimated occurrence of 

infections caused by Campylobacter, Listeria, Salmonella, Shigella, Vibrio, and 

Yersinia did not diminished significantly, and above all, the incidence of 

Cryptosporidium infections even increased by 44% [
2
]. At the same time, foodborne 

illness-outbreaks create tremendous social and economic burdens bringing the fear for 

the re-emergence of infections diseases. Furthermore, the development of antibiotic 

resistance continues to draw public attention to food safety [
3,4

]. The combination of the 

supra-mentioned reasons with the current awareness for environmental conservation and 

protection has empowered the development of edible coatings and films from 

biodegradable materials to maintain the quality of both fresh and processed food [
5
]. 

Silver-based thin films [
6,7

,
8
] and zinc oxide nanoparticles  [

9
,
10

,
11

,
12

,
13

,
14

,
15

] have 

emerged as promising candidates for active food packaging systems, particularly due to 

their antibacterial activity. However, due to the lack of knowledge regarding the 

interactions of nano-sized materials at the molecular and physiological levels and their 

potential effects on human body, a major concern related to safety of nanoparticles for 

consumer’s health is raising [
16

,
17

,
18

,19]. Titanium dioxide (TiO2) has been used as a self-

cleaning and self-sterilizing material to coat different tools, including sanitary ware, 

food tableware and cooking ware [
20

,
21

]. The antimicrobial effects of TiO2 are activated 

by its photocatalytic behaviour, which is totally dependent on ultraviolet and/or visible 

light irradiation. However, for food packaging industry this is a huge drawback since 



the antimicrobial activity will only be effective in irradiated packages. An alternative to 

overcome this limitation could be the use of Zinc oxide (ZnO). ZnO presents 

antimicrobial activity, can act as a permeation barrier coating [
22

] and is Generally 

Recognized as Safe material (GRAS) by the U.S. Food and Drug Administration 

(21CFR182.8991). In this sense, the development of zinc oxide thin films can be 

considered of great added value to food packaging industry. There are a limited amount 

of scientific publications available describing the interaction between ZnO nanoparticles 

and bacterial cells and as far the authors knowledge there is no reported work 

concerning the antimicrobial activity of zinc oxide coatings deposited by means of 

reactive magnetron sputtering. In this sense, the main goal of this research work is to 

evaluate the antimicrobial activity of zinc oxide thin films and study the influence of 

coating thickness, morphology and silver content in the antimicrobial activity. Its 

applicability for food packaging systems will also be discussed.  

To the author’s knowledge, this work is the first to study the influence of thickness 

and coatings morphology on the antimicrobial activity, contributing to the knowledge of 

important physical variable in the thin films production. 

 

2. Materials and Methods 

2.1. Thin films production and characterization  

Zinc oxide thin films were deposited on Polyethylene Terephthalate (PET) 

substrates from Goodfelow and silicon (Si) substrates from Silllicon Materials  by 

reactive DC magnetron sputtering (Advanced Energy Pinnacle Plus, 5K, DC Pulsed). 

The films deposited on PET were used for the evaluation of the optical properties and 

the antimicrobial activity and the ones deposited on Si were used for structural, 

morphological and compositional characterization.  It was used a circular zinc target 



(Φ=75mm) with a purity of 99,9% and a thickness of 4mm acquired from Goodfellow 

Before deposition the sputtering chamber was pumped down to 10
-3

 Pa. A gas 

atmosphere composed by argon (Ar, working gas) and oxygen (O2, reactive gas) was 

used in the deposition processes. The Ar and O2 flows were kept constant at 70 sccm 

(standard cubic centimetre per minute) and 18 sccm, respectively. Each deposition was 

carried out with a working pressure of 0.6 Pa, a current of 0.35 A and a target/substrate 

distance of 80 mm. Prior to each deposition the zinc target was pre-sputtered during 5 

minutes. All other deposition parameters were kept constant and the depositions were 

performed at room temperature (40 ºC measured inside the chamber).   

X-ray diffraction (Philips PW 1710 X-ray diffractometer) analysis was used to 

investigate the crystallographic structure of ZnO thin films. The thickness and 

morphology of ZnO thin films were obtained by the observation of the cross section of 

the fractured thin films by SEM (NanoSEM-FEINOVA 200). The optical transmittance 

was measured by visible spectroscopy (Shimadzu UV-310PC scanning 

spectrophotometer). The chemical characterization was by using a XPS spectrometer 

(12 kV, 20 mA) from VG (ESCALAB 210). An unmonocromatized Mg K (1253.6 

eV) source was used during the measurements. For all the zinc oxide coatings, the 

binding energies of the XPS spectra were calibrated by using of Zn 2p3/2 at 1022.2 eV 

and the spectra were acquired at room temperature. All the coatings were sputtering 

cleaned with Ar
+
 until a stationary composition was achieved. At this stage, no carbon 

resulting from superficial contamination was observed. 

 

 

2.2. Thin films antimicrobial activity  



In this research work, the Escherichia coli was the bacteria species chosen and it 

was obtained from the Centre of Molecular and Environmental Biology (CBMA), 

Department of Biology, University of Minho. A pre-culture was prepared for each 

individual batch experiment. One colony of E. coli strain HB101 was picked and loop 

inoculated into a 125-ml Erlenmeyer flask, containing 20 ml of Luria Bertani (LB) broth 

(10 g/L tryptone, 10 g/L NaCl, and 5 g/L yeast extract). This pre-culture was incubated 

at 37°C, for 12 to 15h. On the day after, cells were transferred into different 250-ml 

Erlenmeyer flasks containing 50 ml of LB broth medium at a starting optical density 

(OD) of 0.1 measured at a wavelength of 640 nm. A coated PET circular sample 

(diameter of 6 cm), previously sterilized with 70% ethanol for 1 hour and rinsed in 

sterile water, was deposited on the bottom of the flask. Flasks were then shaken at 80 

rpm in a temperature-controlled incubator at 37 °C, and the OD was monitored every 

hour. OD measurements were made using a Spectronic 20 instrument at 640 nm and the 

background (turbidity due to growth medium) was eliminated by taking blank readings. 

The specific growth rate (μ) was calculated from the exponential phase, according to the 

following equation: 
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where OD1 and OD2 are the optical densities corresponding to time instants t1 and t2, 

respectively. The generation time (tg) can be calculated according to the equation: 
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3. Results and discussion  

3.1. Thin films structure and morphology 

The produced ZnO thin films in this research work are highly transparent, 

presenting a transmittance of about 80% in the visible region of the electromagnetic 

spectrum. The remainder 20%, is lost by reflection at the air/ZnO interface, by 

dispersion and by absorption of light in the substrate.  

In order to study the influence of the coating thickness and morphology in its 

antimicrobial activity, the thickness was controlled by changing the deposition time. 

With this methodology it was observed that the film thicknesses ranged from 50 to 600 

nm. X-ray diffraction analyses were performed in representative samples and the 

measurements were done between 20º and 70º () for all thin films. Fig. 1 shows the 

undoped zinc oxide X-Ray Diffraction patterns of the thin films having 50, 200 and 600 

nm thicknesses. 

 

Fig. 1 XRD patterns of ZnO thin films with 50, 200 and 600 nm thickness, deposited in 

PET substrate. 



In XRD patterns it is observed the presence of the (002) diffraction peak of the ZnO 

wurtzite structure (JPCDS36-1451[
23

]) in all the samples, indicating a preferential 

orientation to the c-axis perpendicular to the substrate, as previously reported by others 

authors[
24

,
25

,
26

]. Some authors correlate the preferential orientation with the 

minimization of internal stress and surface energy [
27

,
28

,
29

] and others  [
30

] reported that 

c-orientation maybe result from the highest atomic density found along (002) plane. In 

Figure 1 it is also possible to observe that, as expected, the increase of the coatings 

thickness induces an increase of diffraction peak intensity. The decrease of full width at 

half maximum also suggests an increase of grain size with the thickness. 

 

Fig. 2 shows the SEM micrographs of the undoped ZnO samples cross-sections; 

the grains extend from the substrate to the top of the film. The typical morphology can 



be identified as a Zone 1 film of the modified structure zone model [
31

] with typically 

low compactness. 

 

 

Fig. 2. SEM micrographs presenting the thin films cross-sections with different 

thickness deposited in Si substrate: a) 50nm; b)200nm; c) 300nm and d) 600nm. 

 

The thinner coatings, 50 and 100 nm (not showed here) present a more compact 

morphology in comparison with the thickest ones. It is possible to observe that the 

increase of coatings thickness induces the formation of less compact coatings, with well 

define and separated columns (Fig. 2). From this figure it is can also be identified an 

increase of columns width with the increase of coatings thickness. From the presented 

a) b) 

c) d) 



results it is also possible to conclude that a facet plane can be observed in the upper 

region for the thickest coatings (300-600 nm). The attained results are in agreement with 

the ones reported by J. W. Shin et al. [
32

] that deposited ZnO coatings at room 

temperature on Si substrates. These authors explained the formation of facet planes as 

being a consequence of the lower diffusion rate of the atoms on the ZnO surface during 

column’s growth the deposition rate. 

To better understand the morphology of these coatings, top view SEM 

micrographs of ZnO samples with different thickness were taken and are shown in Fig. 

3.  

 

Fig. 3. Top-view SEM micrographs of ZnO thin films with different thickness deposited 

in Si substrate: a) 50nm; b)200nm; c) 300nm and d) 600nm. 

a) b) 

c) d) 



 

From the last figure it is possible to perceive an increase of the top column width 

with the increase of the coating’s thickness. Since the displayed images (see Fig. 3) 

represent different ZnO coating’s growth stages, it is plausible to assume that the 

deposited zinc oxide coatings have columnar morphology with V-shaped columns. 

The formation mechanism of the V-shaped columnar structure has been thoroughly 

discussed and it is attributed to the competitive growth due to differences in surface 

energy of neighbouring crystal faces on the free surface of thin films[
33

,
34

,
35

]. A 

schematic illustration of the ZnO morphology with the increasing thickness is presented 

in Fig.4.  

 

Fig. 4. Scheme of ZnO morphology with increasing thickness. 

 

From the last schema it can be assumed that increasing the thin film’s thickness 

beyond a certain value (that for these specific ZnO films is close to 300 nm) may induce 

a decrease on the ratio of the columns surface area to columns length. 

 

3.3. Thin film antimicrobial activity 

50 nm 300 nm 600 nm



 The inhibition effect of the undoped zinc oxide coatings with different 

thicknesses on the growth rate of E. coli was evaluated by incubating bacteria cells with 

the different coatings in liquid media at very low rotations to enhance the cell contact. 

Since the optical density (OD) is proportional to the number of microorganisms in the 

culture medium[
36

], lower OD indicates a higher antibacterial effect of the coated thin 

films. The bacterial growth was monitored over more than 24 hours being possible to 

observe the cultures reaching the stationary phase, in which the microorganisms are no 

longer able to grow (Fig. 5A). 

 

 a) b) 

Fig. 5. Antibacterial activities of the ZnO thin films against E. coli. A- Bacteria cells 

were incubated with thin films with different thickness and growth monitored over time 

measuring OD at 640nm. The control growth was assessed using non coated PET with 

the same area. B- Generation time of bacteria with thin film thickness. 

 

In fact, Fig. 5 shows that when comparing with the control, the thinner samples 

(50 and 100 nm) present a less pronounced antibacterial activity than the thickest ones 

(200-600nm). It is important to point out that the thickest coating (200-600nm) not only 

increase the generation time, i.e. decrease of the growth rate, (Fig. 5B), but also 

decreased in 45% the amount of bacteria cells present at the end of the experiment. This 

characteristic is important for food packaging applications since it clearly reduces 

bacterial load. 



The thin films having thicknesses of 50 to 100 nm present an increase of 

generation time by a factor of 1.26 and 1.4, respectively. By another hand, the thin films 

with 200 to 600nm induced an increase by a factor from 2 to 3.3, in comparison with the 

control (Fig. 5b). It can also be observed that samples with thicknesses higher than 200 

nm present approximately the same antibacterial activity (Fig. 5b). These results suggest 

that there exists a maximum thickness above which bacteria growth rate is not further 

reduced with increasing thickness. In summary, it is possible to conclude that films with 

200 to 600 nm were the ones with the best performance in what concerns the reduction 

of bacteria’s growth rate and the total number of bacterial cells. 

ZnO powder has been used for a long time as an active antibacterial ingredient 

for dermatological applications such as creams, lotions and ointments [
37

]. However, 

ZnO nanoparticles are much more effective agents in controlling the growth of different 

microorganisms than micro-powders. Some authors [
38

,
39

,
40

,
41

] have been reporting that 

the smaller the particle size, the greater the efficiency in inhibiting bacteria growth. 

Moreover, several works showed that the antimicrobial activity is also dependent of the 

concentration used [
42

,
43

,
44

,
45

]. The higher the concentration of ZnO nano/micro 

particles, the higher the antibacterial effect achieved. These results indicate that 

increasing the active surface area enhances the antimicrobial activity. This conclusion 

could explain the initial increase of the antibacterial performance of the zinc oxide 

coatings observed in our study from coatings with 50-100 nm to 200-600nm (Fig. 5). 

The contact of moisture in the medium, per unit ZnO mass, increases with the increase 

of columns length or coating thickness and with the decrease of coatings density. This 

initial increase in growth inhibition should result from the increase of the surface area 

resulting from the increase in columns length (coatings thickness). However, this 

inhibition effect stabilizes at 200nm. The posterior stabilization should result from the 



approximately constant surface area. The active surface area depends on three factors, 

column length, column width and the percentage of voids between columns that are 

accessible to the species in the liquid phase.  As already discussed in this work, 

associated with the coatings thickness (columns height) enhancement is an increase in 

the coatings columns width. The increase of columns width can decrease the percentage 

of voids between columns that are accessible to the species in the liquid phase, keeping 

constant the active surface area, i.e. the surface area that is accessible to the species in 

the liquid phase. The satutarion of the active surface area explains the maintenance of 

the antibacterial performance after stabilization. 

After determining the critical thickness of the ZnO coatings on the antibacterial 

activity of the films, the influence of the silver dopant content in the final properties of 

the coatings was also evaluated. For this purpose, a new set of samples was deposited, 

using a constant thickness of ~200nm, but having different Ag/Zn ratio. The Ag/Zn 

ratio was increased until the average transmittance value in the visible region (Tvis.) of 

the coatings decreased to about 80%. Assuming the mentioned restriction (Tvis.>80%), 

three different coatings were obtained. The composition data obtained by X-Ray 

Photoelectron Spectroscopy (XPS) analysis show that the Ag/Zn atomic ratios of the 

coatings were respectively 0.005(ZnO(Ag)-1), 0.007(ZnO(Ag)-2),  and 0.04(ZnO(Ag)-

3). 

Fig. 6 shows the XRD patterns of undoped and Ag doped ZnO thin films having 

different Ag/Zn atomic ratios.  



 

Fig. 6. XRD patterns of silver doped ZnO thin films. It is also included a non doped 

ZnO sample. All coatings were deposited on Si substrate. 

 

From the diffraction pattern of the last figure it can be observed that the only 

polycrystalline crystalline phase detected corresponds to the ZnO hexagonal wurtzite 

type (JPCDS36-1451, a = 0.326 nm and c = 0.522 nm). No phases corresponding to 

silver or silver oxide were detected, which indicates that there is no additional phase 

present in the ZnO:Ag films (at least within the limit of X-ray detection). The undoped 

ZnO sample deposited on Si substrate present similar preferential growth regarding the 

one deposited on PET substrate, see fig.1. The samples ZnO(Ag)-1 and ZnO(Ag)-2 

present several major peaks of ZnO, indicating low extend of crystalline preferential 

growth. This could indicate that the presence of silver, in very low concentration, may 

inhibit the c-axis preferential growth of ZnO films. As for the change of c-orientation 

with Ag doping, some authors  [
46

,
47

] detected a decrease in the extent of c-orientation 

while others [
48

] observed an opposite behaviour by Ag doping. Oleg Lupa et al.[
49

] 



proposed that heterogeneous nucleation could be facilitated in the presence of Ag
+
 ions 

in the ZnO structure, enhancing the growth rate in the (101) direction.  

The sample with the highest concentration of silver, ZnO(Ag)-3, present similar 

XRD spectrum as the undoped ZnO samples, showing a clear c-orientation.  

All the Ag doped ZnO films present a small X-Ray Diffraction peak shift as 

compared with pure ZnO, resulting from the ZnO lattice parameter increased in the c-

axis with Ag doping. According to literature [
50

,
 51

,
52

,
53

,
54

] the slight decrease of 2 may 

be due to the increase of its lattice constant caused by substitution of Zn
2+

 ions (radius 

of 0.65A˚) by Ag
+
 ions (radius of 1.02A˚) leading to the compressive distortion of the 

crystalline structure. Due to its large ionic radius, Ag+ would preferentially choose to sit 

in the vicinity of grain boundaries[
55

 ]. Based on first-principles calculations, several 

authors [56,57] indicated the formation energy for Ag-Zn (Ag in substitutional sites) is 

lower than that for Ag-i (Ag in interstitial sites). Based on that, if Ag+ ions are available 

during deposition, it is expected that they may be inserted into ZnO crystalline structure 

by substitution of Zn
2+

 ions, within the solubility limits. Shu-Ting Kuo et al[
58

] proposed 

that the solubility of Ag in ZnO is between 0.08 and 0.76 mol%. The same authors, 

based on the TEM observations, concluded that for higher concentrations above the Ag 

solubility limit it tend to segregate at the grain boundaries of ZnO. This small value 

determined by Shu-Ting Kuo et al[
59

] is somehow expected since the large size 

difference between Zn
2+

 and Ag
+
 ions should reduce the solubility of Ag in ZnO lattice. 

Fig. 7 shows the XPS Zn2p and Ag3d spectra of the silver doped and undoped 

ZnO films. 

 



  

Fig. 7. XPS Zn2p (left) and Ag3d (right) spectra of silver doped ZnO films and 

undoped ZnO. All coatings were deposited on Si substrate. 

 

The Zn2p3/2 core line, (calibrated at 1022.2 eV[
60

] of binding energy) exhibits a small 

asymmetry in the right side,  indicating that zinc could present more than one oxidation 

state. The XPS spectra of Ag3d3/2 peak (Fig. 7) shows binding energies in the range 

368.6-369.2eV for the three doped samples. The evolution of the binding energy of 

Ag3d3/2 with the chemical state of silver is anomalous, since it decreases with the 

oxidation state of this element. The reported silver compound with the highest binding 

energy is AlAg2 (368.7 eV), and the one with the lowest is AgF2 (367.7 eV). Binding 

energies for pure Ag, Ag2O, and AgO bulk samples are  368.22, 367.8, and 367.4 eV, 

respectively[
61

,
62

,
63

,
64

,
65

,
66

,
67

,
68

]. It is evident that the peak Ag3d5/2 in Ag doped ZnO 

samples are located at energies far above bulk metallic silver (+1 eV) and even above 

that for bulk AlAg2 (+0.5 eV). Unfortunately, since the surface concentration of silver in 

doped films is very low, it is not possible to detect properly in these samples the 

AgMVV Auger signals and, consequently, the value of the modified Auger parameter 



of silver, which is so useful to determine the chemical state of this element, cannot be 

obtained.   

We can imagine two different hypothesis that could explain the high binding 

energy values obtained for Ag3d3/2 peaks in  ZnO(Ag)  films. One, that silver is forming 

small metal clusters strongly interacting with ZnO support, since it has been widely 

discussed in the literature that the binding energy of small metallic particles is usually 

shifted to lower binding energy [
69

]. For instance, a shift of 0.4 eV was observed for 

silver deposited on graphite[
70

],  shifts of +0.6 eV [
71

] and +0.9 eV [
72

]  have been 

reported for silver on Al2O3,  while shifts of +0.6 and +1.2 eV have been reported for 

silver deposited on TiO2 at 300K and 100K,  respectively [
73

]. These shifts have been 

attributed to both initial and final state factors affecting the photoemission process. 

Initial state effects are those affecting the energy of the initial state, as for instance, the 

metal-substrate interaction, the mean coordination of the atoms in the clusters and their 

geometry [
74

,
75

].  Final state effects are those affecting the relaxation or screening of the 

photohole, as the Coulombic potential or the dielectric constant of the substrates [
76

,
77

].  

The binding energy shift observed in our samples, up to +1.0 eV, would be in the upper 

limit of the range found for small silver clusters on Al2O3 and TiO2.  To verify the 

validity of this hypothesis, we have carried out an experiment in our laboratory where 

increasing amounts of pure silver are condensed under ultra high vacuum on ZnO films, 

from a fraction of a monolayer to many monolayers. Note that, regardless of the growth 

mechanism followed by silver depositing on ZnO (layer by layer or three dimensional 

island growth), the mean particle size will increases when the deposited amount 

increases. The result of this experiment is illustrated in Fig. 8, where the evolution of 

Ag3d spectrum is displayed as a function of the nominal thickness of deposited silver, 

and in Fig. 9, where the evolution of the Ag3d5/2 peak binding energy is plot versus the 



same variable. As can be seen, when deposited on ZnO, the binding energy of very 

small silver aggregates only shift up to +0.6 eV in respect to that one of bulk silver, 

which is quite lower than the experimental binding energy value found for Ag doped 

ZnO films. 
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Fig. 8. Evolution of Ag3d spectrum for growing amounts of metal silver deposited 

under UHV on ZnO.  The nominal thickness of deposited silver, assuming a layer to 

layer growth mode, is expressed in Angstroms.  
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Fig. 9. Evolution of the Ag3d5/2 binding energy of silver for deposits of silver on ZnO 

with growing nominal thickness.  

 

  A second possible hypothesis to explain the high binding energy found for 

silver in Ag/ZnO, is that metal Ag particles are doped with metal Zn, giving rise to the 

formation of an intermetallic compound, where the binding energy of Ag3d3/2 signal 

could be higher than that for pure silver, as reported for AlAg2. Since the percentage of 

silver doping the ZnO films is very low, the detection of the Zn species linked to the 

silver atoms is fully hidden by those Zn atoms located in the ZnO phase. Moreover, 

metal Zn  species cannot be distinguish from Zn
+2

 cations by XPS on the basis of the 

main primary photoelectron signals (Zn2p), because both chemical species generates 

just the very same spectrum. Fortunately, the elucidation of the chemical state of Zn can 

be made effectively by XPS by determining the value of the modified Auger 

parameter[
78

].  For that purpose, both ZnL3M45M45 and Zn2p3/2 photoemission signals 

must be measured, since the value of the Zn modified Auger parameter, ´, is equal to 



the sum of the binding energy of the Zn2p3/2 photoelectron peak and the kinetic energy 

of the ZnL3M45M45 Auger line. 

In order to further study this second hypothesis, one film of Zn containing a 

small amount of Ag, was deposited by magnetron sputtering from metallic Zn and Ag 

targets, and analyzed by XPS. The objective was to obtain a reference sample of Ag 

doped with metallic Zn, and compare its Ag3d3/2 binding energy with the one for the 

case of Ag doped ZnO films. 

In spite of being prepared from pure Zn and Ag targets, the film of Ag doped Zn, 

when examined by XPS, only showed divalent zinc at the surface, characterized by a 

modified Auger parameter of ~2010.0 eV,  very likely as a consequence of the corrosion 

of this metal during its exposition to the atmosphere of the laboratory. However, and as 

expected, the sputtering cleaning of its surface, by bombardment with Ar
+
 ions, 

gradually remove the altered layer, and a stationary state is reached in its composition 

after a treatment of 120 min, treatment long enough to remove around ~12 nm. The 

evolution of the surface composition of this film by the ion etching treatment is neatly 

noticeable by the decrease in the O/Zn atomic ratio and by the changes in the shape of 

ZnL3M45M45 Auger line, where a new peak at 991.8 eV of kinetic energy, due to Zn(0), 

rises with the sputtering treatment. In Fig. 10, the spectral region for ZnL3M45M45  signal 

is shown for this sample at the stationary state, where the peaks for Zn(0) and Zn(+2) 

are labeled and the values of the respective modified Auger parameters calculated. 
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Fig. 10- Photoemission spectrum of the ZnL3M45M45 Auger line for the Zn(Ag) sample 

after surface cleaning by sputtering with Ar
+ 

ions of 2.5 keV for 120 min. 

 

As the morphology of this coating is highly columnar, even at the stationary state the 

collected XPS signal presents the contribution of the corroded lateral surface of the 

columns. 

Fig. 11Fig. 11 shows the Zn2p and Ag3d photoemission signals of this silver 

doped zinc film at the original state (surface corroded) and at the stationary state after 

sputtering. As can be seen, Zn2p3/2 peak appears in both situations at around 1022.20 eV 

of binding energy, while Ag3d5/2 peak shifts with the sputtering treatment from 368.64 

to 369.47 eV. The intensities of both Zn and Ag signals increase with this treatment, as 

a result of the removal of surface contaminants and, very likely, the preferential 

sputtering of oxygen.  Obviously, the binding energy of the Ag3d5/2 peak, 369.47 eV, is 

so high that it cannot be ascribed to pure metallic silver, although consisting of very 

small particles.  Since it increases simultaneously with the detection of metallic zinc, the 

formation of a Zn-Ag bond is the most probable explanation for this high value of 

binding energy. In other words, while the presence of very small aggregates of silver 



(first hypothesis) could only account for a binding energy shift of up to +0.6 eV, the 

doping of these particles with Zn (second hypothesis) could explain by itself the whole 

experimental shift and even further.    
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Fig. 11. XPS Zn2p (a)) and Ag3d (b)) spectra of silver doped zinc film at the original 

state and after 120 min of surface etching with Ar
+
 ions of 2.5 keV . 

Fig. 12 shows the top and cross section micrographs of the silver doped ZnO 

thin films. 



 

Fig. 12. Top-view and cross section SEM micrographs of silver doped ZnO thin films; 

a) and b) ZnO(Ag)-1 sample, c) and d) ZnO(Ag)-3 sample. 

 

From the previous figure it is possible to observe that the presence of silver 

induces a change in the ZnO coatings morphology in comparison with Fig. 2b. For the 

samples with very low silver content, ZnO(Ag)-1 and 2 (not showed here),  the shape of 

the columns change from circular pillar-like morphology (see Fig. 2) to triangular 

morphology (see Fig. 12), maintaining a V shape form in the cross section view. It is 

important to note that these samples do not show a crystalline preferential growth, in 

contrast with the undoped zinc oxide samples. The sample with the highest silver 

content presents a columnar morphology with a circular shape, similar to the undoped 

samples, but with a much less dense morphology, where the space between columns is 

cleared observed. Once more time, the circular columnar morphology is related to a 

200 000x – ZnO(Ag)-1 200 000x – ZnO(Ag)-1

200 000x – ZnO(Ag)-3200 000x – ZnO(Ag)-3

a) b) 

c) d) 



preferential orientation of the c-axis perpendicular to the substrate surface (see Fig. 6). 

This result suggests that the different crystalline growth related with the presence of 

silver could induce morphology changes in the coatings. L.N. Wang, et al. [
79

] reported 

that Ag doping could cause morphological changes in the ZnO thin films. The authors 

observed that the presence of silver induces the formation of a porous morphology. 

The antibacterial activities of undoped and Ag-doped ZnO thin films against E. 

coli are depicted in Fig.7. 

a) b) 

Fig. 13. Antibacterial activities of undoped and Ag- doped ZnO thin films against E. 

coli. a) Optical density (OD) at 640 nm over time of incubate bacteria cells with 

different Ag content The control growth was assessed using non coated PET with the 

same area; b) generation time of E. coli. bacteria. 

 

From the previous plot (Fig. 13) it is possible to observe an enhancement of 

antibacterial activity with the increase of silver content in the zinc oxide based coatings. 

With the increase of silver content there is a decrease of E. coli. growth rate (see, Fig. 

13.a) and 7.b)), a decreased amount of bacteria cells present at the end of the 

experiment. On the other hand for the sample having the highest Ag/Zn atomic ratio of 

0.04 it is observed a complete growth inhibition (see, Fig. 13.a).  

The antibacterial mechanism of ZnO is still under investigation. Two major 

mechanisms have been suggested: (1) the release of Zn
2+

 ions from the coating [
80

] and 



(2) the generation of hydrogen peroxide as well as radical oxygen species from ZnO 

surface[
81

,
82

,
83

,
84

,
85

,
86

]. 

Sugarman [
87

] suggested that zinc ions binds to the membranes of 

microorganisms, extending the lag phase of the growth cycle and increasing the 

generation time of the microorganisms [
88

]. Others authors [
89

,
90

,
91

], observed that Zn
2+

 

ions do not have much antibacterial activity up to a concentration of 7.3x10
-5

 M, the 

same order of magnitude of the solubility of ZnO in the solution. This may be consistent 

with the prediction that E. coli can metabolize Zn
2+

 as an oligoelement[
92

]. This 

suggests that these ions are not primarily responsible for the antibacterial activity of 

ZnO. The same authors claimed that the antimicrobial dominant mechanism should 

result from Radical Oxygen Species (ROS) generation and their subsequent interaction 

with cell. 

Regarding the generation of highly reactive species, such as OH
radicals, 

H2O2 and O2
2−

, Nagarajan Padmavathy and co authors[
93

] explained as follows: ZnO 

with defects can be activated by both UV and visible light, which will induce electron-

hole pairs (e
-
/h

+
) generation. Water molecules can spontaneously dissociate into OH

-
 

and H3O
+ 

species. Dissolved oxygen molecules are transformed to superoxide radical 

anions 
  
 , that in turn will react with H3O

+
 to generate (HO2


) radicals, which upon 

subsequent collision with electrons produce hydrogen peroxide anions (HO2
-
). Then, 

they then react with H3O
+ 

to produce H2O2 molecules. However, light is needed to 

produce photocatalytic ROS. Since in the present work the E. coli. A- Bacteria cells 

were incubated in dark conditions, the generation of (ROS) cannot be explained by a 

photocatalytic mechanism. By another hand, Ken Hirota et al.[
94

] and J. Sawai et al.[
95

] 

observed the generation of OH radicals from ZnO ceramics in dark conditions. Both 

authors did not explain the formation mechanism of these radicals. 



Regarding the silver antimicrobial activity, silver cation (Ag
+
) is highly reactive since it 

binds strongly to electron donor groups containing sulphur, oxygen or nitrogen[
96

], but 

metallic silver has only slight antibacterial effects because it is chemically stable[
97

]. 

Biological molecules usually contain these components in the form of thiol, amino, 

imidazole, carboxylate and phosphate groups.  The bonding of silver ions to bacterial 

Deoxyribonucleic acid (DNA)[
98

] may inhibit a number of important transport 

processes, such as phosphate and succinate uptake and can interact with cellular 

oxidation processes as well as the respiratory chain[
99

]. It was also shown that Ag+ 

bonds to functional groups of proteins resulting its denaturation[
100

]. It is also supposed 

that DNA loses its replication ability and cellular proteins become inactivated on Ag
+
 

treatment [
101

]. Concerning to our specific results, some questions still remain to t be 

answered. They are related with the chemical activity of silver that enhances the 

antimicrobial effect or its influence in the coatings morphology that induces an increase 

of the antimicrobial effect. As shown in this work, the coatings morphology was greatly 

influenced the antimicrobial performance of the coatings and the presence of silver 

strongly changes the active surface area of the coatings. Further studies will be 

performed to clarify this questions. 

 

 

Conclusions 

 

ZnO thin films, with thickness varying from 50 to 600nm, were prepared by DC 

Reactive Magnetron Sputtering. Silver doped Zinc Oxide thin films (ZnO(Ag)) with 

different silver content and thicknesses closed to 200nm were also produced. All the 

deposited zinc oxide and silver doped ZnO coatings present a columnar morphology 

with V-shaped columns. The increase of coatings thickness until 200nm increases the 

active surface area of the columns whereas further increasing the thickness induces a 



decrease of the ratio of the columns surface area and columns length. This results in a 

saturation of the active surface area of the thin films. All the ZnO based thin films 

present a hexagonal wurtzite type (JPCDS36-1451) and no additional phases of to silver 

or silver oxides were detected in the doped samples. The XRD results reveal that Ag
+
 

should substitute Zn
2+

 ions in the zinc oxide matrix leading to a distortion of the 

crystalline structure. XPS analysis revealed high values of binding energy of Ag3d 

indicating a possible formation of a Zn-Ag bond in the zinc oxide coatings. In the case 

of antimicrobial properties, thin films with 50 to 100 nm present an increase of 

generation time by a factor of 1.26 and 1.4, respectively. By another hand the thin films  

with 200nm to 600nm induced an increase of the generation time by a factor from 2 to 

3.3. The thickest coating (200-600nm) showed a reduction in the number of bacterial 

cells at the end of the experience, that was 45% at the stationary phase. This 

characteristic is extremely important for food packaging applications because it may 

reduce bacterial load. Ag-doping of ZnO enhances their antibacterial activities. In fact, 

with the increase of silver content there exists a decrease of E. coli.  growth rate and a 

decreased of the amount of bacteria cells present at the end of the experiment (until a 

complete growth inhibition for the sample with a Ag/Zn atomic ratio of 0.04). 
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