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Abstract 

Copper is essential for all living organisms but is toxic when present in excess. Therefore 

organisms have developed homeostatic mechanism to tightly regulate its cellular 

concentration. In a recent study we have shown that CopRS two-component system is 

essential for copper resistance in the cyanobacterium Synechocystis sp. PCC 6803. This 

two-component regulates expression of a heavy-metal RND type copper efflux system 

(encoded by copBAC) as well as its own expression (in the copMRS operon) in response to 

an excess of copper in the media. We have also observed that both operons are induced 

under condition that reduces the photosynthetic electron flow and this induction depends of 

the presence of the copper-protein, plastocyanin. These findings, together with CopS 

localization to the thylakoid membrane and its periplasmic domain being able to bind 

copper directly, suggest that CopS could be involved in copper detection in both the 

periplasm and the thylakoid lumen. 

 

TEXT 

Copper is an essential micronutrient that acts as a cofactor in fundamental processes like 

respiration and photosynthesis. The same redox properties that makes it an excellent metal 

cofactor also makes it extremely toxic when it is in excess, generating reactive oxygen 

species through Fenton-like reactions, destabilizing Fe-S clusters and competing for the 

binding sites of other metalloproteins.1,2 Furthermore, most metal-containing proteins will 

prefer to bind copper over other divalent metals in vitro, following the Irwing-Williams 

series.3 These have forced living organism to dedicate specific machineries to handle 

copper, ensuring that copper gets delivered to every copper containing protein and 

preventing spurious copper binding to other metalloproteins. In bacteria most copper 



proteins are mostly located either in the plasma membrane or the periplasm, to avoid 

copper entering the cytosol. In these regard cyanobacteria are unusual among bacteria as 

they have an extra internal copper requirement, like most photosynthetic organisms (from 

cyanobacteria to higher plants), in the form of the blue-copper protein plastocyanin, the 

electron transport protein between the cytochrome b6f and photosystem I. 

 

The pathway for copper incorporation in cyanobacteria has been analyzed mainly in 

Synechocystis sp. PCC 6803 (hereafter Synechocystis). Copper import is mediated by two 

PI-type ATPases, CtaA and PacS, and a small soluble copper metallochaperone Atx1.4,5 

These three proteins, together with glutathione, collaborate to deliver copper to the 

thylakoid lumen, where it is incorporated into plastocyanin and cytochrome c oxidase, 

preventing copper binding to undesired proteins.6 This proposed pathway is conserved in 

plant chloroplasts where two PI-type ATPases are present in the inner chloroplast and the 

thylakoid membranes.7 Another protein that have been implicated in copper transport is 

FutA2, which electrophoretic mobility changes in the presence of the Cu+-chelator, and a 

mutant in the corresponding gene is impaired in copper import and has reduced levels of 

intracellular copper proteins.8 CtaA and PacS are thought to transport reduced copper, 

although copper is present in the growth medium in it oxidized state, pointing to the 

existence of an unidentified copper reductase in cyanobacteria.  

 

Until now nothing was known about copper resistance mechanism in cyanobacteria, but we 

have recently shown that CopRS (previously also known as Hik31/Rre34) two-component 

system is involved in copper resistance in Synechocystis. CopRS directly regulates a HME-

RND export system (CopBAC; encoded by ORFs slr6042, slr6043 and slr6044), its own 



expression and a protein of unknown function CopM (encoded by ORFs sll0788 and 

slr6039) in response to an excess of copper in the media. CopS belongs to the membrane 

attached histidine kinases and we have shown that its periplasmic domain is able to bind 

copper with high affinity. In addition CopS is partially localized to the thylakoid membrane 

where it could be able to bind Cu2+ in the thylakoid lumen. This two-component has been 

previously suggested to play a role in redox regulation mediated by plastoquinone pool in 

Synechocystis based on its differential induction after DCMU (which allows cyclic electron 

flow) and DBMIB (which completely blocks electron flow) treatments.9 Later it was also 

shown to be induced under other conditions that alter the electron transport rate around PSI, 

such as sulfur and nitrogen starvation or low oxygen.10-12 We have shown that copper is 

strictly required for these inductions, suggesting that these are indirect effects of reduction 

of photosynthetic electron transport. Plastocyanin, which is the main copper containing 

protein in Synechocystis, it is also the major difference between photosynthetic electron 

transport chains copper replete and copper free medium. Plastocyanin alternates between it 

reduced and oxidized states during electron transfer (Figure 1), but accumulates in the 

oxidized state after DBMIB treatment (Figure 1B). Under this condition plastocyanin levels 

decrease and copper (that will be in its oxidized state) will be released in the thylakoid 

lumen where it could be detected by CopS, activating the CopMRS system. We have also 

shown that induction of copMRS partially depends on the presence of copper loaded 

plastocyanin, as mutants in the gene coding for plastocyanin (petE) or lacking both PacS 

and CtaA (which lacks copper loaded plastocyanin) showed reduced induction of the 

system. Why does CopS need to detect thylakoid copper levels? Plastocyanin have been 

estimated to be in millimolar concentration in the thylakoid lumen13 and therefore even 

degradation of a small amount of plastocyanin, after a reduction in the photosynthetic 



electron flux (due to DBMIB treatment or nitrogen starvation), will release high amounts of 

free copper in the thylakoid lumen. Oxidized copper is very hazardous in this compartment 

due to presence of essential metal containing proteins in photosynthesis. CopS sensing 

domain will most probably face the thylakoid lumen where it could directly detect copper 

released from plastocyanin (which will be in its oxidized state). This mechanism ensure that 

the copper resistance system will be activated (through CopRS) when copper requirements 

are lower due to reduced plastocyanin contents. Hence, induction of the copper resistance 

system will prevent intracellular copper overload, even if no additional copper is added, 

and will protect the photosynthetic machinery in the thylakoid. Finally, CopRS could 

control other genes involved in copper homeostasis which have not been characterized yet, 

but that are expected to exist such as a copper reductase, additional copper transporters 

(besides CtaA and PacS), or a chaperone for cytochrome c oxidase assembly. 
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Figure Legend 

Figure 1 

Redox control of plastocyanin stability.  

Schematic representation of the photosynthetic electron flow from H2O to NADPH in 

Synechocystis sp. PCC 6803 in copper containing media: A, under normal growth 

conditions (with an active photosynthetic electron flow) the pool of reduced plastocyanin 

(PC-Cu+) is higher than oxidized pool (PC-Cu2+) or B, after addition of DBMIB (or other 

conditions that reduces the photosynthetic electron flow) the pool of reduced plastocyanin 

(PC-Cu+) is lower than the oxidized pool (PC-Cu2+). Under these conditions, oxidized 

plastocyanin is degraded and free oxidized copper is released to the thylakoid lumen. PSII, 

photosystem II; PQ, plastoquinone pool; b6f, cytochrome b6f complex; PC, plastocyanin; 

PSI, photosystem I; Fd, ferredoxin; FNR, ferredoxin-NADP+ reductase; FQR, ferredoxin-

quinone oxidoreductase. 
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