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Abstract

We present calculations on energy- and time-resolved two-photon photoemission spectra of im-

ages states in Cu(100) and Cu(111) surfaces. The surface is modeled by a 1D effective potential

and the states are propagated within a real-space, real-time method. To obtain the energy resolved

spectra we employ a geometrical approach based on a subdivision of space into two regions. We

treat electronic inelastic effects by taking into account the scattering rates calculated within a GW

scheme. To get further insight into the decaying mechanism we have also studied the effect of the

variation of the classical Hartree potential during the excitation. This effect turns out to be small.
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FIG. 1: Schematic picture of a 2PPE experiment for a typical metallic surface with a surface band

gap close to the Fermi level. The energy h̄ωa corresponds to the pump photon and h̄ωb to the

probe photon in 2PPE. On the right side we show the tail of the image potential, the densities

of the surface state and first three image potential states of Cu(100) calculated with the model

potential of Ref. [2], and their corresponding binding energies. By EF, Elower and Evac we denote

the Fermi energy, the lower edge of the energy gap and the vacuum energy.

INTRODUCTION

The presence of a metal surface creates electron states that do not exist in the bulk metal.

For example, an electron situated at a distance z from the metal surface experiments an

attractive force, F (z) = −e2/(2z)2, equivalent to that produced by its image charge situated

at distance z inside the metal. For large z, the potential generated by this surface induced

charge approaches the classical image potential, V (z) = −e2/4z[13]. When the metal has a

surface band gap near the vacuum level, the electrons below the vacuum level are trapped

between the well of the image potential and the surface barrier. These quantized states

correspond to image potential states, and are spatially localized in the region in front of the

surface (see Fig. 1). Metal image states typically have a large spatial extension, but barely

penetrate the bulk metal. They form a Rydberg-like series with energies, En, approximately
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given by[1]:

En = − 0.85

(n + a)2
[eV] , (1)

where n is a positive integer, and 0 ≤ a ≤ 0.5 represents the quantum defect (which depends

on the position and width of the gap). The energy of an electron trapped in an image state

and moving parallel to the surface with momentum k‖ is therefore:

E =
h̄2k2

‖

2me
+ En (2)

In contrast to bulk states, the small overlap between surface states and bulk states reduces

considerably the inelastic electron scattering, leading to a long lifetime, τn, of the image

states, that scales asymptotically with the quantum number n as τn ∝ n3[2]. Due to this

fact, these states are very interesting for the study of electron correlations. Furthermore,

image states play an important role in the laser induced chemical control of reactivity at

metal surfaces. It is therefore not surprising the considerable number of studies focusing on

this subject (see Ref. [3] and references within).

Image potential states of different surfaces have been observed experimentally[4]. A

powerful technique to measure their energy and lifetime is two-photon photoemission spec-

troscopy (2PPE)[5]. Recently, and with the advent of ultrafast laser technology it became

possible to perform time-resolved 2PPE spectroscopy (TR2PPE), which allowed, with the

technique of quantum beat spectroscopy[6, 7], the direct measurement of the lifetime of im-

age states, even for states with large quantum number n. The 2PPE technique is depicted

schematically in Fig. 1. One photon (pump), of energy h̄ωa, excites an electron from an oc-

cupied state below the Fermi energy (EF) to an image-potential state of quantum number n;

Then a second photon (probe), with energy h̄ωb, ejects the electron out of the surface, above

the vacuum energy. This electron has a kinetic energy Ek = h̄ωb − En, that is measured in

a detector far away from the surface. By varying the delay between the pump and probe

pulses, the intensity of the 2PPE signal as a function of the delay will reflect the evolution

of the population of the state n. From this information it is then possible to extract the

lifetime of the state n.

Lifetimes of image states for different metal surfaces have been calculated in the frame-

work of the self-energy formalism in the GW approximation[3, 8]. The results obtained

happen to be in rather good agreement with experiments. For example, the calculated

lifetime of the first three image potential states of the Cu(100) surface are τ theor
1 = 30 fs,
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τ theor
2 = 132 fs, and τ theor

3 = 367 fs[3], while the experimental values are τ exp
1 = 40 ± 6 fs,

τ exp
2 = 110±10 fs, and τ exp

3 = 300±15 fs[6], while for the first image state of Cu(111) surface

the theoretical lifetime is τ theor
1 = 17.5 fs[3] and the experimental is τ exp

1 = 15 ± 5 fs[9].

In the present paper we present calculations on energy-resolved 2PPE spectra of Cu(100)

and Cu(111) surfaces. Our theoretical approach is based on the propagation of an electron

wave-packet in an one-dimensional model potential[2] simulating the Copper surface. The

finite electronic lifetimes of the image potential states are taken into account by an empirical

self-energy term. The photoemission spectra are obtained through a geometrical scheme

described in Ref. [10]. Note that in this approach the potential is fixed during the whole

simulations, i.e., the change of the electronic screening during the excitation is not taken

into account. This could be important for short laser excitations as done in TR2PPE.

To assert the relevance of this approximation we also performed time-dependent simula-

tions of the Copper surface, but including the change of the Hartree potential due to the

electronic excitations.

METHOD

To model the Copper surface we used a one-dimensional slab of 48 Copper layers, sur-

rounded by 290 a.u. of vacuum on each side. The large portion of vacuum is necessary in

order to describe the four first image potential wave functions (see Fig. 1). The bulk and

image potentials are modeled by the 1D potential model of Ref. [2]. This model reproduces

the position and the width of the energy gap, as well as the energy of the surface state and of

the first image potential state. Furthermore, it provides a good description of the electronic

structure of simple and noble metal surfaces[2]. In this model the number of bulk states is

discrete for each value of q‖, and is related to the number of layers in the simulation. We do

not believe that this is a major limitation, essentially because all the relevant physics occurs

close to EF, while the remaining states mainly act as a polarizable background. The elec-

trons are allowed to move and interact only in the z-direction, perpendicular to the surface,

and we assume a parabolic dispersion in the parallel direction. Within this approximation,

the Hamiltonian describing such system can be written as

Ĥ0 = − d2

dz2
+ v̂model . (3)
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This operator is discretized in real-space using a grid-spacing of 0.2 a.u, which is sufficiently

small to allow for a proper description of the relevant electronic states.

At t = 0 we assume the system to be in the ground-state of the Hamiltonian (3). We

then propagate this state with the new Hamiltonian

Ĥ(t) = Ĥ0 + v̂laser(z, t) + Σ̂(z) , (4)

where v̂laser(z, t) describes a laser polarized in the z direction that reads, in the length gauge,

v̂laser(z, t) = zE(t). The electric field is composed of a pump and a probe pulses,

E(t) = Epump(t) cos(ωpumpt) + Eprobe(t) cos(ωprobet) . (5)

the functions Epump/probe(t) are envelope functions of the form

Ei(t) = Ei cos2
[

π

σi

(t− ti)
]

Θ(t− ti + σi/2)Θ(−t+ ti + σi/2) , (6)

where σi is the width of the pulse and ti the center of the pulse. For the pump pulse, tpump

is simply σpump/2, while for the probe pulse tprobe = tD + σpump/2, with tD the delay time

between the pump and probe lasers. In order to take into account the finite lifetime of

the image potential states we add to the Hamiltonian (3) a time-independent self-energy

operator of the form:

Σ(z) = −i
N

∑

k=1

Γk|nk〉〈nk| (7)

where |ni〉 are the image potential states and Γk are the inverse experimental lifetimes of

each state taken from Ref.[3]. Note that Ĥ(0) = Ĥ0. The time-propagation is performed in

real-time following the method of Ref.[11]. This propagation scheme preserves unitarity for a

hermitian Hamiltonian, and has been proven very robust and stable in diverse applications.

ENERGY-RESOLVED SPECTRA

In order to obtain the energy-resolved photo-electron spectra we follow the technique

of Ref.[10] and divide the simulation box in two regions: one region, A, containing the

slab and the region where the first image potential states lie, and another, B, defined as

the complement of A (see Fig. 2). In region B the electrons are considered free outgoing

particles, and are treated in momentum space. The separation between the two regions is

achieved through a smooth masking function, M , defined as one in the interior of region A
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FIG. 2: Typical shape of the mask function, M , used for dividing the space in two regions (see

text for details). For illustrative purposes we also plot the densities of the first three image states

of Cu(100).

and zero outside. The method consists in evolving the wave-packet in the first region with the

Hamiltonian (4), and mask the orbitals at each time-step. The electrons that “leave” region

A are then treated as free-particles and accumulated in momentum space. In mathematical

terms, the evolution is performed in the following way: We start by propagating the wave-

functions in regions A and B using

ψA
k (z, t+ ∆t) = M(z) exp

(

−iĤ∆t
)

ψA
k (z, t) (8)

ψB
k (p, t+ ∆t) = exp

{

−i
[p− A(t)]2

2
∆t

}

ψB
k (p, t) + ψ̃A

k (p, t+ ∆t) ,

where ψ̃A
k (p, t + ∆t) is the Fourier transform of the part of the wave function ψA

k that left

region A during the time step ∆t, i.e,

ψ̃A
k (p, t+ ∆t) =

∫

dz exp(ipz)[1 −M(z)] exp(−iĤ∆t)ψA
k (z, t) , (9)

where p denotes the momentum. If we wait long enough after that the laser has been turned

off, region B will contain those electrons that were ionized. The photo-electron spectra is

then identified with:

P (
√

2mE) =
N

∑

k=1

|ψB
k (p, t→ ∞)|2 (10)
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FIG. 3: Photoelectron energy resolved spectra of a Cu(100) (left panel) and a Cu(111) (right panel)

surfaces for both zero and finite pump-probe delay.

where N is the total number of electrons. This method can be derived from the interpretation

of the Wigner transform of the one-body density matrix as a probability density[10].

In Fig. 3 we depict the energy resolved spectra of a Cu(100) and a Cu(111) surfaces for

both zero and finite pump-probe delay. For the (100) surface, the binding energies of the

first image potential states are -0.57, -0.18, and -0.08 eV (see Fig. 1), while for the (111)

surface the first states are at -0.82, -0.22 and -0.009 eV. Note that the second and third image

states of the Cu(111) surface are resonances. Furthermore, the laser parameters used in these

calculations were, for the (100) surface, h̄ωpump = 4.7 eV, h̄ωprobe = 1.8 eV, σpump = 95 fs, and

σprobe = 54 fs, and for the (111) surface, h̄ωpump = 5.1 eV, h̄ωprobe = 1.8 eV, σpump = 87 fs,

and σprobe = 50 fs. From these results we observe that the peaks corresponding to the first

image potential state are obtained at the correct energy position. The signal due to the

image states of higher quantum number cannot be distinguished due to the small difference

in energy that cannot be resolved with our grid resolution. We also note that, for zero delay,
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FIG. 4: Left: Population of the image states n = 1, 2, and 3 as function of time. The values

of Γi=1,2,3 appearing in Eq. (7) were taken from Ref. [3], and the maximum of each curve was

normalized to one. Right: 2PPE intensity for the n = 1, 2, and 3 image states of Cu(100) as

function of the pump-probe delay. Reproduced from Ref. [6]

the broadening of the peak relative to the first image potential state is larger in the case of

the Cu(100) surface than in the Cu(111). This is due to the fact that in the former case, the

probe pulse can ’pump’ low lying energy electrons from the bulk into energy levels near the

gap which can be then ejected from the surface by the pump pulse. As the Cu(111) surface

has a different electronic structure, such situation does not occur[12]. Note that Cu(100)

shows an intrinsic surface state resonance, while Cu(111) has a surface state below the Fermi

level. In the last case, the dominant transition happens between the occupied surface state

and the first image potential state. This can be rationalized in terms of the larger spacial

overlap between surface and image states as compared to bulk states.

TIME-RESOLVED SPECTRA

The typical energy width of the laser pulses used in TR-2PPE varies between about 10

and 30meV. With this energy resolution it is possible to excite separately each one of the

first three image potential states of Cu(100). By following the TR-2PPE intensity in function

of the pump-probe delay it is then possible to follow the evolution of the population of these

states. In Fig.4 we present calculations of the populations of the first three image states of
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FIG. 5: Population of the first image potential state of Cu(100) calculated with and without the

term of Eq.(11) for a 29 fs laser pulse of energy h̄ω = 4.2 eV. In both cases the maximum value of

the population has been normalized to one. The difference in the lifetime for the two cases is 2%

Cu(100). The curves were obtained by propagating the system with the Hamiltonian (4).

For comparison we also show the experimental data from Ref. [6]. Clearly, there is a good

qualitative agreement between the theoretical and experimental curves.

In these calculations, the electron-electron interaction was taken into account by the

model potential of Ref. [2]. However, the variation of this term with time was mostly

neglected. Part of the time-dependence is taken indirectly into account through the self-

energy operator, but one can question how reasonable this approximation really is. In order

to answer to this concern, we performed simulations in which we allowed the classical part

of the electron-electron interaction (i.e. the Hartree term) to change with time. This was

achieved by adding to the Hamiltonian (4) a new term, δvHartree(z, t), that corresponds to

the variation of the Hartree potential due to the change of electronic density in the direction

perpendicular to the surface,

∂2δvHartree(z, t)

∂z2
= −4πδρ(z, t) . (11)

where δρ(z, t) = ρ(z, t)−ρ(z, 0). Exchange and correlation effects were treated as before, i.e.

through the self-energy term (7) used to simulate the lifetime of the states. The evolution

of the population of the first image state with and without this term is shown in Fig 5. We

observe only a minor shift of the peak to lower times from 24fs to 21.3fs and the lifetime is
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reduced by around 2% when the term of Eq.(11) is included. This result validates previous

studies that have neglected this effect[8].

CONCLUSIONS

We have performed dynamical simulations in order to calculate energy-resolved photoe-

mission spectra of the Cu(100) and Cu(111) metal surfaces. Using the same technique we

also obtained time-resolved photoemission spectra for individual excitations of the first three

image potential states of Cu(100). This technique is quite general, and can be used to gain

insight on the dynamics of image states with large quantum number and when more than one

eigenstate is excited coherently (the situation in quantum beat spectroscopy). Furthermore,

we studied the influence of the variation of the Hartree potential during the excitation. This

effects turns out to be small (around 2%).
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