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Renormalization group irreversible functions in more than two dimensions
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There are two general irreversibility theorems for the renormalization group in more than two dimensions:
the first one is of entropic nature, while the second one, by Forte and Latorre, relies on the properties of the
stress-tensor trace, and has been recently questioned by Osborn and Shore. We start by establishing under what
assumptions this second theorem can still be valid. Then it is compared with the entropic theorem and shown
to be essentially equivalent. However, since the irreversible function dictiteectedl Forte-Latorre theorem
is nonuniversalwhereas the relative entropy of the other theorem is univernsaleeds the additional step
of renormalization. On the other hand, the irreversibility theorem is only guaranteed to be unambiguous if
the integral of the stress-tensor trace correlator is finite, which happens for free theories only in dimensions
smaller than four.

PACS numbe(s): 11.10.Gh, 04.62-v, 11.10.Kk

The search for a function representing the irreversible nawhich can be interpreted as showing the irreversibility of the
ture of the coarse-graining transformations of Wilson'sRG [4,5]. As we remarked in previous papers, the relative
renormalization grougRG) has a long history. After the entropy is not the only monotonic quantity with the RG. For
success of Zamolodchikov's-function in two dimensions example, from the same equation that shows its monotonicity
(2D), it was shown that a straightforward generalization to a2), one can realize that the functi¢fy )=dW/d\ is mono-
higher dimension was not possible but, at the same time, ionic as well.
was observed that a related function, the integral of the Let us consider the integrdld®x(®(x)), where® is the
stress-tensor trace on a constant curvature space, could plagigess tensor trace. In a homogeneous space, the expectation
similar role [1]. In an interesting articlg2], Forte and value(®) is independent of the position and only depends on
Latorre formulated an irreversibility theorem in terms of thisthe coupling constants; hence, the integration is trivial, its
quantity. However, an exhaustive analysis of this theorenonly effect being to produce an overall factor. We further
carried out by Osborn and Shaf8] shows that there were consider a field theory with simple scaling behavior, namely,
missing terms in that theorem that actually spoil the irreverswith only one coupling constant such thatmY, wherem
ible character of that function. is the physical mass of the fundamental particle or some

In a separate development, we have introduced in fieldther mass scale. This behavior is very common in critical
theory the relative entropy, a quantity borrowed from prob-phenomena. Sinc® gives the response to a change of the
ability theory, which turns out to be the Legendre transformscalem,
of W(\) —W(0) with respect to\ [4]:

dw (0) aw )\dW ND) 3)
&) Em—: —_— s
Srel( M) =W(N) = W(0) ~ A - dm YMan 7Y
where W is now a specific quantityper unit volume. In
=W—=Wo—\(f,), oY) 4 N yp é

other words, the expectation value®fis proportional to the
monotonic function(f,). By substituting for it in the mono-

where f) is a composite field integrated over the whole yonicity Eq. (2), we can write this equation in the suggestive
spaceSf, = [dPxd(x). As a straightforward consequence of form

its definition, the relative entropy satisfies a monotonicity
theorem

—mdi(m‘y<®))=m‘yf dPx(®(x)0(0))., (4

dSy dwW d ( dw d?w m

dn dh dA d)\)_ )‘d)\z _ .
where the subscrift means that one is to take the connected
correlation function. The integral of this correlation function
may be divergent. Iim#0 it converges forx—o. On the
other hand, the behavior of the two-point function for 0
is the same as in the massldas=0) theory, thus given by
the dimension ofb, dy . Therefore, the integral is UV con-
*Also at Instituto de Matentiwas y Fsica Fundamental, CSIC, vergent if 24, <D, thatis, ify=D —dg>D/2. One can also
Serrano 123, 28006 Madrid, Spain. derive an equation fo{®):
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_mdim<®>: f d°X(O(x)0(0))~y(®).  (5) fre(MR):= lim [£,(MR)~f1(MoR)], ®)

) N A and my being the UV cutoff and the subtraction

In Euclidean space, the form of the quantities def'”edpoint, respectively. In particular, one can set,=0.
above is given by scalin@.g.,Sem®) and has little physi-  Ajternatively, one can use minimal subtraction, by which
cal content. In a curved homogeneous space one can forghe only subtracts the divergent partfofvhich is indepen-
the dimensionless variable=Rm, whereR is the curvature  gent of m [7]. In any renormalization scheme we use the
radius, and dimensionless quantities are non-trivial functiongreedom afforded by the integration constant of E4), for
of it. In particular, we have the dimensionless function ofeyxample, to make(0)=0, which is equivalent to taking
Refs.[1-3], c(u)=RP(®). Introducing a constant curvature y, —q.
starting from the scale Ward identities satisfied by the energyhe assumption of convergence of the integral in E]
momentum tensor aR varies(2,3]. Let us remark that the  pecause the UV divergences W cancel in the definition
derivation in Ref[2] yields a slightly different equation. It s Se. EQ. (1). One can define a dimensionless
has been polished in R4B], to obtain an equation similar to growing entropyS, proportional t0S.. In terms of the

but more general than E¢b): functionf,
d o D D ) -1
~R=(R%(6))=R fd X(@(x)0(0)), S(u)=y Odv v M (v) W (u). 9)
- RDﬂi(ﬁiAJ”?iﬁj(‘DD)- (6) The renormalization constant 6tancels in this formula.

To illustrate the general theory, we will study a free

This equation takes into account the possibility of severamassive scalar fieldp, with coupling constantm?, in
couplings and the existence of the trace anomdlysuch  D-dimensional hyperbolic spaced®, where D=2,3,4.
that T5=0 + .4, where®=g'®;. We can convert Eq(6) Naturally, a free massive scalar field theory is the simplest
into Eq. (5) by (i) assuming simple scaling behavior, example of simple scaling one can take. The field expecta-
that is, with only one coupling such thgg=y\, the tion value(¢?) is then the Gaussian model energym?)
anomaly A being independent of it, and bfji) replacing [5,6], while S is a real thermodynamic entropy. Some
the derivative with respect t& with a derivative with respect expressions for the quantities =2 have been calculated
tom. in Ref.[6], in terms of the variable=(Rm)2. More exten-

Therefore, even though in the general case no monasive calculations of ¢?) are given by Osborn and Shdr|.
tonicity theorem seems to follow from E¢6) [3], it does  For H?,
in our case, namely, the one expressed by(Eg.However,
the monotonic quantitywith respect tam or R, indistinctly) frar(1) = (Nr +1/4+1/2) + v, (10
is not justc(u)=RP(®), as proposed in Ref§1-3], but
ratherc(u)=u"Yc(u). They only coincide ify=0, that is, wherey is the digamma function anglis the Euler constant.

when the coupling constant is dimensionless. Generally, thginlgree[l)ses?)with, O”ISCCOU”E of the Iproae(r)tiebs gt i sh
functionsc or ¢, involving the composite fieldp, contain orD=3 we could use the results of Osborn an ore

(normal ordey UV divergences. We can introduce a UV [8], but it is easier to use the heat-kernel metf®ldsince the

regulator but, given that it can only be removed by introduc-D =3 heat kemel is extremely simpfe}:
ing another scaléenormalization point those functions are _t

not universal. K(0;t)= ——. (11
To define a finite monotonic function from the stress- " (4mt)®?
tensor trace, one has, therefore, to perform a subtraction. Let
us define the function Hence,
f(u)=-Vp_1mYR°¥(O), (7) foc (Lt ot
fredl)=—4m e (li—g
il 0 (47rt)3’2[ ]

whereVp_,;=27P"T'(D/2) is the volume of the unit

—1)-dimensional sphere. This function is essentiai{y), =\r+1-1. (12
except for a conventional sigito make it increasing rather

than decreasingand a normalization factor. It is UV diver- This function is obviously increasing.

gent but, assuming the convergence of the integral in4g. In D=4 (the case used as an example in R&f), f has
one subtraction suffices to render it finite. The point is thatan expression similar to the one fdr=2 [10,7]. However, it
when integratingd f/dm according to Eq.4), one has an is a particularly interesting case because the integral in Eq.
integration constant which can be infinite. Therefore, we carf4) is now divergent, sd (r) must be subtracted too. Con-
define a renormalized value B8] sequently, two subtractions drare needed now, that is,
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frenr)=lim [f,(r)—fo(rg)—(r—rg)fi(ro)l. field theory inD=3, limg_..RY"Pf(mR)=m. In contrast,
Ao for D=2, R°f(mR)=f(mR) diverges logarithmically a&
—o0, as deduced from the corresponding asymptotic expan-
sion[6]. This is becaus® plays the role of an IR cutoff, and
1 f(0) is both IR divergent and UV divergent on the plane.
fredr) == 7| (r +2) (N1 +9/4+1/2) The solution is to subtract a0 before taking the limit,
which will depend onmg and, therefore, one cannot con-
struct a universal quantity. The same problem exist®in
=4, even though in this case, one should not give particular
. ) ] value to the poininy=0 (as remarked aboyelet us note, in
which decreases far>0. The reason is the following: One passing, that the leading terms of the asymptotic expansion
can computef } (r), and it is indeed positive for sufficiently ¢ £(y) yield the flat space limit and, furthermore, for even
large A, since it diverges as IA(/r). However, the subtrac- gimensions, the sub-leading term vyields the conformal
tion removes precisely this dominant growing term. Givenanomaly[6].
that the f_unctionf”(r_) is neg_ative(besides finitg fo(r) In conclusion, the monotonicity theorems for the relative
<fredro) if r>ro. This could induce one to try to make the entropy or the stress-tensor trace are contained ir(Zgin
sub'Fraction at the highesy possibl_e. This might b(_a the idea fig|d theory,((f,—(f,))?) is proportional to the integral of
behind the procedure proposed in R, where it is de-  he stress-tensor trace correlation, which only converggs if
manded that lim_..fe(r)=0. However, this prescription q gimension of the coupling constant satisfiesy>D/2.
implies subtracting fronf a function that is not a first degree therefore, only under this condition is the irreversibility
polynomial inr, unlike in standard renormalization prescrip- ineorem unambiguous. However, even in this case, the func-
tions, as exposed heteee alsd7]). _ _ tion f associated to the stress-tensor trace is ambig(rmrs
Similar but more complicated expressions are obtaineq,yjversa), being defined only up to a constant, whereas the
foDr the positive curvature case, thg-dimensional sphere e |ative entropy is unambiguousniversal. After renormal-
S”. In this case, one must also consider that, fer0, jzation, the ambiguity of is realized as a dependencerag,
the zero mode must be removed from the discret§hich is the renormalization point in the simple scheme used
spectrum, as done fdb=2 in Ref.[6]. This subtraction, pere Settingn,=0 achieves a kind of universality, in the
however, does not spoil positivity of the second term inggnge that no additional scale remains. But it may not be
Eq. (2). ) . realizable, as occurs for free field theory on the plane. The
Let us clarify the role of the trace anomalf, Itis well 556y~ /2 covers many of the critical models of statistical
known that renormalization of the free action on a CurVEdmechanics, e.g., the 3D Ising model universality class, with
even-dimensional spacetime demands the presence of a teV& 1.59[12]. Wheny=<D/2 (in particular, for bosonic free-
proportional to the curvature. It absorbs a logarithmic diver-q 4 theory inD=4), the integral in the right-hand side of
gence that appears in a(gdition_ to the logarithmically divergg (4) s Uv divergent and must be renormalized, in general
gentterm proportlongl ton .tha.t IS preseqt on the plapid]. spoiling its positivity, so the irreversibility theorem is itself
Thus, the logarithmic derivative dfV, with respect to the 5 higuous and may only hold in a particular renormalization
scaleR, has two components: th_e stress-tensor trace on th@cheme. Accordinglyf needs to be subtracted twice. Of
plane®, plusielljn additional part, independentrofand pro- .4 e the problem of the divergence of that integral also
portional toR™ = the trace or conformal anomaly. The alert 4o ot the relative entropy, which becomes nonuniversal, re-
reader may have noticed that the or|g||3nala form of theq,iring one additional subtraction further to those implied in
Remonotonicity theoreni6) in Ref. [3] hasR™(Ty) in place s gefinition Eq.(1). Hence, it is doubtful whether one can
of R°(®), but it does not matter because the difference is gssign an unambiguous meaning to RG irreversibilityyfor
constant. Nevertheless, adding this constant would have beeap /2.
a convenient normalization for the critical value of the  gince jrreversibility in terms of the stress-tensor trace or
monotonic quantity, had it been preciselju) =R°(T3), 8 the relative entropy are essentially equivalent, one may won-
proposed in Refs[1,2], because it would make it propor- der which formulation is better. From a physical point of
tional to the conformal central charge. However, since thejew, the theorem for the relative entropy has more content,
correct monotonic quantity is, rathec(u)=u YRP(®), being related to important notions in information theory
adding the conformal anomaly would result in a divergencd4,13]. From a mathematical point of viey®) is simpler to

Subtraction amy=0 yields

—2(1—7)—(3—97-1—772)%, (13

at the critical point. calculate and, in fact, to calculag,, one must calculate it
Let us say a few words about the flat space liRit-c.  before[as in Eq.(9)].
To take this limit, the functioffiis no longer appropriate, and | thank Hugh Osborn for both a conversation and for pa-

one must instead consider a local quantity, such asiently explaining to me tricky points on some calculations in
RV"Pf(MR) =—Vp_1m ¥(®). Thus, for the massive free Ref.[3].
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