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Renormalization group irreversible functions in more than two dimensions
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There are two general irreversibility theorems for the renormalization group in more than two dimensions:
the first one is of entropic nature, while the second one, by Forte and Latorre, relies on the properties of the
stress-tensor trace, and has been recently questioned by Osborn and Shore. We start by establishing under what
assumptions this second theorem can still be valid. Then it is compared with the entropic theorem and shown
to be essentially equivalent. However, since the irreversible function of the~corrected! Forte-Latorre theorem
is nonuniversal~whereas the relative entropy of the other theorem is universal!, it needs the additional step
of renormalization. On the other hand, the irreversibility theorem is only guaranteed to be unambiguous if
the integral of the stress-tensor trace correlator is finite, which happens for free theories only in dimensions
smaller than four.

PACS number~s!: 11.10.Gh, 04.62.1v, 11.10.Kk
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The search for a function representing the irreversible
ture of the coarse-graining transformations of Wilson
renormalization group~RG! has a long history. After the
success of Zamolodchikov’sc-function in two dimensions
~2D!, it was shown that a straightforward generalization t
higher dimension was not possible but, at the same tim
was observed that a related function, the integral of
stress-tensor trace on a constant curvature space, could p
similar role @1#. In an interesting article@2#, Forte and
Latorre formulated an irreversibility theorem in terms of th
quantity. However, an exhaustive analysis of this theor
carried out by Osborn and Shore@3# shows that there were
missing terms in that theorem that actually spoil the irreve
ible character of that function.

In a separate development, we have introduced in fi
theory the relative entropy, a quantity borrowed from pro
ability theory, which turns out to be the Legendre transfo
of W(l)2W(0) with respect tol @4#:

Srel~l!5W~l!2W~0!2l
dW

dl

5W2W02l^ f l&, ~1!

where f l is a composite field integrated over the who
space,f l5*dDxF(x). As a straightforward consequence
its definition, the relative entropy satisfies a monotonic
theorem

dSrel

dl
5

dW

dl
2

d

dl S l
dW

dl D52l
d2W

dl2

52l
d

dl
^ f l&5l^~ f l2^ f l&!2&>0, ~2!
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which can be interpreted as showing the irreversibility of t
RG @4,5#. As we remarked in previous papers, the relat
entropy is not the only monotonic quantity with the RG. F
example, from the same equation that shows its monotoni
~2!, one can realize that the function^ f l&5dW/dl is mono-
tonic as well.

Let us consider the integral*dDx^Q(x)&, whereQ is the
stress tensor trace. In a homogeneous space, the expec
value^Q& is independent of the position and only depends
the coupling constants; hence, the integration is trivial,
only effect being to produce an overall factor. We furth
consider a field theory with simple scaling behavior, name
with only one coupling constant such thatl}my, wherem
is the physical mass of the fundamental particle or so
other mass scale. This behavior is very common in criti
phenomena. SinceQ gives the response to a change of t
scalem,

^Q&[m
dW

dm
5yl

dW

dl
5yl^F&, ~3!

where W is now a specific quantity~per unit volume!. In
other words, the expectation value ofQ is proportional to the
monotonic function̂ f l&. By substituting for it in the mono-
tonicity Eq. ~2!, we can write this equation in the suggesti
form

2m
d

dm
~m2y^Q&!5m2yE dDx^Q~x!Q~0!&c , ~4!

where the subscriptc means that one is to take the connect
correlation function. The integral of this correlation functio
may be divergent. IfmÞ0 it converges forx→`. On the
other hand, the behavior of the two-point function forx→0
is the same as in the massless~l50! theory, thus given by
the dimension ofF, dF . Therefore, the integral is UV con
vergent if 2dF,D, that is, ify5D2dF.D/2. One can also
derive an equation for̂Q&:
©2000 The American Physical Society23-1
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2m
d

dm
^Q&5E dDx^Q~x!Q~0!&c2y^Q&. ~5!

In Euclidean space, the form of the quantities defin
above is given by scaling~e.g.,Srel}mD) and has little physi-
cal content. In a curved homogeneous space one can
the dimensionless variableu5Rm, whereR is the curvature
radius, and dimensionless quantities are non-trivial functi
of it. In particular, we have the dimensionless function
Refs.@1–3#, c(u)5RD^Q&. Introducing a constant curvatur
space has an additional utility: Eq.~5! can also be obtained
starting from the scale Ward identities satisfied by the ene
momentum tensor asR varies @2,3#. Let us remark that the
derivation in Ref.@2# yields a slightly different equation. I
has been polished in Ref.@3#, to obtain an equation similar to
but more general than Eq.~5!:

2R
d

dR
~RD^Q&!5RDE dDx^Q~x!Q~0!&c

2RDb i~] iA1] ib
j^F j&!. ~6!

This equation takes into account the possibility of seve
couplings and the existence of the trace anomalyA, such
that Ta

a5Q1A, whereQ5b iF i . We can convert Eq.~6!
into Eq. ~5! by ~i! assuming simple scaling behavio
that is, with only one coupling such thatb5y l, the
anomalyA being independent of it, and by~ii ! replacing
the derivative with respect toR with a derivative with respec
to m.

Therefore, even though in the general case no mo
tonicity theorem seems to follow from Eq.~6! @3#, it does
in our case, namely, the one expressed by Eq.~4!. However,
the monotonic quantity~with respect tom or R, indistinctly!
is not just c(u)5RD^Q&, as proposed in Refs.@1–3#, but
rather c̃(u)5u2yc(u). They only coincide ify50, that is,
when the coupling constant is dimensionless. Generally,
functions c or c̃, involving the composite fieldF, contain
~normal order! UV divergences. We can introduce a U
regulator but, given that it can only be removed by introdu
ing another scale~renormalization point!, those functions are
not universal.

To define a finite monotonic function from the stres
tensor trace, one has, therefore, to perform a subtraction
us define the function

f ~u!52VD21m2yRD2y^Q&, ~7!

whereVD2152pD/2/G(D/2) is the volume of the unit (D
21)-dimensional sphere. This function is essentiallyc̃(u),
except for a conventional sign~to make it increasing rathe
than decreasing! and a normalization factor. It is UV diver
gent but, assuming the convergence of the integral in Eq.~4!,
one subtraction suffices to render it finite. The point is t
when integratingd f /dm according to Eq.~4!, one has an
integration constant which can be infinite. Therefore, we
define a renormalized value as@6#
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f ren~mR!ª lim
L→`

@ f L~mR!2 f L~m0R!#, ~8!

L and m0 being the UV cutoff and the subtractio
point, respectively. In particular, one can setm050.
Alternatively, one can use minimal subtraction, by whi
one only subtracts the divergent part off, which is indepen-
dent of m @7#. In any renormalization scheme we use t
freedom afforded by the integration constant of Eq.~4!, for
example, to makef (0)50, which is equivalent to taking
m050.

In contrast, the relative entropy is universal@under
the assumption of convergence of the integral in Eq.~4!#
because the UV divergences ofW cancel in the definition
of Srel , Eq. ~1!. One can define a dimensionles
growing entropyS, proportional toSrel . In terms of the
function f,

S~u!5yE
0

u

dv vy21f ~v !2uyf ~u!. ~9!

The renormalization constant off cancels in this formula.
To illustrate the general theory, we will study a fre

massive scalar fieldf, with coupling constantm2, in
D-dimensional hyperbolic spaceHD, where D52,3,4.
Naturally, a free massive scalar field theory is the simpl
example of simple scaling one can take. The field expe
tion value ^f2& is then the Gaussian model energyU(m2)
@5,6#, while Srel is a real thermodynamic entropy. Som
expressions for the quantities inD52 have been calculate
in Ref. @6#, in terms of the variabler 5(Rm)2. More exten-
sive calculations of̂f2& are given by Osborn and Shore@7#.
For H2,

f ren~r !5c~Ar 11/411/2!1g, ~10!

wherec is the digamma function andg is the Euler constant
f increases withr, on account of the properties ofc.

For D53 we could use the results of Osborn and Sh
@8#, but it is easier to use the heat-kernel method@6# since the
D53 heat kernel is extremely simple@9#:

K~0;t !5
e2t

~4pt !3/2
. ~11!

Hence,

f ren~r !524pE
0

` dt

~4pt !3/2
@e2(r 11)t2e2t#

5Ar 1121. ~12!

This function is obviously increasing.
In D54 ~the case used as an example in Ref.@2#!, f has

an expression similar to the one forD52 @10,7#. However, it
is a particularly interesting case because the integral in
~4! is now divergent, sof L8 (r ) must be subtracted too. Con
sequently, two subtractions onf are needed now, that is,
3-2
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f ren~r !5 lim
L→`

@ f L~r !2 f L~r 0!2~r 2r 0! f L8 ~r 0!#.

Subtraction atm050 yields

f ren~r !52
1

4 F ~r 12!c~Ar 19/411/2!

22~12g!2~329g1p2!
r

9G , ~13!

which decreases forr .0. The reason is the following: On
can computef L8 (r ), and it is indeed positive for sufficiently
largeL, since it diverges as ln(L2/r). However, the subtrac
tion removes precisely this dominant growing term. Giv
that the functionf 9(r ) is negative~besides finite!, f ren8 (r )
, f ren8 (r 0) if r .r 0. This could induce one to try to make th
subtraction at the highestr 0 possible. This might be the ide
behind the procedure proposed in Ref.@2#, where it is de-
manded that limr→` f ren(r )50. However, this prescription
implies subtracting fromf a function that is not a first degre
polynomial inr, unlike in standard renormalization prescri
tions, as exposed here~see also@7#!.

Similar but more complicated expressions are obtai
for the positive curvature case, theD-dimensional sphere
SD. In this case, one must also consider that, forr 50,
the zero mode must be removed from the discr
spectrum, as done forD52 in Ref. @6#. This subtraction,
however, does not spoil positivity of the second term
Eq. ~2!.

Let us clarify the role of the trace anomaly,A. It is well
known that renormalization of the free action on a curv
even-dimensional spacetime demands the presence of a
proportional to the curvature. It absorbs a logarithmic div
gence that appears in addition to the logarithmically div
gent term proportional tom2 that is present on the plane@11#.
Thus, the logarithmic derivative ofW, with respect to the
scaleR, has two components: the stress-tensor trace on
planeQ, plus an additional part, independent ofm and pro-
portional toR2D: the trace or conformal anomaly. The ale
reader may have noticed that the original form of t
R-monotonicity theorem~6! in Ref. @3# hasRD^Ta

a& in place
of RD^Q&, but it does not matter because the difference
constant. Nevertheless, adding this constant would have
a convenient normalization for the critical value of th
monotonic quantity, had it been preciselyc(u)5RD^Ta

a&, as
proposed in Refs.@1,2#, because it would make it propor
tional to the conformal central charge. However, since
correct monotonic quantity is, rather,c̃(u)5u2yRD^Q&,
adding the conformal anomaly would result in a divergen
at the critical point.

Let us say a few words about the flat space limitR→`.
To take this limit, the functionf is no longer appropriate, an
one must instead consider a local quantity, such
Ry2Df (mR)52VD21m2y^Q&. Thus, for the massive fre
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field theory in D53, limR→`Ry2Df (mR)5m. In contrast,
for D52, R0f (mR)5 f (mR) diverges logarithmically asR
→`, as deduced from the corresponding asymptotic exp
sion @6#. This is becauseR plays the role of an IR cutoff, and
f (0) is both IR divergent and UV divergent on the plan
The solution is to subtract atr 0Þ0 before taking the limit,
which will depend onm0 and, therefore, one cannot con
struct a universal quantity. The same problem exists inD
54, even though in this case, one should not give particu
value to the pointm050 ~as remarked above!. Let us note, in
passing, that the leading terms of the asymptotic expan
of f (u) yield the flat space limit and, furthermore, for eve
dimensions, the sub-leading term yields the conform
anomaly@6#.

In conclusion, the monotonicity theorems for the relati
entropy or the stress-tensor trace are contained in Eq.~2!. In
field theory,^( f l2^ f l&)2& is proportional to the integral o
the stress-tensor trace correlation, which only convergesy,
the dimension of the coupling constantl, satisfiesy.D/2.
Therefore, only under this condition is the irreversibili
theorem unambiguous. However, even in this case, the fu
tion f associated to the stress-tensor trace is ambiguous~non-
universal!, being defined only up to a constant, whereas
relative entropy is unambiguous~universal!. After renormal-
ization, the ambiguity off is realized as a dependence onm0,
which is the renormalization point in the simple scheme u
here. Settingm050 achieves a kind of universality, in th
sense that no additional scale remains. But it may not
realizable, as occurs for free field theory on the plane. T
casey.D/2 covers many of the critical models of statistic
mechanics, e.g., the 3D Ising model universality class, w
y51.59 @12#. Wheny<D/2 ~in particular, for bosonic free-
field theory inD54), the integral in the right-hand side o
Eq. ~4! is UV divergent and must be renormalized, in gene
spoiling its positivity, so the irreversibility theorem is itse
ambiguous and may only hold in a particular renormalizat
scheme. Accordingly,f needs to be subtracted twice. O
course, the problem of the divergence of that integral a
affects the relative entropy, which becomes nonuniversal,
quiring one additional subtraction further to those implied
its definition Eq.~1!. Hence, it is doubtful whether one ca
assign an unambiguous meaning to RG irreversibility foy
<D/2.

Since irreversibility in terms of the stress-tensor trace
the relative entropy are essentially equivalent, one may w
der which formulation is better. From a physical point
view, the theorem for the relative entropy has more conte
being related to important notions in information theo
@4,13#. From a mathematical point of view,^Q& is simpler to
calculate and, in fact, to calculateSrel , one must calculate it
before@as in Eq.~9!#.

I thank Hugh Osborn for both a conversation and for p
tiently explaining to me tricky points on some calculations
Ref. @3#.
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