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The role of irradiation induced defects and temperature in the conducting properties of single-walled
�10; 10� carbon nanotubes has been analyzed by means of a first-principles approach. We find that
divacancies modify strongly the energy dependence of the differential conductance, reducing also the
number of contributing channels from two (ideal) to one. A small number of divacancies (5–9) brings up
strong Anderson localization effects and a seemly universal curve for the resistance as a function of the
number of defects. It is also shown that low temperatures, about 15–65 K, are enough to smooth out the
fluctuations of the conductance without destroying the exponential dependence of the resistivity as a
function of the tube length.
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The ubiquity of defects in materials science limits some-
how the performance of the material; this is even more
dramatic when the dimensionality of the system is reduced
moving towards nanostructures, in particular, carbon nano-
tubes [1]. Understanding and controlling the conductance
of these systems is decisive for their possible application
in molecular devices [2–9]. In perfect single-walled car-
bon nanotubes (SWNTs), electrons propagate ballistically
if the inelastic processes can be neglected, i.e., if the
electronic phase coherence length, L�, is larger than the
nanotube length, L. High quality metallic SWNTs exhibit
L� as large as 1 �m [4]. If inelastic processes, like the
electron-phonon interaction, are important, the system
conducts within the diffusive regime. On the other hand,
it has been shown [7,8] that defects induce Anderson
localization in the electron states of a SWNT if L0 < L<
L�, L0 being the localization length. This is the regime we
are interested in.

This Anderson localization phenomenon is due to the
concerted action of quantum confinement and defect scat-
tering effects [10,11]. The theoretical calculations pre-
sented in Ref. [8] were concentrated on the zero-
temperature case. Temperature (T) adds new dephasing
mechanisms for the coherent electron transport in
SWNTs that should be considered on the same footing as
the other sources of dephasing. In this context, a fully
microscopic study of the electronic transport in defected
SWNT in the Anderson localization regime taking into
account the effect of finite T is lacking. This is the goal
of this Letter: to fully understand the properties of the
localization regime as a function of the nanowire length,
temperature, density of defects, and strength of the defect
scattering potential for the paradigmatic �10; 10� chirality.

As we are interested in modeling the role of defects in
the conductivity of SWNTs, we have chosen to analyze in
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detail the monovacancies and divacancies that are the most
common defects that appear upon atom irradiation [9]; the
comparison of these two cases will allow us to analyze the
electron localization and its effect on the nanotube con-
ductance as a function of the different scattering potentials
associated with those defects. As our calculations of the
zero-bias conductance drop associated with a single defect
show a conductance of 1:98G0 for the monovacancy and
1:36G0 for the lateral divacancy (2G0 � 4e2=h is the con-
ductance of an ideal nanotube), divacancies will show a
more dramatic effect in the nanotube conductance [8].
Accordingly, although we present results for monovacan-
cies and divacancies in order to draw more general con-
clusions, most of our discussion concentrates on the
divacancy case.

The conductance calculations are done within a first-
principles local-orbital density functional (LODF) method
that maps the full Hamiltonian into a local-orbital one,
allowing the use of the standard machinery of nonequilib-
rium Green’s function in order to extract the transmis-
sion probability, and from that the nanotube conduc-
tance [12]. The simulation geometry consists of a device
region with the defected nanotubes connected to two semi-
infinite perfect tubes. The geometry of the nanotube around
each vacancy is calculated using this LODF method, and
the defected nanotube is defined by adding N defects
separated by a mean distance d. Then, the length of the
nanotube, L, is L � N � d. The defects are assumed to be
distributed along the rim of the tube with a distance be-
tween consecutive defects (measured along the tube axis)
presenting a uniform random distribution between 0 and
2d. The conductance calculations are performed for a
statistically significant number of defect realizations. For
the sake of simplicity, we present results for a nanotube
with either only lateral divacancies (this is the most favor-
1-1 © 2005 The American Physical Society
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able geometry for divacancies [8]) or with only monova-
cancies. In our calculations, we obtain an effective local-
orbital Hamiltonian associated with the sp3-basis set of the
fireball orbitals [13]; details about the technique can be
found in Ref. [8]. Because of the local nature of this
approach, it is feasible to calculate the electronic properties
of very long nanotubes (up to several microns long) with an
arbitrary distribution of defects.

First we analyze the energy dependence of the nanotube
differential conductance, g�E�, for two different densities
of defects and zero T. In Fig. 1 we plot g�E� of a �10; 10�
carbon nanotube for four random configurations of defects
with two different interdefect distances (d � 45:4 and
75.5 nm) and two numbers of defects (15 and 25) intro-
duced in the tube, typical values observed in the experi-
ments [8]. In all cases we observe strong fluctuations of the
differential conductance as a function of energy: this is a
clear indication of the localized nature of the electronic
states. Notice also, comparing Figs. 1(a) and 1(b), that g�E�
also depends strongly on d. For finite T calculations the
crucial point to realize is that electrons are injected into the
nanotube with energies within a window of the order of
10−4×1

10−4×1

10−3×1

10−3×1
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FIG. 1 (color online). Differential conductance for two de-
fected single-wall carbon nanotubes. (a) The distance between
defects of d � 45:4 nm and (b) for d � 75:5 nm. Two different
number of defects (15, continuous lines, and 25, dashed lines)
are analyzed in both panels. Notice that the plotted energy
window is smaller than the room temperature energy window
(25 meV).
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kBT. Then, it is expected that the strong fluctuations in the
conductance would be washed out for a finite T. This will
happen if the thermal coherent length LT (LT � @vF=kBT,
vF being the Fermi velocity) is smaller than L0. One
naively says also that Anderson localization could not
appear in this limit. This would be the case only if L� is
of the order of L0. As perfect metallic tubes exhibit a
ballistic response over long distances (microns), the elec-
trons injected in the nanotube with different energies do not
suffer inelastic scattering events, and they behave as inde-
pendent electrons [14]. In this picture, the total conduc-
tance is just the sum of many contributions from electrons
injected within the thermal energy window [15].

In Fig. 2(a) we show the dependence of the nano-
tube resistance with the tube length for different tem-
peratures and a given random distribution of divacancies.
These curves have been calculated as follows. First, we
evaluate the resistance of the longest tube (corresponding
to N � 25 defects in this case) with a given random
configuration of divacancies. Next, we calculate the resist-
ance of a nanotube with N � 1 defects just eliminating the
last divacancy [the length of the nanotube is then reduced
FIG. 2 (color online). (a) Temperature dependence of the
calculated resistance for a defected nanotube with d �
75:5 nm. (b) For T � 0 (dashed lines) and T � 300 K (continu-
ous curves) we plot the calculated resistances for different
random defect configurations with d � 75:5 nm. The mean
value of the resistances is also plotted in black.
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to L � �N � 1�d]. This procedure is repeated until we end
with a nanotube containing only one divacancy. Then, the
whole calculation is repeated for several temperatures but
with the same random configuration of defects. At zero T,
as expected, the fluctuations in the resistance are very
strong. The effect of temperature is striking: at room T,
there is a complete reduction of the random fluctuations
seen at T � 0 K. However, we still get the exponential
increase of resistance with tube length that points out that
the Anderson localization regime survives even at room T.
Figure 2(a) also demonstrates that only a very low T (less
than 20 K) is needed to wash out the fluctuations of the
resistance as a function of the tube length. This result
explains why fluctuations are not seen at room T as ex-
perimentally reported in [8]. In Fig. 2(b) we plot both the
zero and room T resistances for several random configu-
rations of divacancies with d � 75:5 nm. Notice that at
room T the resistance of different configurations is very
insensitive to the particular random distribution of diva-
cancies. This is not the case for T � 0 K where there are
strong fluctuations with respect to the average value.

Figure 3 shows our calculations for the mean value of the
room T resistance (as a result of an average over 15 random
cases, as explained above) as a function of the carbon
nanotube length for different d’s. Our results indicate
that this room T resistance seems to fit a universal curve
once it is plotted in terms of the number of defects (N)
instead of the total length (L). An important result of
performing a finite T calculation is that the resistance
curves of Fig. 3 fit better as R0 � exp�L=L0� than as
R0=2� exp�L=L0� (R0 being 1=G0), for N > 3–5. This is
a strong indication of the reduction of the conducting
channels induced by both defects and finite T [16,17];
only one channel is contributing to the total conductance.
Moreover, this also suggests that the nanotube enters in the
FIG. 3 (color online). Calculated room temperature resistance
for different average distances between divacancies (d) as a
function of number of defects. Inset: localization length, L0,
extracted from the fitting R � R0 � exp�L=L0� as a function
of d.
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localization regime for a very low density of defects, i.e.,
with more than 5–9 divacancies, provided the resulting L0

is smaller than L�. We have looked into the origin of the
reduction in the number of channels in our system by
diagonalizing the transmission matrix [18] used in our
calculations. The diagonalization supports the previous
discussion, although the full reduction to one channel
appears only once 5–9 defects have been introduced in
the nanotube. Notice that Figs. 1 and 2 already accounted
for this result: in Fig. 1, for both 25 or 15 defects the
differential conductance is never larger than G0; while in
Fig. 2, the resistance in this case is never smaller than R0

for a number of defects larger than 5.
The inset of Fig. 3 shows the effective localization

length, L0, as a function of d for divacancies at room T
indicating that L0 � 8:5d. In Ref. [8] we found L0 � 4:1d
after averaging the resistance in the log scale over many
different random cases; note that this is appropriate be-
cause of the normal distribution of log�R� in 1D systems
[10]. Our new localization length reflects, however, that at
room T, and for a particular distribution of divacancies, the
conductance of the system is calculated as the sum of the
channel contributions associated with the energy window
EF � kBT (which represents a kind of effective average on
energy of the conductance). This new estimation of L0 at
room T slightly modifies the average distance between
divacancies that were estimated in Ref. [8] to have been
created in the SWNTs by Ar�, suggesting that those values
have to be reduced in all the cases by about 50%. Notice
that this density of divacancies was obtained neglecting the
effects that monovacancies are producing in the nanotube
conductance. This is supported by our calculations for
monovacancies whose results can be summarized in the
following way: (i) the ballistic regime is found to extend up
to about 200 monovacancies; (ii) the localization regime
appearing for more than 200 defects shows a resistance as a
function of the tube length that can also be fitted to R0 �
exp�L=L0� with L0 � 600d, implying that in the localiza-
tion regime the conductance is again controlled by only
one channel. Therefore, monovacancies show a much
smaller effect on the nanotube conductance than divacan-
cies do. It is expected that for large vacancy clusters (larger
than divacancies), L0 would also be proportional to d, but
with a proportionality constant much smaller than 8.5.

Finally, for the divacancy case we have analyzed the
effect of temperature in the quenching of the conductance
fluctuations. This has been done for a tube with 25 diva-
cancies as follows. As we are interested in the fluctuations
that have already disappeared at room T, we take the
calculated R�L� at room T as reference data. The scaled
resistance plot is shown in the inset of Fig. 4 for d �
75:5 nm for a particular random configuration [the same
as analyzed in Fig. 2(a)], after substraction of its mean
value in L. We perform this calculation for all random
configurations of defects and calculate for each of them the
1-3
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FIG. 4 (color online). Calculated rms deviation (�) as a func-
tion of temperature for three different densities of divacancies.
The inset shows the calculated resistance referred to the room
temperature results for a particular random configuration with
d � 75:5 nm (see text for discussion).
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rms deviation (�) with respect to the R�L� data at room T.
The final average over all configurations of � is plotted in
Fig. 4. The general trend is as follows: the higher T is the
faster the fluctuation damping. Also, the fluctuations de-
crease more rapidly for a low density of defects (large d).
Figure 2(a) shows that for d � 75:5 nm, the fluctuations
are small for T higher than TC � 15 K, whereas for the
other two d’s (not shown here) this occurs for TC � 32 and
65 K, for d � 37:6 and 16.3 nm, respectively. Thus, the
temperature at which the fluctuations are quenched scales
as 1=d. This can be understood by noting that at TC the
thermal length LT should be of the order of the localization
length, L0 (that is proportional to d). Physically, the
smaller the density of defects the smaller the averaged
scattering potential, therefore a lower T would be needed
to wash out the fluctuations. We have also carried out
similar numerical calculations for �5; 5� metallic SWNTs
(not shown here). The underlying physics in this case
seems to be the same as the one discussed for �10; 10�
SWNTs, allowing us to safely conclude that our theoretical
findings would remain valid for metallic SWNTs of differ-
ent chirality.

In conclusion, we have shown that in a �10; 10� carbon
nanotube: (i) the transition between the ballistic and the
localization regimes appears for a small number of diva-
cancies in the nanotube (about 3–5). (ii) For a higher
number of defects the system shows localization, reducing
the number of effective channels from two (ballistic) to
one. (iii) At zero T, the conductance of the nanotube as a
function of its length shows strong fluctuations. The net
effect of a finite T is to wash out the strong fluctuations
presented at T � 0 K; our calculations show that those
fluctuations could be observed for divacancies (with d
smaller than about 70 nm and N > 5–9) if the temperature
is below 15–65 K. We stress here that, in spite of the
disappearance of the fluctuations, the exponential behavior
of R�L� is still preserved at room T. This puts in evidence
26680
our assumption of a very low inelastic scattering in
SWNTs, i.e., the phase coherence length of electrons
much larger than the localization length.

Our results are important in order to understand, in a
further study, the high bias conductance where optical
phonons do play a key role in limiting the conductance.
Still there is a lack of knowledge about the role played by
both temperature and defect density in this regime.
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