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The Raman spectra, X-ray diffraction and hardness of the TiAlN films co-deposited on the steel sub-

strates by reactive sputtering from Ti and Al targets in a mixture of N2 + Ar gas with two magnetrons at 

room temperature have been studied. From Raman spectra it is found that the position of high-frequency 

bands in vibrational spectra was located at 700-730 cm 1 or in the region of 830  850 cm 1 depending on 

the deposition parameters whereas it is not exceed 630 cm 1 from TiAlN of NaCl  structure. It is found the 

two-phase structure of coatings: a small quantity of NaCl-type structure of TiAlN (TiN) and the disordered 

structure of the chains of polyhedra [TiNx] with x = 5 and x = 4. The chains of polyhedra [TiNx] with x = 4 

are mainly formed at large discharge power of Al(Ti) target or at small content of N2 gas. 
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1. INTRODUCTION 
 

Titanium-aluminium nitrides are technologically im-
portant for different application fields such as wear-
resistant and optical coatings. The TiAlN coatings find a 
continuously interest due to its high hardness, wear re-
sistance and low oxidation rates. TiN is a NaCl-structure 
and it has metallic conductivity at room tempera-
ture [1, 2]. AlN is crystallized in a wurtzite structure (w-
AlN) and it may form the metastable rocksalt structure at 
high pressure [3]. The hardness of TiN is 21.6 GPa, while 
that of AlN is only 12.3 GPa [4]. Due to the structural 
refinement of TiAlN alloy the addition of Al atoms in TiN 
improves its hardness and the high-temperature oxida-
tion resistance. However, for higher Al concentration the 
formation of w-AlN, which is softer than fcc-TiAlN, results 
in a significant reduction of the film hardness. 

The structure of TiAlN coatings depends strongly on 
the deposition parameters, in particular, on the Ti/Al 
ratio, the discharge power, deposition gas, substrate 
temperature, etc. In this work a systematic study on the 
influence of deposition parameters on the structure of 
TiAlN coatings is presented. 

Raman spectra and X-ray diffraction of TiAlN coatings 
were earlier studied by other authors for the TiN/AlN 
superlattices [5], TiAlN alloys [6-9], TiAlN/CrN multi-
layers [7] and TiAlN-Si3N4 nanocomposite [10]. In these 
works, [5-10] results are given for coatings prepared at 
fixed Ti/Al ratio, with substrate temperature above room 
temperature and at invariable content of N2 gas. 

 

2. EXPERIMENTAL DETAILS  
 

The TiAlN films were co-deposited on sputter cleaned 
steel substrates by reactive sputtering from pure Ti and 
pure Al targets (Kurt Lesker 99.99 %) in a mixture of 
N2+Ar gas. Deposition was performed in a vacuum 
chamber equipped with two magnetrons driven by dc 
power. Table 1 summarizes the deposition conditions. 

Table 1 – Deposition conditions 
 

№   

1 Base pressure 10 4 Pa 

2 Target substrate distance 10 cm 

3 Substrate cleaning 400V at 7Pa Ar for 15 min 

4 Target cleaning 600W at 7Pa Ar for 15 min 

5 Power supply (Ti, Al ) 200—600 W d.c 

6 Sputtering gas %N2/(N2+Ar)  15, 30, 70% 

7 Deposition time 5-150 min 
 

The power supplied to the two targets varied from 

200 to 600 W and different gas mixtures were used in 

order to obtain coatings with different composition. The 

composition of the coatings was evaluated by XPS (not 

presented here), the Ti1-xAlxN present compositions 

ranging from x  0.07 to 0.60. The effect of deposition 

time on the structure of the TiAlN films was also inves-

tigated. For thick coatings, a TiAl adhesion layer was 

deposited prior to the coating. 

The microstructure of the coatings was investigated 

by XRD. The XRD measurements were performed in 

the Rigaku D / max-RC equipped with a 12 kW X-ray 

source with a rotary anode using monochromatic Cu Kα 

radiation and the graphite crystal-analyser. The graz-

ing incidence asymmetrical Bragg  diffraction (GIABD) 

with the parallel beam optics was employed for phase 

composition and chemical homogeneity investigations. 

Incidence angles of 1 and 0.5 were used. 

The Raman spectra were excited with the line at 
514.5 nm of an Ar-laser. The spectrograph TRIAX 552 

with special corrective optics, the Notch filters and 

CCD camera were used for the investigation of the 

Raman scattering light. The spectral resolution was 

about 3 cm 1. We have used the setup of micro-Raman 

spectroscopy with a microscope which provided a focus 

diameter in the micrometer range and a large scatter-
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ing collection angle. The mechanical properties and 

surface topography were investigated using the scan-

ning nano-hardness tester NanoScan  3D. The hard-

ness and elastic modulus values were measured with 

the instrumented nanoindentation test according to 

ISO 14577. 

 

3. RESULTS AND DISCUSSION  
 

3.1 X-Ray Diffractometry 
 

Figure 1 presents the X-ray diffraction pattern for 

samples deposited under different power rate and dep-

osition times resulting in different thicnkess. Peak po-

sitions for reference compounds of c TiN and c TiAlN 

are marked.  
 

 

 a 

 

 b 

Fig. 1 – X-ray diffraction patterns for samples prepared at dif-

ferent power rate and deposition times: thinner coatings, inci-

dence angle of 0.5º(a); thicker coatings, incidence angle of 1º(b) 
 

A part from substrate peaks, NaCl type of (TiAl)N 

(non stoichiometric) diffraction peaks can be identified as 

well. In both cases thinner and thicker coatings, the in-

crease in Ti power results in an increase of crystallinity of 

the coating, and the preferential orientation changes from 

(111) to (200). When the power in the Al target is in-

creased to 600 W the coating becomes more amorphous. 

 

3.2 Raman Spectroscopy 
 

Raman spectra of obtained TiAlN  coatings are pre-

sented at Figures 2-7. A narrow band at 520 cm 1 was 

seen in the Raman spectra from TiAlN  thin coatings 

(≤ 100 nm) (Fig. 2). It disappeared gradually as the 

coating thickness increased. We assign it to the Raman 

scattering from the substrate. Apart from this narrow 

band only the broad bands were observed in the Raman 

spectra from TiAlN coatings (Fig. 2-7). Depending on 

the deposition process the position of high-frequency 

band in the Raman spectra was about 700 cm 1 or in 

the region of 830-850 cm 1. When the bands at 830-

850 cm 1 were present in the spectrum, the broad 

bands in the region of 600-630 cm 1 also appeared and 

these two regions of the broad bands have formed the 

poorly structured background due to the overlapping 

(Fig. 2-7). 
 

 
 

Fig. 2  Raman spectra of TiAlN coatings at Ti discharge power 

of 200 W  and 15%N2. Where 1 – 200 W Al, 2  400 W Al,  

3 – 600 W Al 
 

It is known [1] that the Raman bands of TiN are 

due to a contribution of the phonon density of states 

from the acoustic modes (225 (TA) and 310 (LA) cm 1) 

and the optic modes (540 cm 1). When Al atoms are 

 added to TiN lattice the structure of NaCl-type is 

maintained and Ti atoms are substituted by Al atoms 

[11]. As in the case of TiN-NbN [8], TiAlN-CrN [7] and 

CrAlN [12], we believe that the Raman bands in the 

spectra from TiAlN alloys are assigned to vibrations of 

Ti-N bonds, and the influence of Al doping is displayed 

in a high-frequency shift of optic modes of TiN. The 

stress in coatings may also lead to the high-frequency 

shift of bands in spectra. Therefore we assign the Ra-

man bands in the region of 600  630 cm 1 to the optic 

vibrations of Ti N bond in TiAlN coatings with a NaCl-

structure. 

An appearance of broad bands in the regions of 700-

730 and 830-850 cm 1 can not be explained by a substi-

tution of Ti atoms by Al atoms in the structure of NaCl-

type. Supposing the assignment of these bands to vi-

brations of Ti-N bonds, the significant rise of their fre-

quencies may be due to the break of NaCl-type of TiN 

structure and the formation of the disordered structure 

with the chains of polyhedra [TiNx] with the less num-

ber of N atoms around Ti than 6. It is known that the 

vibrational frequency is increased with a decrease of 

the coordination number. Therefore one can assume 

that the bands at 700-730 cm 1 correspond to chains 

with x  5 and at 830-850 cm 1 to chains with x  4. 

At first we shall consider the Raman spectra from 

TiAlN coatings produced at the constant ration Ti/Al 

and at the increase of discharge power (Fig. 2). If the 

position of the high-frequency band is near 700 cm 1 

and the intensity of acoustic and optic bands are com-

parable at 200 W discharge power, then two bands at 

610 and 840 cm 1 and the essential rise of the intensity 
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of acoustic modes may be seen in the Raman spectra 

from coatings produced at 400 and 600 W power. Note 

the band at 700 cm 1 is overlapped with the broad band 

at 610 cm 1. One can assume two-phase composition of 

coatings produced at all powers: TiAlN of NaCl-

structure (the band at 610 cm 1) and a phase with 

chains of [TiNx] polyhedra with x = 5 (the band at 

700 cm 1) and  x = 4 (the band at 840 cm 1). In Fig. 2, as 

in Fig. 3 and 4, the Raman spectra are shown for coat-

ings of approximately similar thickness.  

In the Raman spectra from TiAlN coatings prepared 

at fixed Ti power (200 W) and at various Al powers 

(Fig. 3) one can see also two-phase structure and the 

quantity of the NaCl-structure of TiAlN is decreased 

with the increase of Al power. 
 

 
 

Fig. 3   Raman spectra of Ti0.5Al0.5N coatings at various Al 

and Ti discharge power and 15 N2. Where 1 – 200 W Al, 

200 W Ti, 2 – 400 W Al, 400 W Ti, 3 – 600 W Al, 600 W Ti 
 

Besides the type of chains changes from x = 5 to 

x = 4, two-phase structure of TiAlN coatings produced 

at fixed Al power is also formed with the increase of Ti 

power (Fig. 4). 

Fig. 5 shows the transformation of the Raman spec-

tra from TiAlN coatings prepared at various content of 

N2 gas. The position of the high-frequency band is 

equal to 700 cm 1 at 70 % N2 and 730 cm 1 at 30 % N2. 

But two bands at 590 and 840 cm 1 and the noticeable 

increase of the intensity of acoustic modes are seen at 

15 % N2. We assume that the two-phase structure of 

TiAlN coating is formed at 15 % N2. 
 

 
 

Fig. 4  Raman spectra of TiAlN coatings at Al discharge 

power of 200 W and 15%N2 and various Ti discharge power. 

Where 1  200 W Ti and thickness 125 nm, 2  400 W Ti and 

thickness 205 nm 

 
 

Fig. 5   Raman spectra of TiAlN coatings at equal Ti/Al ratio 

and various N2 content. Ti and Al discharge power is 400 W. 

1  15% N2, 2  30% N2, 3  70%N2. 
 

Most likely, two-phase structure with predominant 

content of chains [TiN5] is formed in TiAlN coatings pre-

pared at 200 W Ti – 200 W Al power for thicknesses 

from 52 to 1200 nm (Fig. 6). One can see in the Raman 

spectra that the signal / noise ratio is higher in the coat-

ing of 52 nm thickness than for thicker coatings. Be-

sides, the band at 730 cm 1 in the thin coating is more 

distinct than in the spectra from the thick coatings. 

One can assume that the TiAlN alloys that is con-

tiguous to the substrate is not only more homogeneous, 

but also it gives the resonance enhancement of the 

Raman intensity due to a change of electronic structure 

of TiN at Al doping or the electromagnetic enhance-

ment on the metal-film boundary. It should be noted 

that the Fermi level in TiAlN alloys of NaCl  structure 

moves progressively down from the conduction band to 

the band gap as the alloy composition is varied from 

metallic TiN to wide-gap semiconductor AlN. 
 

 
 

Fig. 6   Raman spectra of TiAlN coatings at ratio Ti / Al = 1 

and various thickness of coating. Ti and Al discharge power is 

200 W, 15 % N2. Thickness is: 1 – 52 nm, 2 – 100 nm, 3 –

 125 nm, 4 – 1200 nm 
 

The increase of the coating thickness doesn’t lead 

also to the essential transformation of its structure at 

the ratio Al / Ti  1 that one can see from the spectra 

for coatings with the ratio Al / Ti = 3 (Fig. 7). However, 

the spectrum from the thick coating (3700 nm) was 

weaker and the high-frequency optic modes in the re-

gion of  800 cm 1 are weak in comparison with the 

band at  600 cm 1. 
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Fig. 7 – Raman spectra of TiAlN coatings at ratio Ti / Al = 1 / 3 

(200 W on Ti, 600 W on Al target, 15 % N2) and various thick-

ness of coatings. 1 – 3700 nm, 2 – 180 nm, 3  90 nm 

 

3.3 Nano-Hardness Tests 
 

Young module E, hardness H and elastic modulus R 

under loading P and thickness of coatings h are given 

in Table 2. 
 

Table 2 – NanoScan3D test results. 
 

Coating prepara-

tion condition 
P, mN h, nm E, GPa 

H, 

GPa 

R, 

% 

200 WTi  200 W 

Al, 15 % N2 
1 80 118 5.1 40 

400WTi  400W 

Al, 70 % N2 
2 90 172 8.9 52 

200WTi  400W 

Al, 30 % N2 
2 130 114 4.4 36 

400WTi  200W 

Al, 15 % N2 
5 190 146 5.4 35 

200WTi  600W 

Al, 15 % N2 
5 140 150 12.1 45 

Our results are in agreement with the hardness ob-

tained for TiAlN coatings deposited on substrates at 

22 oC [13]. 

 

4. CONCLUSIONS  
 

The investigations of Raman spectra and X-ray dif-

fraction of TiAlN coatings on the steel substrates de-

posited at room temperature allow us to find the struc-

tural transformation of coatings in dependence on the 

deposition process. XRD has shown multiphase compo-

sition of coatings. The different structures of coatings 

were displayed in the position of high-frequency Ra-

man bands in the region > 500 cm 1. It is assumed that  

the Raman band at 600-630 cm 1 corresponds to a 

NaCl  structure of TiAlN alloy and the appearance of 

Raman broad bands above 630 cm 1 could be due to a 

formation of chains of polyhedra [TiNx] with x = 4 or 5. 

It was shown two-phase structure of coatings: a small 

quantity of NaCl  structure and the disordered struc-

ture of chains [TiNx] with x = 4 or 5. The chains of pol-

yhedra [TiNx] with x = 4 are mainly formed at  large 

discharge power of Al(Ti) target or at small content of 

N2 gas.  
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