
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Mathematics and Statistics Department Faculty 
Publication Series Mathematics and Statistics 

2020 

Correcting an estimator of a multivariate monotone function with Correcting an estimator of a multivariate monotone function with 

isotonic regression isotonic regression 

Ted Westling 

Mark J. van der Laan 

Marco Carone 

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/361590869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/math_faculty_pubs
https://scholarworks.umass.edu/math_faculty_pubs
https://scholarworks.umass.edu/math
https://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages


Electronic Journal of Statistics
Vol. 14 (2020) 3032–3069
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1740

Correcting an estimator of

a multivariate monotone function

with isotonic regression

Ted Westling∗

Department of Mathematics and Statistics
University of Massachusetts Amherst

Amherst, Massachusetts, USA
e-mail: twestling@math.umass.edu

Mark J. van der Laan†

Division of Biostatistics
University of California, Berkeley

Berkeley, California, USA
e-mail: laan@stat.berkeley.edu

Marco Carone‡

Department of Biostatistics
University of Washington
Seattle, Washington, USA
e-mail: mcarone@uw.edu

Abstract: In many problems, a sensible estimator of a possibly multivari-
ate monotone function may fail to be monotone. We study the correction of
such an estimator obtained via projection onto the space of functions mono-
tone over a finite grid in the domain. We demonstrate that this corrected
estimator has no worse supremal estimation error than the initial estimator,
and that analogously corrected confidence bands contain the true function
whenever the initial bands do, at no loss to band width. Additionally, we
demonstrate that the corrected estimator is asymptotically equivalent to
the initial estimator if the initial estimator satisfies a stochastic equiconti-
nuity condition and the true function is Lipschitz and strictly monotone.
We provide simple sufficient conditions in the special case that the initial
estimator is asymptotically linear, and illustrate the use of these results for
estimation of a G-computed distribution function. Our stochastic equiconti-
nuity condition is weaker than standard uniform stochastic equicontinuity,
which has been required for alternative correction procedures. This allows
us to apply our results to the bivariate correction of the local linear esti-
mator of a conditional distribution function known to be monotone in its
conditioning argument. Our experiments suggest that the projection step
can yield significant practical improvements.
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1. Introduction

1.1. Background

In many scientific problems, the parameter of interest is a component-wise mono-
tone function. In practice, an estimator of this function may have several de-
sirable statistical properties, yet fail to be monotone. This often occurs when
the estimator is obtained through the pointwise application of a statistical pro-
cedure over the domain of the function. For instance, we may be interested in
estimating a conditional cumulative distribution function θ0, defined pointwise
as θ0(a, y) = P0(Y ≤ y | A = a), over its domainD ⊂ R

2. Here, Y may represent
an outcome and A an exposure. The map y �→ θ0(a, y) is necessarily monotone
for each fixed a. In some scientific contexts, it may be known that a �→ θ0(a, y)

https://mathscinet.ams.org/mathscinet/msc/msc2020.html
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is also monotone for each y, in which case θ0 is a bivariate component-wise
monotone function. An estimator of θ0 can be constructed by estimating the
regression function (a, y) �→ EP0 [I(Y ≤ y) | A = a] for each (a, y) on a finite
grid using kernel smoothing, and performing suitable interpolation elsewhere.
For some types of kernel smoothing, including the Nadaraya-Watson estimator,
the resulting estimator is necessarily monotone as a function of y for each value
of a, but not necessarily monotone as a function of a for each value of y. For
other types of kernel smoothing, including the local linear estimator, which often
has smaller asymptotic bias than the Nadaraya-Watson estimator, the resulting
estimator need not be monotone in either component.

Whenever the function of interest is component-wise monotone, failure of an
estimator to itself be monotone can be problematic. This is most apparent if
the monotonicity constraint is probabilistic in nature – that is, the parameter
mapping is monotone under all possible probability distributions. This is the
case, for instance, if θ0 is a distribution function. In such settings, returning
a function estimate that fails to be monotone is nonsensical, like reporting a
probability estimate outside the interval [0, 1]. However, even if the monotonicity
constraint is based on scientific knowledge rather than probabilistic constraints,
failure of an estimator to be monotone can be an issue. For example, if the
parameter of interest represents average height or weight among children as a
function of age, scientific collaborators would likely be unsatisfied if presented
with an estimated curve that were not monotone. Finally, as we will see, there
are often finite-sample performance benefits to ensuring that the monotonicity
constraint is respected.

Whenever this phenomenon occurs, it is natural to seek an estimator that
respects the monotonicity constraint but nevertheless remains close to the initial
estimator, which may otherwise have good statistical properties. A monotone
estimator can be naturally constructed by projecting the initial estimator onto
the space of monotone functions with respect to some norm. A common choice is
the L2-norm, which amounts to using multivariate isotonic regression to correct
the initial estimator.

1.2. Contribution and organization of the article

In this article, we discuss correcting an initial estimator of a multivariate mono-
tone function by computing the isotonic regression of the estimator over a finite
grid in the domain, and interpolating between grid points. We also consider cor-
recting an initial confidence band by using the same procedure applied to the
upper and lower limits of the band. We provide three general results regarding
this simple procedure.

1. Building on the results of Robertson, Wright and Dykstra (1988) and
Chernozhukov, Fernández-Val and Galichon (2009), we demonstrate that
the corrected estimator is at least as good as the initial estimator, meaning:

(a) its uniform error over the grid used in defining the projection is less
than or equal to that of the initial estimator for every sample;
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(b) its uniform error over the entire domain is less than or equal to that
of the initial estimator asymptotically;

(c) the corrected confidence band contains the true function on the pro-
jection grid whenever the initial band does, at no cost in terms of
average or uniform band width.

2. We provide high-level sufficient conditions under which the uniform differ-
ence between the initial and corrected estimators is oP (r

−1
n ) for a generic

sequence rn → ∞.

3. We provide simpler lower-level sufficient conditions in two special cases:

(a) when the initial estimator is uniformly asymptotically linear, in which
case the appropriate rate is rn = n1/2;

(b) when the initial estimator is kernel-smoothed with bandwidth hn, in
which case the appropriate rate is rn = (nhn)

1/2 for univariate kernel
smoothing.

We apply our theoretical results to two sets of examples: nonparametric ef-
ficient estimation of a G-computed distribution function for a binary exposure,
and local linear estimation of a conditional distribution function with a contin-
uous exposure.

Other authors have considered the correction of an initial estimator using iso-
tonic regression. To name a few, Mukarjee and Stern (1994) used a projection-
like procedure applied to a kernel smoothing estimator of a regression function,
whereas Patra and Sen (2016) used the projection procedure applied to a univari-
ate cumulative distribution function in the context of a mixture model. These
articles addressed the properties of the projection procedure in their specific
applications. In contrast, we provide general results that are applicable broadly.

1.3. Alternative projection procedures

The projection approach is not the only possible correction procedure. Dette,
Neumeyer and Pilz (2006), Chernozhukov, Fernández-Val and Galichon (2009),
and Chernozhukov, Fernández-Val and Galichon (2010) studied a correction
based on monotone rearrangements. However, monotone rearrangements do not
generalize to the multivariate setting as naturally as projections — for example,
Chernozhukov, Fernández-Val and Galichon (2009) proposed averaging a variety
of possible multivariate monotone rearrangements to obtain a final monotone
estimator. In contrast, the L2 projection of an initial estimator onto the space
of component-wise monotone functions is uniquely defined, even in the context
of multivariate functions.

Daouia and Park (2013) proposed an alternative correction procedure that
consists of taking a convex combination of upper and lower monotone enve-
lope functions, and they demonstrated conditions under which their estimator
is asymptotically equivalent in supremum norm to the initial estimator. There
are several differences between our contributions and those of Daouia and Park
(2013). For instance, Daouia and Park (2013) did not study correction of confi-
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dence bands, which we consider in Section 2.3, or the important special case of
asymptotically linear estimators, which we consider in Section 3.1. Our results
in these two sections apply equally well to our correction procedure and to the
correction procedure considered by Daouia and Park (2013).

Perhaps the most important theoretical contribution of our work beyond
that of existing research is the weaker form of stochastic equicontinuity that
we require for establishing asymptotic equivalence of the initial and projected
estimators. In contrast, Daouia and Park (2013) explicitly required the usual
uniform asymptotic equicontinuity, while application of the Hadamard differen-
tiability results of Chernozhukov, Fernández-Val and Galichon (2010) requires
weak convergence to a tight limit, which is stronger than uniform asymptotic
equicontinuity. Our weaker condition allows us to use our general results to
tackle a broader range of initial estimators, including kernel smoothed estima-
tors, which are typically not uniformly asymptotically equicontinuous at useful
rates, but nevertheless can frequently be shown to satisfy our condition. We
discuss this in detail in Section 3.2. We illustrate this general contribution in
Section 4.2 by studying the bivariate correction of a conditional distribution
function estimated using local linear regression, which would not be possible
using the stronger asymptotic equicontinuity condition. In numerical studies,
we find that the projected estimator and confidence bands can offer substantial
finite-sample improvements over the initial estimator and bands in this example.

2. Main results

2.1. Definitions and statistical setup

Let M be a statistical model of probability measures on a probability space
(X,B). Let θ : M → �∞(T) be a parameter of interest on M, where T := [0, 1]d

and �∞(T) is the Banach space of bounded functions from T to R equipped with
supremum norm ‖ · ‖T. We have specified this particular T for simplicity, but
the results established here apply to any bounded rectangular domain T ⊂ R

d.
For each P ∈ M, denote by θP the evaluation of θ at P and note that θP is
a bounded real-valued function on T. For any t ∈ T, denote by θP (t) ∈ R the
evaluation of θP at t.

For any vector t ∈ R
d and 1 ≤ j ≤ d, denote by tj the jth component of

t. Define the partial order ≤ on R
d by setting t ≤ t′ if and only if tj ≤ t′j for

each 1 ≤ j ≤ d. A function f : Rd → R is called (component-wise) monotone
non-decreasing if t ≤ t′ implies that f(t) ≤ f(t′). Denote ‖t‖ = max1≤j≤d |tj |
for any vector t ∈ R

d. Additionally, denote by Θ ⊂ �∞(T) the convex set of
bounded monotone non-decreasing functions from T to R. For concreteness, we
focus on non-decreasing functions, but all results established here apply equally
to non-increasing functions.

Let M0 := {P ∈ M : θP ∈ Θ} ⊆ M and suppose that M0 is nonempty.
Generally, this inclusion is strict only if, rather than being implied by the rules
of probability, the monotonicity constraint stems at least in part from prior
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scientific knowledge. Also, defineΘ0 := {θ ∈ Θ : θ = θP for some P ∈ M} ⊆ Θ.
We are primarily interested in settings where Θ0 = Θ, since in this case there
is no additional knowledge about θ encoded by M, and in particular there is no
danger of yielding a corrected estimator that is compatible with no P ∈ M.

Suppose that observationsX1, X2, . . . , Xn are sampled independently from an
unknown distribution P0 ∈ M0, and that we wish to estimate θ0 := θP0 based on
these observations. Suppose that, for each t ∈ T, we have access to an estimator
θn(t) of θ0(t) based on X1, X2, . . . , Xn. We note that the assumption that the
data are independent and identically distributed is not necessary for Theorems 1
and 2 below. For any suitable f : X → R, we define Pf :=

∫
f(x)P (dx) and

Gnf := n1/2
∫
f(x)(Pn − P0)(dx), where Pn is the empirical distribution based

on X1, X2, . . . , Xn.
The central premise of this article is that θn(t) may have desirable statistical

properties for each t or even uniformly in t, but that θn as an element of �∞(T)
may not fall in Θ for any finite n or even with probability tending to one. Our
goal is to provide a corrected estimator θ∗n that necessarily falls in Θ, and yet re-
tains the statistical properties of θn. A natural way to accomplish this is to define
θ∗n as the closest element of Θ to θn in some norm on T. Ideally, we would prefer
to take θ∗n to minimize ‖θ− θn‖T over θ ∈ Θ. However, this is not tractable for
two reasons. First, optimization over the entirety of T is an infinite-dimensional
optimization problem, and is hence frequently computationally intractable. To
resolve this issue, for each n, we let Tn = {t1, t2, . . . , tmn} ⊆ T be a finite rect-
angular lattice in T over which we will perform the optimization, and define and
consider ‖ · ‖Tn as the supremum norm over Tn. While it is now computation-
ally feasible to define θ∗n,∞ as a minimizer over θ ∈ Θ of the finite-dimensional
objective function ‖θ − θn‖Tn , this objective function is challenging due to its
non-differentiability. Instead, we define

θ∗n ∈ argmin
θ∈Θ

∑
t∈Tn

[θ(t)− θn(t)]
2
. (2.1)

The squared-error objective function is smooth in its arguments. In dimension
d = 1, θ∗n thus defined is simply the isotonic regression of θn on the grid Tn, which
has a closed-form representation as the greatest convex minorant of the so-called
cumulative sum diagram. Furthermore, since ‖θ∗n−θn‖Tn ≥ ‖θ∗n,∞−θn‖Tn , many
of our results also apply to θ∗n,∞.

We note that θ∗n is only uniquely defined on Tn. To completely characterize
θ∗n, we must monotonically interpolate function values between elements of Tn.
We will permit any monotonic interpolation that satisfies a weak condition. By
the definition of a rectangular lattice, every t ∈ T can be assigned a hyper-
rectangle whose vertices {s1, s2 . . . , s2d} are elements of Tn and whose interior
has empty intersection with Tn. If multiple such hyper-rectangles exist for t,
such as when t lies on the boundary of two or more such hyper-rectangles, one
can be assigned arbitrarily. We will assume that, for t /∈ Tn,

θ∗n(t) =
∑
k

λk,n(t)θ
∗
n(sk)



3038 T. Westling et al.

for weights λ1,n(t), λ2,n(t), . . . , λ2d,n(t) ∈ (0, 1) such that
∑

k λk,n(t) = 1. In
words, we assume that θ∗n(t) is a convex combination of the values of θ∗n on the
vertices of the hyper-rectangle containing t. A simple interpolation approach
consists of setting θ∗n(t) = θ∗n(t

′) with t′ the element of Tn closest to t, and
choosing any such element if there are multiple elements of Tn equally close to
t. This particular scheme satisfies our requirement.

Finally, for each n, we let �n(t) ≤ un(t) denote lower and upper endpoints of a
confidence band for θ0(t). We then define �∗n and u∗

n as the corrected versions of
�n and un using the same projection and interpolation procedure defined above
for obtaining θ∗n from θn.

In dimension d = 1, θ∗n(t), �
∗
n(t), and u∗

n(t) can be obtained for t ∈ Tn via
the Pool Adjacent Violators Algorithm (Ayer et al., 1955), as implemented in
the R command isoreg (R Core Team, 2018). In dimension d = 2, the cor-
rections can be obtained using the algorithm described in Bril et al. (1984),
which is implemented in the R command biviso in the package Iso (Turner,
2015). In dimension d ≥ 3, Kyng, Rao and Sachdeva (2015) provides algorithms
for computing the isotonic regression based on embedding the points in a di-
rected acyclic graph. Alternatively, general-purpose algorithms for minimization
of quadratic criteria over convex cones have been developed and implemented
in the R package coneproj and may be used in this case (Meyer, 1999; Liao and
Meyer, 2014).

2.2. Properties of the projected estimator

The projected estimator θ∗n is the isotonic regression of θn over the grid Tn.
Hence, many existing finite-sample results on isotonic regression can be used
to deduce properties of θ∗n. Theorem 1 below collects a few of these properties,
building upon the results of Barlow et al. (1972) and Chernozhukov, Fernández-
Val and Galichon (2009). We denote ωn := supt∈T mins∈Tn ‖t− s‖ as the mesh
of Tn in T.

Theorem 1. (i) It holds that ‖θ∗n − θ0‖Tn ≤ ‖θn − θ0‖Tn .

(ii) If ωn = oP (1) and θ0 is continuous on T, then

‖θ∗n − θ0‖T ≤ ‖θn − θ0‖Tn + oP (1) .

(iii) If there exists some α > 0 for which sups,t∈T:‖t−s‖≤δ |θ0(t)−θ0(s)| = o(δα)
as δ → 0, then

‖θ∗n − θ0‖T ≤ ‖θn − θ0‖T + oP (ω
α
n) .

(iv) If θ0(t) ∈ [�n(t), un(t)] for all t ∈ Tn, then θ0(t) ∈ [�∗n(t), u
∗
n(t)] for all

t ∈ Tn.

(v) It holds that ‖u∗
n − �∗n‖Tn ≤ ‖un − �n‖Tn and∑
t∈Tn

[u∗
n(t)− �∗n(t)] =

∑
t∈Tn

[un(t)− �n(t)] .
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Theorem 1 is proved in Appendix A.1. We remark briefly on the implications
of Theorem 1. Part (i) says that the estimation error of θ∗n over the grid Tn

is never worse than that of θn, whereas parts (ii) and (iii) provide bounds on
the estimation error of θ∗n on all of T in supremum norm. In particular, part
(ii) indicates that θ∗n is uniformly consistent on T as long as θn is uniformly
consistent on T, θ0 is continuous on T, and ωn = oP (1). Part (iii) provides an
upper bound on the uniform rate of convergence of θ∗n − θ0, and indicates that
if θ0 is known to lie in a Hölder class, then ωn can be chosen in such a way
as to guarantee that the estimation error of θ∗n on all of T is asymptotically no
worse than the estimation error of θn on Tn in supremum norm. We note that
parts (i)–(iii) also hold for the Lp norm with respect to uniform measure on T

for any p ∈ [1,∞). Part (iv) guarantees that the isotonized band [�∗n, u
∗
n] never

has worse coverage than the original band over Tn. Finally, part (v) states that
the potential increase in coverage comes at no cost to the average or supremum
width of the bands over Tn. We note that parts (i), (iv) and (v) hold true for
each n.

While comprehensive in scope, Theorem 1 does not rule out the possibil-
ity that θ∗n performs strictly better, even asymptotically, than θn, or that the
band [�∗n, u

∗
n] is asymptotically strictly more conservative than [�n, un]. In order

to construct confidence intervals or bands with correct asymptotic coverage, a
stronger result is needed: it must be that ‖θ∗n − θn‖T = oP (r

−1
n ), where rn is a

diverging sequence such that rn‖θn − θ0‖T converges in distribution to a non-
degenerate limit distribution. Then, we would have that rn‖θ∗n−θ0‖T converges
in distribution to this same limit, and hence confidence bands constructed us-
ing approximations of this limit distribution would have correct coverage when
centered around θ∗n, as we discuss more below.

We consider the following conditions on θ0 and the initial estimator θn:

(A) there exists a deterministic sequence rn tending to infinity such that, for
all δ > 0,

sup
‖t−s‖<δ/rn

|rn [θn(t)− θ0(t)]− rn [θn(s)− θ0(s)]| = oP (1);

(B) there exists K1 < ∞ such that |θ0(t)− θ0(s)| ≤ K1‖t− s‖ for all t, s ∈ T;
(C) there exists K0 > 0 such that K0‖t− s‖ ≤ |θ0(t)− θ0(s)| for all t, s ∈ T.

Based on these conditions, we have the following result.

Theorem 2. If (A)–(C) hold and ωn = oP (r
−1
n ), then ‖θ∗n − θn‖T = oP (r

−1
n ).

The proof of Theorem 2 is presented in Appendix A.2. This result indicates
that the projected estimator is uniformly asymptotically equivalent to the orig-
inal estimator in supremum norm at the rate rn.

Condition (A) is related to, but notably weaker than, uniform stochastic
equicontinuity (van der Vaart and Wellner, 1996, p. 37). (A) follows if, in par-
ticular, the process {rn[θn(t) − θ0(t)] : t ∈ T} converges weakly to a tight
limit in the space �∞(T). However, the latter condition is sufficient but not
necessary for (A) to hold. This is important for application of our results to
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kernel smoothing estimators, which typically do not converge weakly to a tight
limit, but for which condition (A) nevertheless often holds. We discuss this at
length in Section 4.2. The results of Daouia and Park (2013) (see in partic-
ular condition (C3) therein) and Chernozhukov, Fernández-Val and Galichon
(2010) rely on uniform stochastic equicontinuity in demonstrating asymptotic
equivalence of their correction procedures, which essentially limits the applica-
bility of their procedures to estimators that converge weakly to a tight limit in
�∞(T).

Condition (B) constrains θ0 to be Lipschitz. Condition (C) constrains the
variation of θ0 from below, and is slightly more restrictive than a requirement for
strict monotonicity. If, for instance, θ0 is differentiable, then (C) is satisfied if all
first-order partial derivatives of θ0 are bounded away from zero. Condition (C)
excludes, for instance, situations in which θ0 is differentiable with null derivative
over an interval. In such cases, θ∗n may have strictly smaller variance on these
intervals than θn because θ∗n will pool estimates across the flat region while θn
may not. Hence, in such cases, θ∗n may potentially asymptotically improve on θn,
so that θ∗n and θn are not asymptotically equivalent at the rate rn. Theoretical
results in these cases would be of interest, but are beyond the scope of this
article.

In addition to conditions (A)–(C), Theorem 2 requires that the mesh ωn of Tn

tend to zero in probability faster than r−1
n . Since Tn is chosen by the user, as long

as rn (or an upper bound thereof) is known, this is not a problem in practice.
Furthermore, except in irregular problems, the rate of convergence is typically
not faster than n−1/2, and hence it is typically sufficient to set ωn = cnn

−1/2

for some cn = o(1). We note, however, that the computational complexity of
obtaining the isotonic regression of θn over Tn increases as ωn decreases. Hence,
in cases where the rate of convergence of the initial estimator is strictly slower
than n−1/2, it may be preferable to choose ωn more carefully based on a precise
determination of rn. We expect this to be especially true in the context of large
d and n.

We note that conditions (A)–(C) and ωn = oP (r
−1
n ) also imply that ‖θ∗n −

θn‖Lp(T) = oP (r
−1
n ) for any p ∈ [1,∞), where Lp(T) is the Lp norm on T with

respect to uniform measure on T. However, it may be possible to relax conditions
(A)–(C) for the purpose of demonstrating Lp asymptotic equivalence of θ∗n and
θn for p < ∞. It is not clear whether our method of proof of Theorem 2 is
amenable to such weakening. We have chosen to focus on uniform asymptotic
equivalence in part for its use in constructing uniform confidence bands for θ0,
as we discuss in the next section.

2.3. Construction of confidence bands

Suppose there exists a fixed function γα : T → R such that �n and un satisfy:

(a) ‖rn(θn − �n)− γα‖T →P 0;
(b) ‖rn(un − θn)− γα‖T →P 0;
(c) P0 [rn|θn(t)− θ0(t)| ≥ γα(t) for all t ∈ T] −→ 1− α.
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As an example of a confidence band that satisfies conditions (a)–(c), suppose
that σ0 : T → (0,+∞) is a scaling function and cα is a fixed constant such that,
as n tends to infinity,

P0

(
rn

∥∥∥∥θn − θ0
σ0

∥∥∥∥
T

≥ cα

)
−→ 1− α .

If σn is an estimator of σ0 satisfying ‖σn−σ0‖T →P 0 and cα,n is an estimator of
cα such that cα,n →P cα, then the Wald-type band defined by lower and upper
endpoints �n(t) := θn(t)−cα,nr

−1
n σn(t) and un(t) := θn(t)+cαr

−1
n σn(t) satisfies

(a)–(c) with γα = cασ0. However, the latter conditions can also be satisfied by
other types of bands, such as those constructed with a consistent bootstrap
procedure.

Under conditions (a)–(c), the confidence band [�n, un] has asymptotic cover-
age 1 − α. When conditions (A) and (B) also hold, the corrected band [�∗n, u

∗
n]

has the same asymptotic coverage as the original band [�n, un], as stated in the
following result.

Corollary 1. If (A)–(B) and (a)–(c) hold, γα is uniformly continuous on T,
and ωn = oP (r

−1
n ), then the band [�∗n, u

∗
n] has asymptotic coverage 1− α.

The proof of Corollary 1 is presented in Appendix A.3. We also note that
Theorem 2 implies that Wald-type confidence bands constructed around θn have
the same asymptotic coverage if they are constructed around θ∗n instead.

3. Refined results under additional structure

In this section, we provide more detailed conditions that imply condition (A)
in two special cases: when θn is asymptotically linear, and when θn is a kernel
smoothing-type estimator.

3.1. Special case I: asymptotically linear estimators

Suppose that the initial estimator θn is uniformly asymptotically linear (UAL):
for each t∈T, there exists φ0,t : X �→R depending on P0 such that

∫
φ0,t dP0 = 0,∫

φ2
0,t dP0 < ∞, and

θn(t) = θ0(t) +
1

n

n∑
i=1

φ0,t(Xi) +Rn,t (3.1)

for a remainder term Rn,t with n1/2 supt∈T |Rn,t| = oP (1). The function φ0,t is
the influence function of θn(t) under sampling from P0. It is desirable for θn to
have representation (3.1) because this implies its uniform weak consistency as
well as the pointwise asymptotic normality of n1/2 [θn(t)− θ0(t)] for each t ∈ T.
If in addition the collection {φ0,t : t ∈ T} of influence functions forms a P0-
Donsker class, then {n1/2 [θn(t)− θ0(t)] : t ∈ T} converges weakly in �∞(T) to a
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Gaussian process with covariance function Σ0 : (t, s) �→
∫
φ0,t(x)φ0,s(x)dP0(x).

Uniform asymptotic confidence bands based on θn can then be formed by using
appropriate quantiles from any suitable approximation of the distribution of the
supremum of the limiting Gaussian process.

We introduce two additional conditions:

(A1) the collection {φ0,t : t ∈ T} of influence curves is a P0-Donsker class;
(A2) Σ0 is uniformly continuous in the sense that

lim sup
‖t−s‖→0

|Σ0(s, t)− Σ0(t, t)| = 0 .

Whenever θn is uniformly asymptotically linear, Theorem 2 can be shown to
hold under (A1), (A2) and (B), as implied by the theorem below. The validity
of (A1) and (A2) can be assessed by scrutinizing the influence function φ0,t of
θn(t) for each t ∈ T. This fact renders the verification of these conditions very
simple once uniform asymptotic linearity has been established.

Theorem 3. For any UAL estimator θn, (A1)–(A2) together imply (A).

The proof of Theorem 3 is provided in Appendix A.4. In Section 4.1, we
illustrate the use of Theorem 3 for the estimation of a G-computed distribution
function.

We note that conditions (A1)–(A2) are actually sufficient to establish uniform
asymptotic equicontinuity, which as discussed above is stronger than (A). There-
fore, Theorem 3 can also be used to prove asymptotic equivalence of the ma-
jorization/minorization correction procedure studied in Daouia and Park (2013).

3.2. Special case II: kernel smoothed estimators

For certain parameters, asymptotically linear estimators are not available. In
particular, this is the case when the parameter of interest is not sufficiently
smooth as a mapping of P0. For example, density functions, regression func-
tions, and conditional quantile functions do not permit asymptotically linear
estimators in a nonparametric model when the exposure is continuous. In these
settings, a common approach to nonparametric estimation is kernel smooth-
ing.

Recent results suggest that, as a process, the only possible weak limit of
{rn[θn(t) − θ0(t)] : t ∈ T} in �∞(T) is zero when θn is a kernel smoothed
estimator. For example, in the case of the Parzen-Rosenblatt density estimator
with bandwidth hn, Theorem 3 of Stupfler (2016) implies that if

cn := rn (nhn/| log hn|)−1/2 → 0,

then {rn[θn(t) − θ0(t)] : t ∈ T} converges weakly to zero in �∞(T), whereas if
cn → c ∈ (0,∞], then it does not converge weakly to a tight limit in �∞(T). As
a result, {rn[θn(t)− θ0(t)] : t ∈ T} only satisfies uniform stochastic equicontinu-
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ity for rn such that cn → 0. However, for any such rate rn, r
−1
n is slower than

the pointwise and uniform rates of convergence of θn − θ0. As a result, θn and
θ∗n may not be asymptotically equivalent at the uniform rate of convergence of
θn − θ0, so that confidence intervals and regions based on the limit distribution
of θn−θ0, but centered around θ∗n, may not have correct coverage. We note that,
while Stupfler (2016) establishes formal results for the Parzen-Rosenblatt esti-
mator, we expect that the results therein extend to a variety of kernel smoothed
estimators.

As a result of the lack of uniform stochastic equicontinuity of rn(θn − θ0) for
useful rates rn, establishing (A) is much more difficult for kernel smoothed esti-
mators than for asymptotically linear estimators. However, since (A) is weaker
than uniform stochastic equicontinuity, it may still be possible. Here, we pro-
vide alternative sufficient conditions that imply condition (A) and that we have
found useful for studying a kernel smoothed estimator θn.

When the initial estimator θn is kernel smoothed, we can often show that

sup
t∈T

|rn [θn(t)− θ0(t)]− anb0(t)−Rn(t)| P−→ 0 , (3.2)

where b0 : T → R is a deterministic bias, an is sequences of positive constants,
and Rn : T → R is a random remainder term. We then have that

sup
‖t−s‖<δ/rn

|rn [θn(t)− θ0(t)]− rn [θn(s)− θ0(s)]|

= sup
‖t−s‖<δ/rn

an |b0(t)− b0(s)|+ sup
‖t−s‖<δ/rn

|Rn(t)−Rn(s)|+ oP (1) .

If b0 is uniformly continuous on T and an = O(1), or b0 is uniformly α-Hölder
on T and an = O (rαn), then the first term on the right-hand side tends to
zero in probability. Attention may then be turned to demonstrating that the
second term vanishes in probability. It appears difficult to provide a general
characterization of the form of Rn that encompasses kernel smoothed estimators.
However, in our experience, it is frequently the case that Rn(t) involves terms
of the form Gnνn,t, where νn,t : X → R is a deterministic function for each
n ∈ {1, 2, . . . } and t ∈ T. In the course of demonstrating that

sup
‖t−s‖<δ/rn

|Rn(t)−Rn(s)| P−→ 0 ,

a rate of convergence for

sup
‖t−s‖<δ/rn

|Gn (νn,t − νn,s)|

is then required. Defining Fn,η := {νn,t − νn,s : ‖t − s‖ < η} for each η > 0,
this is equivalent to establishing a rate of convergence for the local empirical
process ‖Gn‖Fn,δ/rn

:= supξ∈Fn,δ/rn
|Gnξ|. Such rates can be established using

tail bounds for empirical processes. We briefly comment on two approaches to
obtaining such tail bounds.
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We first define bracketing and covering numbers of a class of functions F —
see van der Vaart and Wellner (1996) for a comprehensive treatment. We denote
by ‖F‖P,2 = [P (F 2)]1/2 the L2(P ) norm of a given P -square-integrable function
F : X → R. The bracketing number N[](ε,F, L2(P )) of a class of functions F

with respect to the L2(P ) norm is the smallest number of ε-brackets needed to
cover F, where an ε-bracket is any set of functions {f : � ≤ f ≤ u} with � and u
such that ‖�−u‖P,2 < ε. The covering number N(ε,F, L2(Q)) of F with respect
to the L2(Q) norm is the smallest number of ε-balls in L2(Q) required to cover
F. The uniform covering number is the supremum of N(ε‖F‖2,Q,F, L2(Q)) over
all discrete probability measuresQ such that ‖F‖Q,2 > 0, where F is an envelope
function for F. The bracketing and uniform entropy integrals for F with respect
to F are then defined as

J[](δ,F) :=

∫ δ

0

[
1 + logN[] (ε‖F‖P0,2,F, L2(P0))

]1/2
dε

J(δ,F) := sup
Q

∫ δ

0

[1 + logN (ε‖F‖Q,2,F, L2(Q))]
1/2

dε .

We discuss two approaches to controlling ‖Gn‖Fn,δ/rn
using these integrals. Sup-

pose that Fn,η has envelope function Fn,η in the sense that |ξ(x)| ≤ Fn,η for all
ξ ∈ Fn,η and x ∈ X. The first approach is useful when ‖Fn,δ/rn‖P0,2 can be ad-
equately controlled. Specifically, if either J(1,Fn,δ/rn) or J[](1,Fn,δ/rn) is O(1),
then ‖Gn‖Fn,δ/rn

≤ Mδ‖Fn,δ/rn‖P0,2 for all n and some constant Mδ ∈ (0,∞)
not depending on n by Theorems 2.14.1 and 2.14.2 of van der Vaart and Wellner
(1996).

The second approach we consider is useful when the envelope functions do
not shrink in expectation, but the functions in Fn,η still get smaller in the
sense that γn,δ := supξ∈Fn,δ/rn

‖ξ‖P0,2 tends to zero. For example, if νn,t is

defined as νn,t(x) := I(0 ≤ x ≤ t) for each x ∈ X ⊆ R, t ∈ [0, 1], and n, then
Fn,η : x �→ I(0 ≤ x ≤ 1) is the natural envelope function for Fn,η for all n
and η, so that ‖Fn,δ/rn‖P0,2 does not tend to zero. However, if the density p0
corresponding to P0 is bounded above by p̄0, then γ2

n,δ ≤ p̄0δ/rn , which does
tend to zero. In these cases, the basic tail bounds in Theorem 2.14.1 and 2.14.2
of van der Vaart and Wellner (1996) are too weak. Sharper, but slightly more
complicated, bounds may be used instead. Specifically, if Fn,δ/rn ≤ C < ∞ for
all n large enough and either

J
(
γn,δ,Fn,δ/rn

)
+

J
(
γn,δ,Fn,δ/rn

)2
γ2
n,δn

1/2
or J[]

(
γn,δ,Fn,δ/rn

)
+

J[]
(
γn,δ,Fn,δ/rn

)2
γ2
n,δn

1/2

are o(z−1
n ), then ‖Gn‖Fn,δ/rn

= oP (z
−1
n ) by Lemma 3.4.2 of van der Vaart and

Wellner (1996) and Theorem 2.1 of van der Vaart and Wellner (2011). Analogous
statements hold if these expressions are O(z−1

n ).
In some cases, both of these approaches must be used to control different

terms arising within Rn(t), as for the conditional distribution function discussed
in Section 4.2.
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4. Illustrative examples

4.1. Example 1: Estimation of a G-computed distribution function

We first demonstrate the use of Theorem 3 in the particular problem in which
we wish to draw inference on a G-computed distribution function. Suppose that
the data unit is the vector X = (Y,A,W ), where Y is an outcome, A ∈ {0, 1} is
an exposure, and W is a vector of baseline covariates. The observed data consist
of independent draws X1, X2, . . . , Xn from P0 ∈ M, where M is a nonparametric
model.

For P ∈ M and a0 ∈ {0, 1}, we define the parameter value θP,a0 pointwise as
θP,a0(t) := EP {P (Y ≤ t | A = a0,W )}, the G-computed distribution function
of Y evaluated at t, where the outer expectation is over the marginal distribution
of W under P . We are interested in estimating θ0,a0 := θP0,a0 . This parameter
is often of interest as an interpretable marginal summary of the relationship
between Y and A accounting for the potential confounding induced byW . Under
certain causal identification conditions, θ0,a0 is the distribution function of the
counterfactual outcome Y (a0) defined by the intervention that deterministically
sets exposure to A = a0 (Robins, 1986; Gill and Robins, 2001).

For each t, the parameter P �→ θP,a0(t) is pathwise differentiable in a non-
parametric model, and its nonparametric efficient influence function ϕP,a0,t at
P ∈ M is given by

(y, a, w) �→ I(a = a0)

gP (a0 | w)
[
I(y ≤ t)− Q̄P (t | a0, w)

]
+ Q̄P (t | a0, w)− θP,a0(t) ,

where gP (a0 | w) := P (A = a0 | W = w) is the propensity score and Q̄P (t |
a0, w) := P (Y ≤ t | A = a0,W = w) is the conditional exposure-specific distri-
bution function, as implied by P (van der Laan and Robins, 2003). Given esti-
mators gn and Q̄n of g0 := gP0 and Q̄0 := Q̄P0 , respectively, several approaches
can be used to construct, for each t, an asymptotically linear estimator of θ0(t)
with influence function φ0,a0,t = ϕP0,a0,t. For example, the use of either op-
timal estimating equations or the one-step correction procedure leads to the
doubly-robust augmented inverse-probability-of-weighting estimator

θn,a0(t) :=
1

n

n∑
i=1

{
I(Ai = a0)

gn(a0 | Wi)

[
I(Yi ≤ t)− Q̄n(t | a0,Wi)

]
+ Q̄n(t | a0,Wi)

}
,

as discussed in detail in van der Laan and Robins (2003). Under conditions on
gn and Q̄n, including consistency at fast enough rates, θn,a0(t) is asymptotically
efficient relative to M. In this case, θn,a0(t) satisfies (3.1) with influence function
φ0,a0,t. However, there is no guarantee that θn,a0 is monotone.

In the context of this example, we can identify simple sufficient conditions
under which conditions (A)–(B), and hence the asymptotic equivalence of the
initial and isotonized estimators of the G-computed distribution function, are
guaranteed. Specifically, we find this to be the case when both:
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(i) there exists η > 0 such that g0(a0 | W ) ≥ η almost surely under P0;
(ii) there exist non-negative real-valued functions K1,K2 such that

K1(w)|t− s| ≤ |Q̄0(t | a0, w)− Q̄0(s | a0, w)| ≤ K2(w)|t− s|

for all t, s ∈ T, and such that, under P0, K1(W ) is strictly positive with
non-zero probability and K2(W ) has finite second moment.

We conducted a simulation study to validate our theoretical results in the
context of this particular example. For samples sizes 100, 250, 500, 750, and 1000,
we generated 1000 random datasets as follows. We first simulated a bivariate co-
variate W with independent components W1 and W2, respectively distributed as
a Bernoulli variate with success probability 0.5 and a uniform variate on (−1, 1).
Given W = (w1, w2), exposure A was simulated from a logistic regression model
with

P0(A = 1 | W1 = w1,W2 = w2) = expit(0.5 + w1 − 2w2) .

Given W = (w1, w2) and A = a, Y was simulated as the inverse-logistic trans-
formation of a normal variate with mean 0.2− 0.3a− 4w2 and variance 0.3.

For each simulated dataset, we estimated θ0,0(t) and θ0,1(t) for t equal to
each outcome value observed between 0.1 and 0.9. To do so, we used the esti-
mator described above, with propensity score and conditional exposure-specific
distribution function estimated using correctly-specified parametric models. We
employed two correction procedures for the estimators θn,0 and θn,1. First, we
projected θn,0 and θn,1 onto the space of monotone functions separately. Second,
noting that θ0,0(t) ≤ θ0,1(t) for all t, so that (a, t) �→ θ0,a(t) is component-wise
monotone for this particular data-generating distribution, we considered the
projection of (a, t) �→ θn,a(t) onto the space of bivariate monotone functions
on {0, 1} × T. For each simulation and each projection procedure, we recorded
the maximal absolute differences between (i) the initial and and projected es-
timates, (ii) the initial estimate and the truth, and (iii) the projected estimate
and the truth. We also recorded the maximal widths of the initial and projected
confidence bands.

Figure 1 displays the results of this simulation study, with output from the
univariate and bivariate projection approaches summarized in the top and bot-
tom rows, respectively. The left column displays the empirical distribution of
the scaled maximum absolute discrepancy between θn and θ∗n for all sample sizes
studied. This plot confirms that the discrepancy between these two estimators
indeed decreases faster than n−1/2, as our theory suggests. Furthermore, for
each n, the discrepancy is larger for the two-dimensional projection.

The middle column of Figure 1 displays the empirical distribution function
of the ratio between the maximum discrepancy between θn and θ0 and that of
θ∗n and θ0. This plot confirms that θ∗n is always at least as close to θ0 than is θn
over Tn. The maximum discrepancy between θn and θ0 can be more than 25%
larger than that between θ∗n and θ0 in the univariate case, and up to 50% larger
in the bivariate case.

The right column of Figure 1 displays the empirical distribution function
of the ratio between the maximum size of the initial uniform 95% influence
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Table 1

Coverage of 95% confidence bands for the true counterfactual distribution function.

n 100 250 500 750 1000

d=1
Initial band 92.5 94.1 96.0 94.5 95.5

Monotone band 92.5 94.1 96.0 94.5 95.5

d=2
Initial band 93.9 94.0 95.0 94.6 94.9

Monotone band 95.7 95.9 95.5 95.3 95.1

function-based confidence band and that of the isotonic band. For large sam-
ples, the maximal widths are often close, but for smaller samples, the initial
confidence bands can be up to 50% larger than the isotonic bands, especially for
the bivariate case. The empirical coverage of both bands is provided in Table 1.
The coverage of the isotonic band is essentially the same as the initial band for
the univariate case, whereas it is slightly larger than that of the initial band in
the bivariate case.

Fig 1. Summary of simulation results for G-computed distribution function. Each plot shows
cumulative distributions of a particular discrepancy over 1000 simulated datasets for different
values of n. Left panel: maximal absolute difference between the initial and isotonic estima-
tors over the grid used for projecting, scaled up by root-n. Middle panel: ratio of the maximal
absolute difference between the initial estimator and the truth and the maximal absolute dif-
ference between the isotonic estimator and the truth. Right panel: ratio of the maximal width
of the initial confidence band and the maximal width of the isotonic confidence band. The top
row shows the results for the univariate projection, and the bottom row shows the results for
the bivariate projection.

4.2. Example 2: Estimation of a conditional distribution function

We next demonstrate the use of Theorem 2 with dimension d = 2 for drawing
inference on a conditional distribution function. Suppose that the data unit is the
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vector X = (A, Y ), where Y is an outcome and A is now a continuous exposure.
The observed data consist of independent draws (A1, Y1), (A2, Y2), . . . , (An, Yn)
from P0 ∈ M, whereM is a nonparametric model. We define the parameter value
θP pointwise as θP (t1, t2) := P (Y ≤ t1 | A = t2). Thus, θP is the conditional
distribution function of Y at t1 given A = t2. The map (t1, t2) �→ θP (t1, t2)
is necessarily monotone in t1 for each fixed t2, and in some settings, it may be
known that it is also monotone in t2 for each fixed t1. This parameter completely
describes the conditional distribution of Y given A, and can be used to obtain
the conditional mean, conditional quantiles, or any other conditional parameter
of interest.

For each t1, the true function θ0(t1, t2) = θP0(t1, t2) may be written as the
conditional mean of I(Y ≤ t1) given A = t2. Hence, any method of nonparamet-
ric regression can be used to estimate t2 �→ θ0(t1, t2) for fixed t1, and repeating
such a method over a grid of values of t1 yields an estimator of the entire func-
tion. We expect that our results would apply to many of these methods. Here,
we consider the local linear estimator (Fan and Gijbels, 1996), which may be
expressed as

θn(t1, t2) :=
1

nhn

n∑
i=1

I(Yi ≤ t1)

[
s2,n(t2)− s1,n(t2) (Ai − t2)

s0,n(t2)s2,n(t2)− s1,n(t2)2

]
K

(
Ai − t2
hn

)
,

where K : R → R is a symmetric and bounded kernel function, hn → 0 is a
sequence of bandwidths, and

sj,n(t2) :=
1

nhn

n∑
i=1

(Ai − t2)
j
K

(
Ai − t2
hn

)

for j ∈ {0, 1, 2}. Under regularity conditions on the true distribution function
θ0, the marginal density f0 of A, the bandwidth sequence hn, and the kernel
function K, for any fixed (t1, t2), θn satisfies

(nhn)
1/2

[
θn(t1, t2)− θ0(t1, t2)− h2

nVKb0(t1, t2)
] d−→N (0, SKv0(t1, t2)) ,

where VK :=
∫
x2K(x)dx is the variance of K, SK :=

∫
K(x)2dx, and b0(t1, t2)

and v0(t1, t2) depend on the derivatives of θ0 and on f0. If hn is chosen to be of
order n−1/5, the rate that minimizes the asymptotic mean integrated squared
error of θn relative to θ0, then n2/5 [θn(t1, t2)− θ0(t1, t2)] converges in law to a
normal random variate with mean VKb0(t1, t2) and variance SKv0(t1, t2). Under
stronger regularity conditions, the rate of convergence of the uniform norm
‖θn − θ0‖T can be shown to be (nhn/ logn)

1/2 (Hardle, Janssen and Serfling,
1988).

Theorem 3 cannot be used to establish (A) in this problem, since θn is not an
asymptotically linear estimator. Furthermore, as discussed above, recent results
suggest that {rn[θn(t)− θ0(t)] : t ∈ T} does not converge weakly to a tight limit
in �∞(T) for any useful rate rn. Despite this lack of weak convergence, condi-
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tion (A) can be verified directly in the context of this example under smoothness
conditions on θ0 and f0 using the tail bounds for empirical processes outlined
in Section 3.2. Denoting by θ′0,t2 and θ′′0,t2 the first and second derivatives of θ0
with respect to its second argument, we define

R
(2)
θ (t, δ) := θ0(t1, t2 + δ)− θ0(t1, t2)− δθ′0,t2(t1, t2)−

1
2δ

2θ′′0,t2(t1, t2)

and R
(1)
f (t, δ) := f0(t2 + δ) − f0(t2) − δf ′

0(t2), where f ′
0 is the derivative of f0.

We then introduce the following conditions on θ0, f0, and K:

(d) θ′′0,t2 exists and is continuous on T, and as δ → 0, supt∈T |R(2)
θ (t, δ)| = o(δ2);

(e) inft∈T f0(t) > 0, f ′
0 exists and is continuous on T, and supt∈T |R(1)

f (t, δ)| =
o(δ);

(f) K is a Lipschitz function supported on [−1, 1] satisfying condition (M) of
Stupfler (2016).

We also define

νn,t(y, a) := [I(y ≤ t1)− θ0(t1, a)]K

(
a− t2
hn

)
;

gn(t2) := s0,n(t2)s2,n(t2)− s1,n(t2)
2 ;

Rn(t) := h−1/2
n

[
s2,n(t2)

gn(t2)
Gnνn,t −

s1,n(t2)

gn(t2)
Gn (�tνn,t)

]
.

We then have the following result.

Proposition 1. If (d)–(f) hold, nh4
n/ log h

−1
n → ∞ and nh5

n = O(1), then

sup
t∈T

∣∣∣(nhn)
1/2

[θn(t1, t2)− θ0(t1, t2)]−
(
nh5

n

)1/2 1
2θ

′′
0,t2(t1, t2)K2 −Rn(t)

∣∣∣ P−→ 0 .

Proposition 1 aids in establishing the following result, which formally es-
tablishes asymptotic equivalence of the local linear estimator of a conditional
distribution function and its correction obtained via isotonic regression at the
rate rn = (nhn)

1/2.

Proposition 2. If (d)–(f) hold and nh5
n → c ∈ (0,∞), then (A) holds for the

local linear estimator with rn = (nhn)
1/2.

The proofs of Propositions 1 and 2 are provided in Appendix A.5. These
results may also be of interest in their own right for establishing other properties
of the local linear estimator.

As with the first example, we conducted a simulation study to validate our
theoretical results. For samples sizes n ∈ {100, 250, 500, 750, 1000}, we generated
1000 random datasets as follows. We first simulated A as a Beta(2, 3) variate.
Given A = a, Y was simulated as the inverse-logistic transformation of a normal
variate with mean 0.5× [1 + (a− 1.2)2] and variance one.

For each simulated dataset, we estimated θ0(y, a) for each (y, a) in an equally
spaced square grid of mesh ωn = n−4/5. For each unique y in this grid, we esti-
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mated the function a �→ θ0(y, a) using the local linear estimator, as implemented
in the R package KernSmooth (Wand, 2015; Wand and Jones, 1995). For each
value of y in the grid, we computed the optimal bandwidth based on the direct
plug-in methodology of Ruppert, Sheather and Wand (1995) as implemented
by the dpill function, and we then set our bandwidth as the average of these
y-specific bandwidths. We constructed initial confidence bands using a variable-
width nonparametric bootstrap (Hall and Kang, 2001).

We first note that, for all sample sizes considered, over 99% of simulations
had monotonicity violations in both the y- and a-directions. Figure 2 displays
the results of this simulation study. The left exhibit of Figure 2 confirms that
the discrepancy between θn and θ∗n decreases faster than r−1

n = n−2/5, as our
theory suggests. The middle exhibit indicates that in roughly 50% of simulations,
there is less than 5% difference between ‖θ∗n − θ0‖Tn and ‖θn − θ0‖Tn , but
even for n = 1000, in roughly 25% of simulations, θ∗n offers at least a 25%
improvement in estimation error. In smaller samples, the estimation error of
θ∗n is less than half that of θn in 5–10% of simulations. The rightmost exhibit
indicates that the projected confidence bands regularly reduce the uniform size
of the initial bands by 10–20%. Finally, the empirical coverage of uniform 95%
bootstrap-based bands and their projected versions is provided in Table 2. As
before, the projected band is always more conservative than the initial band,
and the difference in coverage diminishes as n grows. However, the initial bands
in this example are anti-conservative, even at n = 1000, likely due to the slower
rate of convergence, and the corrected bands offer a much more substantial
improvement in this example than in the first.

Fig 2. Summary of simulation results for conditional distribution function. The three columns
display the same results as those in Figure 1.

5. Discussion

Many estimators of function-valued parameters in nonparametric and semipara-
metric models are not guaranteed to respect shape constraints on the true func-
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Table 2

Coverage of 95% confidence bands for the true conditional distribution function.

n 100 250 500 750 1000
Initial band 37.6 64.9 83.2 86.3 89.7

Monotone band 60.8 80.4 90.3 92.3 93.9

tion. A simple and general solution to this problem is to project the initial esti-
mator onto the constrained parameter space over a grid whose mesh goes to zero
fast enough with sample size. However, this introduces the possibility that the
projected estimator has different properties than the original estimator. In this
paper, we studied the important shape constraint of multivariate component-
wise monotonicity. We provided results indicating that the projected estimator
is generically no worse than the initial estimator, and that if the true function
is strictly increasing and the initial estimator possesses a relatively weak type
of stochastic equicontinuity, the projected estimator is uniformly asymptoti-
cally equivalent to the initial estimator. We provided especially simple sufficient
conditions for this latter result when the initial estimator is uniformly asymptot-
ically linear, and provided guidance on establishing the key condition for kernel
smoothed estimators.

We studied the application of our results in two examples: estimation of a G-
computed distribution function, for use in understanding the effect of a binary
exposure on an outcome when the exposure-outcome relationship is confounded
by recorded covariates, and of a conditional distribution function, for use in char-
acterizing the marginal dependence of an outcome on a continuous exposure. In
numerical studies, we found that the projected estimator yielded improvements
over the initial estimator. The improvements were especially strong in the latter
example.

In our examples, we only studied corrections in dimensions d = 1 and d = 2.
In future work, it would be interesting to consider corrections in dimensions
higher than 2. For example, for the conditional distribution function, it would
be of interest to study multivariate local linear estimators for a continuous
exposure A taking values in R

d−1 for d > 2. Since tailored algorithms for com-
puting the isotonic regression do not yet exist for d > 2, it would also be
of interest to determine whether a version of Theorem 2 could be established
for the relaxed isotonic estimator proposed by Fokianos, Leucht and Neumann
(2017). Alternatively, it is possible that the uniform stochastic equicontinuity
currently required by Chernozhukov, Fernández-Val and Galichon (2010) and
Daouia and Park (2013) for asymptotic equivalence of the rearrangement- and
envelope-based corrections, respectively, could be relaxed along the lines of our
condition (A). Finally, our theoretical results do not give the exact asymptotic
behavior of the projected estimator or projected confidence band when the true
function possesses flat regions. This is also an interesting topic for future re-
search.
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Appendix A: Technical proofs

A.1. Proof of Theorem 1

Part (i) follows from Corollary B to Theorem 1.6.1 of Robertson, Wright and
Dykstra (1988). For parts (ii) and (iii), we note that by assumption

|θ∗n(t)− θ0(t)| ≤
∑
k

λk,n(t)|θ∗n(sk)− θ0(sk)|+
∑
k

λk,n(t)|θ0(sk)− θ0(t)|

for every t ∈ T, where
∑

k λk,n(t) = 1, and for each k, sk ∈ Tn and ‖sk − t‖ ≤
2ωn. By part (i), the first term is bounded above by sups∈Tn

|θn(s)−θ0(s)|. The
second term is bounded above by γ(2ωn), where we define

γ(δ) := sup{|θ0(t)− θ0(s)| : t, s ∈ T, ‖t− s‖ ≤ δ} .

If θ0 is continuous on T, then it is also uniformly continuous since T is compact.
Therefore, γ(δ) → γ(0) = 0 as δ → 0, so that γ(2ωn)→P 0 if ωn →P 0. If
γ(δ) = o(δα) as δ → 0, then γ(2ωn) = oP (ω

α
n).

Part (iv) follows from the proof of Proposition 3 of Chernozhukov, Fernández-
Val and Galichon (2009), which applies to any order-preserving monotonization
procedure. For the first statement of (v), by their definition as minimizers of the
least-squares criterion function, we note that

∑
t∈Tn

u∗
n(t) =

∑
t∈Tn

un(t), and
similarly for �∗n. The second statement of (v) follows from a slight modification
of Theorem 1.6.1 of Robertson, Wright and Dykstra (1988). As stated, the result
says that

∑
t∈Tn

G(θ∗(t)−θ(t)) ≤
∑

t∈Tn
G(θ(t)−ψ(t)) for any convex function

G : R → R and monotone function ψ, where θ∗ is the isotonic regression of θ over
Tn. A straightforward adaptation of the proof indicates that

∑
t∈Tn

G(θ∗1(t) −
θ∗2(t)) ≤

∑
t∈Tn

G(θ1(t)−θ2(t)), where now θ∗1 and θ∗2 are the isotonic regressions
of θ1 and θ2 over Tn, respectively. As in Corollary B, taking G(x) = |x|p and
letting p → ∞ yields that ‖θ∗1−θ∗2‖Tn ≤ ‖θ1−θ2‖Tn . Applying this with θ1 = un

and θ2 = �n establishes the second portion of (v).

A.2. Proof of Theorem 2

We prove Theorem 2 via three lemmas, which may be of interest in their own
right. The first lemma controls the size of deviations in θn over small neighbor-
hoods, and does not hinge on condition (C) holding.

Lemma 1. If (A)–(B) hold and bn = oP (r
−1
n ), then

sup
‖t−s‖≤bn

|θn(t)− θn(s)| = oP (r
−1
n ) .

Proof of Lemma 1. In view of the triangle inequality,

|θn(t)− θn(s)| ≤ |{θn(t)− θ0(t)} − {θn(s)− θ0(s)}|+ |θ0(t)− θ0(s)| .

The first term is oP (r
−1
n ) by (A), whereas the second term is oP (r

−1
n ) by (B).
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The second lemma controls the size of neighborhoods over which violations
in monotonicity can occur. Henceforth, we define

κn := sup {‖t− s‖ : s, t ∈ T, s ≤ t, θn(t) ≤ θn(s)} .

In this lemma we again require (A) but now require (C) rather than (B).

Lemma 2. If (A) and (C) hold, then κn = oP (r
−1
n ).

Proof of Lemma 2. Let ε > 0 and ηn := ε/rn. Suppose that κn > ηn. Then,
there exist s, t ∈ T with s < t and ‖t−s‖ > ηn such that θn(s) ≥ θn(t). We claim
that there must also exist s∗, t∗ ∈ T with s∗ < t∗ and ‖t∗−s∗‖ ∈ [ηn/2, ηn] such
that θn(s

∗) ≥ θn(t
∗). To see this, let J = �‖t − s‖/(ηn/2)� − 1, and note that

J ≥ 1. Define tj := s+(jηn/2)(t−s)/‖t−s‖ for j = 0, 1, . . . , J , and set tJ+1 := t.
Thus, tj < tj+1 and ‖tj+1 − tj‖ ∈ [ηn/2, ηn] for each j = 0, 1, . . . , J . Since then∑J

j=0[θn(tj+1)− θn(tj)] = θn(t)− θn(s) ≤ 0, it must be that θn(tj+1) ≤ θn(tj)
for at least one j. This proves the claim.

We now have that κn > ηn implies that there exist s, t ∈ T with s < t and
‖t− s‖ ∈ [ηn/2, ηn] such that θn(s) ≥ θn(t). This further implies that

{θn(t)− θ0(t)} − {θn(s)− θ0(s)} ≤ −{θ0(t)− θ0(s)} ≤ −K0‖t− s‖ ≤ −K0ηn/2

by condition (B). Finally, this allows us to write

P0

(
κn >

ε

rn

)
≤ P0

{
sup

‖t−s‖≤ε/rn

rn |[θn(t)− θ0(t)]− [θn(s)− θ0(s)]| ≥
K0ε

2

}
.

By condition (A), this probability tends to zero for every ε > 0, which completes
the proof.

Our final lemma bounds the maximal absolute deviation between θ∗n and θn
over the grid Tn in terms of the supremal deviations of θn over neighborhoods
smaller than κn. This lemma does not depend on any of the conditions (A)–(C).

Lemma 3. It holds that maxt∈Tn |θ∗n(t)− θn(t)| ≤ sup‖s−t‖≤κn
|θn(s)− θn(t)|.

Proof of Lemma 3. By Theorem 1.4.4 of Robertson, Wright and Dykstra
(1988), for any t ∈ Tn,

θ∗n(t) = max
U∈Ut

min
L∈Lt

θn(U ∩ L) = min
L∈Lt

max
U∈Ut

θn(U ∩ L),

where, for any finite set S ⊆ Tn, θn(S) is defined as |S|−1
∑

s∈S θn(s). The sets
U range over the collection Ut of upper sets of Tn containing t, where U ⊆ Tn

is called an upper set if t1 ∈ U, t2 ∈ Tn and t1 ≤ t2 implies t2 ∈ U . The sets L
range over the collection Lt of lower sets of Tn containing t, where L ⊆ Tn is
called a lower set if t1 ∈ L, t2 ∈ Tn and t2 ≤ t1 implies t2 ∈ L.

Let Ut := {s : s ≥ t} and Lt := {s : s ≤ t}. First, suppose there exists
L0 ∈ Lt and s0 ∈ L0 with s0 > t and ‖t − s0‖ > κn. Then, we claim that
there exists another lower set L′

0 ∈ Lt such that θn(Ut ∩ L0) > θn(Ut ∩ L′
0). If
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θn(Ut ∩ L0) > θn(t) = θn(Ut ∩ Lt), then L′
0 = Lt satisfies the claim. Otherwise,

if θn(Ut ∩ L0) ≤ θn(t), let

L′
0 := L0 \ {s : s > t, ‖t− s‖ > κn} .

One can verify that L′
0 ∈ Lt, and since s0 ∈ L0 \ L′

0, L
′
0 is a strict subset

of L0. Furthermore, by definition of κn, θn(s) > θn(t) for all s > t such that
‖t − s‖ > κn, and since θn(Ut ∩ L0) ≤ θn(t), removing these elements from L0

can only reduce the average, so that θn(Ut∩L′
0) < θn(Ut∩L0). This establishes

the claim. By an analogous argument, we can show that if there exists U0 ∈ Ut

and s0 ∈ U0 with s0 < t and ‖t− s0‖ > κn, then there exists another upper set
U ′
0 ∈ Ut such that θn(U0 ∩ Lt) < θn(U

′
0 ∩ Lt).

Let L∗ ∈ argminL∈Lt
θn(Ut ∩ L) and U∗ ∈ argmaxU∈Ut

θn(U ∩ Lt). Then,

θ∗n(t) = max
U∈Ut

min
L∈Lt

θn(U ∩ L) ≥ min
L∈Lt

θn(Ut ∩ L) = θn(Ut ∩ L∗) and

θ∗n(t) = min
L∈Lt

max
U∈Ut

θn(U ∩ L) ≤ max
U∈Ut

θn(U ∩ Lt) = θn(U
∗ ∩ Lt) .

Hence, θn(Ut ∩ L∗) ≤ θ∗n(t) ≤ θn(U
∗ ∩ Lt). By the above argument, we have

that both

θn(Ut ∩ L∗) ≥ inf{θn(s) : s ≥ t, ‖t− s‖ ≤ κn} and

θn(U
∗ ∩ Lt) ≤ sup{θn(s) : s ≤ t, ‖t− s‖ ≤ κn} .

Therefore, we find that

inf{θn(s)− θn(t) : ‖t− s‖ ≤ κn} ≤ θ∗n(t)− θn(t)

≤ sup{θn(s)− θn(t) : ‖t− s‖ ≤ κn} ,

and thus, |θ∗n(t) − θn(t)| ≤ sup{|θn(s) − θn(t)| : ‖t − s‖ ≤ κn}. Taking the
maximum over t ∈ Tn yields the claim.

The proof of Theorem 2 follows easily from Lemmas 1, 2 and 3.

Proof of Theorem 2. By construction, for each t ∈ T, we can write

|θ∗n(t)− θn(t)| ≤ Σ2d

j=1λj,n(t)|θ∗n(sj)− θn(sj)|+Σ2d

j=1λj,n(t)|θn(sj)− θn(t)| ,

where sj ∈ Tn and ‖sj − t‖ ≤ 2ωn for all t, sj by definition. Thus, since∑
j λj,n(t) = 1, it follows that

sup
t∈T

|θ∗n(t)− θn(t)| ≤ max
t∈Tn

|θ∗n(t)− θn(t)|+ sup
‖s−t‖≤2ωn

|θn(s)− θn(t)| .

By Lemma 3, the first summand is bounded above by sup‖s−t‖≤κn
|θn(s)−θn(t)|,

which is oP (r
−1
n ) by Lemmas 1 and 2. The second summand is oP (r

−1
n ) by

Lemma 1.
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A.3. Proof of Corollary 1

We note that �n(t) ≤ θ0(t) ≤ un(t) if and only if

{rn[θn(t)− �n(t)]− γα(t)}+ γα(t) ≥ rn[θn(t)− θ0(t)]

≥ −γα(t)− {rn[un(t)− θn(t)]− γα(t)} .

Therefore, by conditions (a)–(c), P0 [�n(t) ≤ θ0(t) ≤ un(t) for all t ∈ T] → 1−α.
Next, we let δ > 0 and note that

sup
‖t−s‖≤δ/rn

|rn{�n(t)− θ0(t)} − rn{�n(s)− θ0(s)}|

≤ sup
‖t−s‖≤δ/rn

|rn{θn(t)− θ0(t)} − rn{θn(s)− θ0(s)}|

+ sup
‖t−s‖≤δ/rn

|γα(t)− γα(s)|+ 2‖rn(θn − �n)− γα‖T .

The first term tends to zero in probability by (A), the second by conditions
(a)–(c), and the third by the assumed uniform continuity of γα. An analogous
decomposition holds for un. Therefore, we can apply Theorem 2 with un and
�n in place of θn to find that ‖�∗n − �n‖T = oP (r

−1
n ) and ‖u∗

n − un‖T = oP (r
−1
n ).

Finally, applying an analogous argument to the event �∗n ≤ θ0 ≤ u∗
n as we

applied to �n ≤ θ0 ≤ un above yields the result.

A.4. Proof of Theorem 3

Let ε, δ, η > 0. By (3.1) and since supt∈T |Rn,t| = oP (n
−1/2),

n1/2 |{θn(t)− θ0(t)} − {θn(s)− θ0(s)}| ≤ |Gn(φ0,t − φ0,s)|+ oP (1) .

Condition (A2) implies that {φ0,t : t ∈ T} is uniformly mean-square continuous,
in the sense that

lim
h→0

sup
‖t−s‖≤h

∫
{φ0,s(x)− φ0,t(x)}2 dP0(x) = 0 .

Since T is totally bounded in ‖ · ‖, this also implies that {φ0,t : t ∈ T} is
totally bounded in the L2(P0) metric. This, in addition to (A1), implies that
{Gnφ0,t : t ∈ T} converges weakly in �∞(T) to a Gaussian process G with
covariance function Σ0. Furthermore, (A2) implies that this limit process is
a tight element of �∞(T). By Theorem 1.5.4 of van der Vaart and Wellner
(1996), {Gnφ0,t : t ∈ T} is asymptotically tight. By Theorem 1.5.7 of van der
Vaart and Wellner (1996), {Gnφ0,t : t ∈ T} is thus asymptotically uniformly
mean-square equicontinuous in probability, in the sense that there exists some
δ0 = δ0(ε, η) > 0 such that

lim sup
n→∞

P0

[
sup

ρ(s,t)<δ0

|Gn(φ0,t − φ0,s)| > ε

]
< η
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with ρ(s, t) := [
∫
{φ0,t(x)−φ0,s(x)}2dP0(x)]

1/2. By (A2), sup‖t−s‖≤h ρ(t, s) < δ0

for some h > 0. Hence, for all n large, both δn−1/2 ≤ h and

P0

[
sup

ρ(s,t)<δ0

|Gn(φ0,t − φ0,s)| > ε

]
< η ,

so that

P0

[
sup

‖t−s‖≤δ/n1/2

|Gn(φ0,t − φ0,s)| > ε

]
≤ P0

[
sup

ρ(t,s)<δ0

|Gn(φ0,t − φ0,s)| > ε

]
< η

and the proof is complete.

A.5. Proof of Propositions 1 and 2

Below, we refer to van der Vaart and Wellner (1996) as VW. Throughout, the
symbol � should be interpreted to mean ‘bounded above, up to a multiplicative
constant not depending on n, t, y or a.’

We first note that condition (M) of Stupfler (2016) guarantees that the class{
x �→ K

(
x− t

h

)
: h > 0, t ∈ R

}

is Vapnik–Chervonenkis (henceforth VC) with index 2. In addition, we define
Kj :=

∫
ujK(u) du and

wn(a, t2) := s2,n(t2)− s1,n(t2)(a− t2) ,

w0(a, t2) := f0(t2)− f ′
0(t2)(a− t2) .

Before proving Propositions 1 and 2, we state and prove a lemma we will use.

Lemma 4. If (d)–(f) hold, nh4
n → ∞ and nh5

n = O(1), then

(
nh5

n

)1/2
sup
t∈T

∣∣∣∣s1,n(t2)gn(t2)
− f ′

0(t2)

f0(t2)2

∣∣∣∣ P−→ 0 ,

(
nh5

n

)1/2
sup
t∈T

∣∣∣∣s2,n(t2)gn(t2)
− 1

f0(t2)

∣∣∣∣ P−→ 0 ,

(
nh5

n

)1/2
sup
t∈T

sup
|a−t2|≤hn

∣∣∣∣wn(a, t2)

gn(t2)
− w0(a, t2)

f0(t2)2

∣∣∣∣ P−→ 0 ,

and for any δ > 0,

(
nh5

n

)1/2
sup

‖t−s‖≤δ/(nhn)1/2

∣∣∣∣s1,n(t2)gn(t2)
− s1,n(s2)

gn(s2)

∣∣∣∣ P−→ 0 ,

(
nh4

n

)
sup

‖t−s‖≤δ/(nhn)1/2

∣∣∣∣s2,n(t2)gn(t2)
− s2,n(s2)

gn(s2)

∣∣∣∣ P−→ 0 .
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Proof of Lemma 4. We first show that supt∈T |s0,n(t2)− f0(t2)| = oP (hn).
We have that

s0,n(t2)− f0(t2) = h−1
n

∫
K

(
a− t2
hn

)
f0(a) da− f0(t2)

+ n−1/2h−1
n GnK

(
· − t2
hn

)
.

By the change of variables u = (a− t2)/hn, we have that

h−1
n

∫
K

(
a− t2
hn

)
f0(a) da− f0(t2)

=

∫
K (u) [f0(t2 + hnu)− f0(t2)] du

= hn

∫
uK(u)(hnu)

−1R
(1)
f ((t1, t2), hnu) du ,

which, in view of the assumed uniform negligibility of R
(1)
f , tends to zero uni-

formly over t2 faster than hn. For the second term, sinceK is uniformly bounded
and the class {

a �→ K

(
a− t2
hn

)
: t2 ∈ [0, 1]

}

is P0-Donsker, as implied by condition (M) of Stupfler (2016), Theorem 2.14.1
of VW implies that

sup
t2

∣∣∣∣GnK

(
· − t2
hn

)∣∣∣∣ = OP (1) .

Then, since n−1/2h−1
n = hn

(
nh4

n

)−1/2
= oP (hn), this term is also oP (hn).

We next show that
(
nh5

n

)1/2
supt∈T

∣∣h−2
n s1,n(t2)− f ′

0(t2)K2

∣∣ = oP (1). We
have that

(nhn)
1/2s1,n(t2) =

(
nh−1

n

)1/2 ∫
(a− t2)K

(
a− t2
hn

)
f0(a) da

+ h−1/2
n

∫∫
(a− t2)K

(
a− t2
hn

)
Gn(dy, da) .

By the change of variables u = (a− t2)/hn, the first term equals

(nh3
n)

1/2

∫
uK (u) f0(t2 + hnu) du

= (nh3
n)

1/2

∫
uK (u) [f0(t2 + hnu)− f0(t)− (hnu)f

′
0(t2)] du

+
(
nh5

n

)1/2
f ′
0(t2)K2

= (nh5
n)

1/2

∫
uK(u)h−1

n R
(1)
f ((t1, t2), hnu) du+ (nh5

n)
1/2f ′

0(t2)K2 .
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By the assumed uniform negligibility of R
(1)
f and since hn = O(n−1/5), the first

term tends to zero in probability uniformly over t ∈ T.
Turning to the second term in s1,n(t2), we will apply Theorem 2.14.1 of VW

to obtain a tail bound for the supremum of this empirical process over the one-
dimensional class indexed by t2. We note that, since K is bounded by some K̄
and supported on [−1, 1],∣∣∣∣(a− t2)K

(
a− t2
hn

)∣∣∣∣ ≤ K̄|a− t2|I (|a− t2| ≤ hn) ≤ K̄hn .

Therefore, the class of functions{
(y, a) �→ (a− t2)K

(
a− t2
hn

)
: (t1, t2) ∈ T

}

has envelope K̄hn. Furthermore, since (y, a) �→ (a−t2) andK are both uniformly
bounded VC classes of functions, and K is bounded, the class of functions
possesses finite entropy integral. Hence, we have that

E0

[
sup

(t1,t2)∈T

∣∣∣∣h−1/2
n

∫∫
(a− t2)K

(
a− t2
hn

)
Gn(dy, da)

∣∣∣∣
]

≤ C ′h1/2
n −→ 0 .

We now have that (nhn)
1/2 supt∈T

∣∣s1,n(t2)− h2
nf

′
0(t2)K2

∣∣ = oP (1), which im-
plies in particular that

sup
t∈T

|s1,n(t2)| = (nhn)
−1/2oP (1) + h2

nOP (1) = OP

(
(nhn)

−1/2
)

.

Next, we show that
(
nh5

n

)1/2
supt∈T

∣∣h−2
n s2,n(t2)− f0(t2)K2

∣∣ = oP (hn). The
proof of this is nearly identical to the preceding proof. We have that

(nhn)
1/2s2,n(t2) =

(
nh−1

n

)1/2 ∫
(a− t2)

2K

(
a− t2
hn

)
f0(a) da

+ h−1/2
n

∫∫
(a− t2)

2K

(
a− t2
hn

)
Gn(dy, da) .

By the change of variables u = (a− t2)/hn, the first term equals

(nh5
n)

1/2

∫
u2K (u) f0(t2 + hnu) du = (nh5

n)
1/2hn

∫
u3K (u)

R
(1)
f (t, hnu)

hnu
du

+
(
nh5

n

)1/2
f0(t2)K2 .

By the uniform negligibility of R
(1)
f , the first term is oP (hn) uniformly in t.

Analysis of the second term in s2,n is analogous to that of s1,n, except that the

envelope function is now K̄h2
n, so that the empirical process term is OP (h

3/2
n ).

We also note that supt2 |s2,n(t2)| = OP

(
(nhn)

−1/2
)
.
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The above derivations imply that

(
nh5

n

)1/2
sup
t∈T

∣∣h−2
n gn(t2)− f0(t2)

2K2

∣∣
≤

(
nh5

n

)1/2
sup
t∈T

∣∣[h−2
n s2,n(t2)− f0(t2)K2

]
s0,n(t2)

∣∣+ (nhn)
1/2

[
sup
t∈T

|s1,n(t2)|
]2

+
(
nh5

n

)1/2
sup
t∈T

|[s0,n(t2)− f0(t2)] f0(t2)K2|

= oP (1)OP (1) +
(
nh5

n

)1/2
oP (hn) + (nhn)

1/2
OP

(
(nhn)

−1
)

= oP (1) .

We now proceed to the statements in the lemma. We write that

∣∣∣∣sn,1(t2)gn(t2)
− f ′

0(t2)

f0(t2)2

∣∣∣∣ =

∣∣∣∣h−2
n sn,1(t2)

h−2
n gn(t2)

− f ′
0(t2)K2

f0(t2)2K2

∣∣∣∣
=

∣∣∣∣h−2
n sn,1(t2)− f ′

0(t2)K2

h−2
n gn(t2)

− f ′
0(t2)K2

h−2
n gn(t2)− f0(t2)

2K2

h−2
n gn(t2)f0(t2)2K2

∣∣∣∣
≤

∣∣h−2
n sn,1(t2)− f ′

0(t2)K2

∣∣
h−2
n gn(t2)

+ f ′
0(t2)K2

∣∣h−2
n gn(t2)− f0(t2)

2K2

∣∣
h−2
n gn(t2)f0(t2)2K2

.

Since inft∈T |f0(t2)| > 0, we have that

sup
t∈T

[
h−2
n gn(t2)

]−1
= OP (1) and sup

t∈T

[
h−2
n gn(t2)f0(t2)

2
]−1

= OP (1) ,

and the result follows.

We omit the proof of the statement about sn,2, since it is almost identical to
the above. For the statement about wn, by the above calculations, we have that

(
nh5

n

)1/2
sup

(t1,t2)∈T

sup
|a−t2|≤hn

∣∣h−2
n wn(a, t2)− w0(a, t2)K2

∣∣ P−→ 0 .

We write that

∣∣∣∣wn(a, t2)

gn(t2)
− w0(a, t2)

f0(t2)2

∣∣∣∣ =
∣∣∣∣h−2

n wn(a, t2)

h−2
n gn(t2)

− w0(a, t2)K2

f0(t2)2K2

∣∣∣∣
=

∣∣∣∣h−2
n wn(a, t2)− w0(a, t2)K2

h−2
n gn(t2)

− w0(a, t2)
h−2
n gn(t2)− f0(t2)

2K2

h−2
n gn(t2)f0(t2)2

∣∣∣∣
≤

[
h−2
n gn(t2)

]−1 ∣∣h−2
n wn(a, t2)− w0(a, t2)K2

∣∣
+ |w0(a, t2)|

[
h−2
n gn(t2)f0(t2)

2
]−1 ∣∣h−2

n gn(t2)− f0(t2)
2K2

∣∣
and the result follows.
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We note that the above implies that

sup
|t2−s2|≤η

|s1,n(t2)− s1,n(s2)|

≤ 2 sup
t2

∣∣s1,n(t2)− h2
nf

′
0(t2)K2

∣∣+ h2
n sup

|t2−s2|≤η

|f ′
0(t2)− f ′

0(s2)|K2

� oP

(
(nhn)

−1/2
)
+ h2

nη ,

so that

sup
|t2−s2|≤δ/(nhn)−1/2

|s1,n(t2)− s1,n(s2)| = oP

(
(nhn)

−1/2
)
.

Similarly, we have that sup|t2−s2|≤η |s0,n(t2)− s0,n(s2)| = oP (hn) and

sup
|t2−s2|≤η

|s2,n(t2)− s2,n(s2)| = oP

(
hn (nhn)

−1/2
)
.

Therefore, we find that

sup
‖t−s‖≤δ/(nhn)−1/2

|gn(t2)− gn(s2)|

≤ sup
‖t−s‖≤δ/(nhn)−1/2

|[s0,n(t2)− s0,n(s2)] s2,n(s2)|

+ sup
‖t−s‖≤δ/(nhn)−1/2

|s0,n(t2) [s2,n(t2)− s2,n(s2)]|

+ sup
‖t−s‖≤δ/(nhn)−1/2

|[s1,n(t2)− s1,n(s2)] [s1,n(t2) + s1,n(s2)]|

� oP (hn)OP

(
(nhn)

−1/2
)
+OP (1)oP

(
hn (nhn)

−1/2
)

+ oP

(
(nhn)

−1/2
)
OP

(
(nhn)

−1/2
)

= oP

(
hn (nhn)

−1/2
)

.

We can now write that

sup
‖t−s‖≤δ/(nhn)−1/2

∣∣∣∣s1,n(t2)gn(t2)
− s1,n(s2)

gn(s2)

∣∣∣∣
≤ h−2

n sup
‖t−s‖≤δ/(nhn)−1/2

∣∣∣∣s1,n(t2)− s1,n(s2)

h−2
n gn(t2)

∣∣∣∣
+ h−4

n sup
‖t−s‖≤δ/(nhn)−1/2

∣∣∣∣s1,n(s2) gn(t2)− gn(s2)

h−2
n gn(t2)h

−2
n gn(s2)

∣∣∣∣
= h−2

n oP

(
(nhn)

−1/2
)
+ h−4

n OP

(
(nhn)

−1/2
)
oP

(
hn (nhn)

−1/2
)

= oP

((
nh5

n

)−1/2
)
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and

sup
‖t−s‖≤δ/(nhn)−1/2

∣∣∣∣s2,n(t2)gn(t2)
− s2,n(s2)

gn(s2)

∣∣∣∣
≤ h−2

n sup
‖t−s‖≤δ/(nhn)−1/2

∣∣∣∣s2,n(t2)− s2,n(s2)

h−2
n gn(t2)

∣∣∣∣
+ h−4

n sup
‖t−s‖≤δ/(nhn)−1/2

∣∣∣∣s2,n(s2) gn(t2)− gn(s2)

h−2
n gn(t2)h

−2
n gn(s2)

∣∣∣∣
= h−2

n oP

(
hn (nhn)

−1/2
)
+ h−4

n OP

(
(nhn)

−1/2
)
oP

(
hn (nhn)

−1/2
)

= oP

((
nh4

n

)−1
)

.

We can now prove Proposition 1.

Proof of Proposition 1. We define

m1,n(t1, t2) := h−1
n

∫∫
[θ0(t1, a)− θ0(t1, t2)]

wn(a, t2)

gn(t2)
K

(
a− t2
hn

)
Pn(dy, da)

m2,n(t1, t2) := h−1
n

∫∫
[I(y ≤ t1)− θ0(t1, a)]

wn(a, t2)

gn(t2)
K

(
a− t2
hn

)
Pn(dy, da) .

Then, we have that θn(t1, t2) − θ0(t1, t2) = m1,n(t1, t2) +m2,n(t1, t2). We note
that, since E0 [I(Y ≤ t1) | A = a] = θ0(t1, a), (nhn)

1/2m2,n(t1, t2) equals

h−1/2
n

∫∫
[I(y ≤ t1)− θ0(t1, a)]

wn(a, t2)

gn(t2)
K

(
a− t2
hn

)
Gn(dy, da)

= h−1/2
n

[
s2,n(t2)

gn(t2)
Gnvn,t −

s1,n(t2)

gn(t2)
Gn (�tvn,t)

]
.

Therefore, we can write that

(nhn)
1/2

[θn(t1, t2)− θ0(t1, t2)]−
(
nh5

n

)1/2 1
2θ

′′
0,t2(t1, t2)K2 −Rn(t1, t2)

= (nhn)
1/2

m1,n(t1, t2)−
(
nh5

n

)1/2 1
2θ

′′
0,t2(t1, t2)K2 .

We now proceed to analyze m1,n. We have that (nhn)
1/2

m1,n(t1, t2) equals

(
nh−1

n

)1/2 ∫
[θ0(t1, a)− θ0(t1, t2)]

wn(a, t2)

gn(t2)
K

(
a− t2
hn

)
f0(a) da

+ h−1/2
n

∫∫
[θ0(t1, a)− θ0(t1, t2)]

wn(a, t2)

gn(t2)
K

(
a− t2
hn

)
Gn(dy, da) .

The second term in m1,n may be further decomposed as

h−1/2
n

s2,n(t2)

gn(t2)
Gnγt,n − h−1/2

n

s1,n(t2)

gn(t2)
Gn (�tγt,n)
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with γt,n(y, a) := [θ0(t1, a)− θ0(t1, t2)]K
(

a−t2
hn

)
and �t(y, a) := a − t2. By

Lemma 4, we have that

sup
t∈T

∣∣∣∣s2,n(t2)gn(t2)

∣∣∣∣ = OP

((
nh5

n

)−1/2
)
,

and similarly for s1,n. We will use Theorem 2.14.2 of VW to obtain bounds for
supt∈T |Gnγt,n| and supt∈T |Gn (�tγt,n)|. We first note that, since K is bounded
and supported on [−1, 1] and θ0 is Lipschitz on T, supt∈T |γt,n| � hn and
supt∈T |�tγt,n| � h2

n. These will be our envelope functions for these classes.
Next, since K is Lipschitz, we have that

|γt,n − γs,n| ≤ |[θ0(t1, a)− θ0(s1, a)]− [θ0(t1, t2)− θ0(s1, s2)]|K
(
a− s2
hn

)

+ |θ0(t1, a)− θ0(t1, t2)|
∣∣∣∣K

(
a− t2
hn

)
−K

(
a− s2
hn

)∣∣∣∣
� |t1 − s1|+ ‖t− s‖+ |t2 − s2|h−1

n � ‖t− s‖h−1
n .

Therefore, by VW Theorem 2.7.11, we have

N[]

(
2εh−1

n ,Gn, L2(P0)
)

� N(ε,T, ‖ · ‖) � ε−2 ,

where Gn := {γn,t : t ∈ T}. Thus, by Theorem 2.14.2 of VW,

sup
t∈T

|Gnγn,t| �
∫ 1

0

[
N[] (εhn,Gn, L2(P0))

]1/2
dε hn �

∫ 1

0

[
− log(εh2

n)
]1/2

dε hn

= h−1
n

∫ h2
n

0

(− log ε)
1/2

dε � h−1
n {h2

n

[
log

(
h−2
n

)]1/2} � hn

(
log h−1

n

)
,

where we have used the fact that
∫ z

0
(log x−1)1/2 dx � z(log z−1)1/2 for all z small

enough. A similar argument applies to supt∈T |Gn(�tγn,t)|. We thus have that
the second summand in m1,n is bounded above up to a constant not depending
on n and uniformly in t by

h−1/2
n OP

((
nh5

n

)−1/2
)
hn

(
log h−1

n

)1/2
= OP

((
nh4

n

log h−1
n

)−1/2
)
,

which is oP (1) since nh4
n/(log h

−1
n ) → ∞.

By the change of variables u = (a− t2)/hn, the first term in m1,n equals

(nhn)
1/2

∫
[θ0(t1, t2 + hnu)− θ0(t1, t2)]

wn(t2 + hnu, t2)

gn(t2)
K (u) f0(t2 + hnu) du

= (nhn)
1/2

∫ [
R

(2)
θ (t, hnu) + θ′0,t2(t1, t2)(hnu) +

1
2θ

′′
0,t2(t1, t2)(hnu)

2
]

·
[
R

(1)
f (t2, hnu) + f0(t2) + f ′

0(t2)(hnu)
] wn(t2 + hnu, t2)

gn(t2)
K(u) du .
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Expanding the product, this is equal to

(nhn)
1/2

∫
(hnu)

[
θ′0,t2(t1, t2) +

1
2θ

′′
0,t2(t1, t2)(hnu)

]
[f0(t2) + f ′

0(t2)hnu]

· wn(t2 + hnu, t2)

gn(t2)
K(u) du

+ (nhn)
1/2

∫
R

(2)
θ (t, hnu) [f0(t2) + f ′

0(t2)hnu]
wn(t2 + hnu, t2)

gn(t2)
K(u) du

+ (nhn)
1/2

∫
R

(1)
f (t2, hnu)(hnu)

[
θ′0,t2(t1, t2) +

1
2θ

′′
0,t2(t1, t2)hnu

]
· wn(t2 + hnu, t2)

gn(t2)
K(u) du

+ (nhn)
1/2

∫
R

(2)
θ (t, hnu)R

(1)
f (t2, hnu)

wn(t2 + hnu, t2)

gn(t2)
K(u) du .

By the assumed negligibility of R
(2)
θ and R

(1)
f as well as Lemma 4, the second

through fourth summands tend to zero in probability uniformly over T. The
first term equals∫

f ′
0(t2)

[
θ′0,t2(t1, t2) +

1
2θ

′′
0,t2(t1, t2)(hnu)

]
·
(
nh5

n

)1/2 [wn(t2 + hnu, t2)

gn(t2)
− w0(t2 + hnu, t2)

f0(t2)2

]
u2K(u) du

+
(
nh5

n

)1/2 ∫
f ′
0(t2)

[
θ′0,t2(t1, t2) +

1
2θ

′′
0,t2(t1, t2)(hnu)

]
· w0(t2 + hnu, t2)

f0(t2)2
u2K(u) du

+
(
nh3

n

)1/2 ∫
f ′
0(t2)

[
θ′0,t2(t1, t2) +

1
2θ

′′
0,t2(t1, t2)(hnu)

]
· wn(t2 + hnu, t2)

gn(t2)
uK(u) du .

By Lemma 4, the first summand tends to zero uniformly over T. By symmetry
of K, the second plus third summands simplifies to

(
nh5

n

)1/2 1
2θ

′′
0,t2(t1, t2)K2 +

(
nh5

n

)1/2 [s2,n(t2)
gn(t2)

− 1

f0(t2)

]
f0(t2)

1
2θ

′′
0,t2(t1, t2)K2

−
(
nh5

n

)1/2 [s1,n(t2)
gn(t2)

− f ′
0(t2)

f0(t2)2

]
θ′0,t2(t1, t2)f0(t2)K2 .

Once again, the second and third summands tend to zero uniformly over T by
Lemma 4. We have now shown that

sup
t∈T

∣∣∣(nhn)
1/2

m1,n(t1, t2)−
(
nh5

n

)1/2 1
2θ

′′
0,t2(t1, t2)K2

∣∣∣ P−→ 0 ,

which completes the proof.



3064 T. Westling et al.

Finally, we prove Proposition 2.

Proof of Proposition 2. Since θ′′0,t2 is uniformly continuous and nh5
n = O(1),

sup
‖t−s‖≤δ/rn

∣∣∣(nh5
n

)1/2 1
2θ

′′
0,t2(t1, t2)K2 −

(
nh5

n

)1/2 1
2θ

′′
0,t2(s1, s2)K2

∣∣∣ −→ 0 .

Therefore, it only remains to show that sup‖t−s‖≤δ/rn |Rn(t)−Rn(s)| P−→ 0. Re-
calling that �t(y, a) := a− t2 and

νn,t(y, a) := [I(y ≤ t1)− θ0(t1, a)]K

(
a− t2
hn

)
,

we have that Rn(t)−Rn(s) equals[
s2,n(t2)

gn(t2)
− s2,n(s2)

gn(s2)

]
Gnνn,t −

[
s1,n(t2)

gn(t2)
− s1,n(s2)

gn(s2)

]
Gn (�tνn,t)

+
s2,n(s2)

gn(s2)
Gn (νn,t − νn,s)−

s1,n(s2)

gn(s2)
Gn (�tνn,t − �sνn,s) .

Focusing first on Gnνn,t, we have Gnνn,t = Gnνn,t,1 −Gnνn,t,2 for

νn,t,1(y, a) = I(y ≤ t1)K

(
a− t2
hn

)
and νn,t,2(y, a) = θ0(t1, a)K

(
a− t2
hn

)
.

The classes

{I(y ≤ t1) : t ∈ T} and

{
K

(
a− t2
hn

)
: t ∈ T

}

are both uniformly bounded above and VC. Therefore, the uniform covering
numbers of the class {

I(y ≤ t1)K

(
a− t2
hn

)
: t ∈ T

}

are bounded up to a constant by ε−V for some V < ∞, so that the uniform
entropy integral satisfies

J(η,Gn,1) � η
(
log η−1

)1/2
for all η small enough, where Gn,1 := {νn,t,1 : t ∈ T}. We also have P0 (νn,t,1)

2 �
hn for all t ∈ T and all n large enough. Thus, Theorem 2.1 of van der Vaart and
Wellner (2011) implies that

sup
t∈T

|Gnνn,t,1| � h1/2
n

(
log h−1

n

)1/2
+ n−1/2 log h−1

n .

For Gnνn,t,2, we have that

|νn,t,2(y, a)− νn,s,2(y, a)| � ‖t− s‖(1 + h−1
n ) � h−1

n ‖t− s‖
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for all n large enough and all (y, a). We can therefore apply Theorem 2.7.11
of VW to conclude that N[]

(
2εh−1

n ,Gn,2, L2(P0)
)
� ε−2 for all ε small enough,

where Gn,2 = {νn,t,2 : t ∈ T}, which implies that N[] (ε,Gn,2, L2(P0)) � (εhn)
−2.

Thus, we have that

J[](η,Gn,2) � η
[
log(ηhn)

−1
]1/2

.

Since P0 (νn,t,2)
2 � hn as well, by Lemma 3.4.2 of VW, we then have

EP0 sup
t∈T

|Gnνn,t,2| � h1/2
n

(
log h−1

n

)1/2
+ n−1/2 log h−1

n .

Combining these two bounds with the last statement of Lemma 4 yields

h−1/2
n sup

t∈T

∣∣∣∣
[
s2,n(t2)

gn(t2)
− s2,n(s2)

gn(s2)

]
Gnνn,t

∣∣∣∣
� h−1/2

n oP

((
nh4

n

)−1
)
OP

(
h1/2
n

(
log h−1

n

)1/2
+ n−1/2 log h−1

n

)

= oP (1)

[
nh4

n(
log h−1

n

)1/2
]−1

+ oP (1)
(
nh11/3

n

)−3/2

hn log h
−1
n .

Both terms tend to zero.
The analysis for Gn (�tνn,t) is very similar. In this case, we have P0 (�tνn,t)

2 �
h3
n, so that, using the same approach as above, we get

EP0 sup
t∈T

|Gn (�tνn,t)| � h3/2
n

(
log h−1

n

)1/2
+ n−1/2

(
log h−1

n

)1/2
and therefore, in view of Lemma 4,

h−1/2
n sup

t∈T

∣∣∣∣
[
s1,n(t2)

gn(t2)
− s1,n(s2)

gn(s2)

]
Gn (�tνn,t)

∣∣∣∣
� h−1/2

n oP

((
nh5

n

)−1/2
)
OP

(
h3/2
n

(
log h−1

n

)1/2
+ n−1/2

(
log h−1

n

)1/2)
= oP (1)

(
nh4

n

)−1/2 (
hn log h

−1
n

)1/2
+ oP (1)

(
nh3

n

)−1/2 (
hn log h

−1
n

)1/2
,

which goes to zero in probability.
It remains to bound

sup
‖t−s‖<δ/rn

|Gn (νn,t − νn,s)| and sup
‖t−s‖<δ/rn

|Gn (�tνn,t − �sνn,s)| .

For the former, we work on the terms Gn (νn,t,1 − νn,s,1) and Gn (νn,t,2 − νn,s,2)
separately. For the first of these, we let Fn,δ,2 := {νn,t,1 − νn,s,1 : ‖t− s‖≤ δ/rn}.
We have that ‖νn,t,1 − νn,s,1‖P0,2

is bounded above by

[
EP0

{
[I(Y ≤ t1)− I(Y ≤ s1)]

2
K

(
A− s2
hn

)2
}]1/2
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+

[
EP0

{
I(Y ≤ t1)

[
K

(
A− t2
hn

)
−K

(
A− s2
hn

)]2}]1/2

� (EP0 {I(s1 < Y ≤ t1)I (|A− s2| ≤ hn)})1/2 + h−1
n |t2 − s2|

� h1/2
n |t1 − s1|1/2 + h−1

n |t2 − s2| .

Therefore, it follows that

sup
f∈Fn,δ,1

(
P0f

2
)1/2 �

(
nh−1

n

)−1/4
+
(
nh3

n

)−1/2 �
(
nh3

n

)−1/2

for all n large enough. In addition, Fn,δ,1 has uniform covering numbers bounded
up to a constant by ε−V for all n and δ because the classes {I(y ≤ t1) : t ∈ T}
and {

K

(
a− t2
hn

)
: t ∈ T

}

are VC. Therefore, J (η,Fn,δ,1) � η
(
log η−1

)1/2
for all η small enough. Thus,

Theorem 2.1 of VW implies that

EP0 sup
‖t−s‖≤δ/rn

|Gn (νn,t,1 − νn,s,1)| �
[
log

(
nh3

n

)
nh3

n

]1/2

+
log

(
nh3

n

)
n1/2

.

Turning to Gn (νn,t,2 − νn,s,2), we analogously define

Fn,δ,2 := {νn,t,2 − νn,s,2 : ‖t− s‖ ≤ δ/rn} .

By the Lipschitz property of θ0 and K, we have that∣∣∣∣θ0(t1, a)K
(
a− t2
hn

)
− θ0(s1, a)K

(
a− s2
hn

)∣∣∣∣ � h−1
n ‖t− s‖ .

Therefore, up to a constant, an envelope function Fn,δ,2 for Fn,δ,2 is given by

h−1
n δ/rn �

(
nh3

n

)−1/2
. Next, we have, for any (t, s) and (t′, s′) in T2,∣∣∣∣

[
θ0(t1, a)K

(
a− t2
hn

)
− θ0(s1, a)K

(
a− s2
hn

)]

−
[
θ0(t

′
1, a)K

(
a− t′2
hn

)
− θ0(s

′
1, a)K

(
a− s′2
hn

)]∣∣∣∣
≤ |θ0(t1, a)− θ0(t

′
1, a)|K

(
a− t′2
hn

)

+ |θ0(t1, a)|
∣∣∣∣K

(
a− t2
hn

)
−K

(
a− t′2
hn

)∣∣∣∣
+ |θ0(s1, a)− θ0(s

′
1, a)|K

(
a− s′2
hn

)
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+ |θ0(s1, a)|
∣∣∣∣K

(
a− s2
hn

)
−K

(
a− s′2
hn

)∣∣∣∣
� |t1 − t′1|+ h−1

n |t2 − t′2|+ |s1 − s′1|+ h−1
n |s2 − s′2| � h−1

n ‖(t, s)− (t′, s′)‖T2

with ‖(t, s)− (t′, s′)‖T2 := max{‖t−s‖, ‖t′−s′‖}. Therefore, by Theorem 2.7.11
of VW, we have that

N[]

(
2εh−1

n ,Fn,δ,2, L2(P0)
)

≤ N
(
ε,Uδ/rn , ‖·‖T2

)
,

where Uδ/rn := {(t, s) ∈ T2 : ‖t − s‖ ≤ δ/rn}. Since Uδ/rn ⊆ T2, we trivially

have that N
(
ε,Uδ/rn , ‖·‖T2

)
� ε−4. Thus, it follows that

N[]

(
ε
(
nh3

n

)−1/2
,Fn,δ,2, L2(P0)

)
�

[
ε (nhn)

−1/2
]−4

.

Therefore, Theorem 2.14.2 of VW implies that

EP0 sup
‖t−s‖≤δ/rn

|Gn (νn,t,2 − νn,s,2)|

�
(
nh3

n

)−1/2
∫ 1

0

{
log

[
ε(nhn)

−1/2
]−1

}1/2

dε

=
(
nh3

n

)−1/2
(nhn)

1/2
∫ (nhn)

−1/2

0

(
log u−1

)1/2
du �

(
nh3

n

)−1/2
[log(nhn)]

1/2
.

We now have that

h−1/2
n sup

‖t−s‖≤δ/rn

∣∣∣∣s2,n(s2)gn(s2)
Gn (νn,t − νn,s)

∣∣∣∣
� h−1/2

n OP

((
nh5

n

)−1/2
)
OP

((
nh3

n

)−1/2 [
log

(
nh3

n

)]1/2
+ n−1/2 log

(
nh3

n

))
= OP (1)

{
(nh9/2

n )−1
[
log

(
nh3

n

)]1/2
+ (nh3

n)
−1 log

(
nh3

n

)}
.

Both terms tend to zero in probability.

We can address sup‖t−s‖<δ/rn |Gn (�tνn,t − �sνn,s)| in a very similar manner.
As before, we work on terms Gn (�tνn,t,1 − �sνn,s,1) and Gn (�tνn,t,2 − �sνn,s,2)
separately. It is straightforward to see that the same line of reasoning as used
above applies to each of these terms as well, yielding the same negligibility.
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