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Abstract 9 

 The synthesis of (Ti 1-xZr x)B2-Al 2O3, (Ti1-xHf x)B2-Al 2O3 and (Zr 1-xHf x)B2-Al 2O3 10 

(x=0, 0.5 and 1) powder nanocomposites via a mechanochemical method using TiO2, ZrO2, 11 

HfO2, HBO2 and Al as the raw materials was investigated. The formation of the 12 

nanocomposites proceeds via a mechanically-induced self-sustaining reaction (MSR) process 13 

that involves several simultaneous reactions. The aluminothermic reductions of the TMO2 and 14 

HBO2 produce Al2O3 and transition metal and boron elements, which in turn react to yield the 15 

diboride phase. The ignition of the complex combustion reaction occurred after a short 16 

milling time (15-30 min), instantly transforming most of the reactants into products. The 17 

sample composition was marked by the stoichiometry of the combustion reaction, and the 18 

resulting nanocomposites were analysed using XRD, ED, SEM, TEM and EDX techniques. 19 

The X-ray results confirmed the biphasic character of the prepared composite powder (TMB2 20 

and Al2O3 structures); minor amounts of the Zr and Hf oxides were also observed. The 21 

achieved microstructure was characterised by the agglomeration of Al2O3 nanocrystallites and 22 

diborides crystals with a diffraction domain size ranging between 100 and 300 nm. 23 
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1. INTRODUCTION 1 

Ti, Zr and Hf diborides are significant materials because their properties make them 2 

suitable for high performance applications, such as impact resistant armours, cutting tools, 3 

wear resistant coatings, molten metal crucibles and high temperature electrodes. These 4 

materials offer high melting points, hardness and elastic modulus values, good thermal and 5 

electrical conductivities, low thermal expansion coefficients, chemical inertness, high thermal 6 

stabilities, and excellent wear and oxidation resistances [1]. The three diborides possess the 7 

same AlB2-type structure and can form solid solutions [2, 3], which has been proposed as an 8 

approach to improve the properties of the final material [4]. However, the use of these 9 

materials is currently limited due to their low level of sinterability. 10 

These metal diborides have been mixed with other refractory ceramics such as Al2O3 11 

to produce more dense materials without damaging the properties. Two different methods 12 

have been used to prepare these composites. The first and most effective method is to prepare 13 

the composite in-situ starting from the metal oxide, boron oxide or boric acid and Al or Mg 14 

[5-20], which generally proceeds through a complex self-propagating or combustion reaction. 15 

The second method is to obtain the two phases separately and to then produce a mixture of 16 

both phases [21-23]. A large number of investigations have been performed in both cases, 17 

although we will highlight select studies that have been performed using combustion 18 

reactions. Mishra et al. [5-8] synthesised ZrB2-Al 2O3 nanocomposites using a self-propagating 19 

high-temperature synthesis process (SHS), an advanced method that has been used 20 

extensively for preparing refractory materials. Mousavian et al. used a mechanical activation 21 

process to aid microwave-assisted combustion synthesis to produce a TiB2–Al2O3 composite 22 

[9] and studied the effect of mechanical activation on the SHS synthesis to obtain the same 23 

composite [10]. 24 
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Self-sustaining reactions can be initiated not only using heat, as in an SHS process, but 1 

also by mechanical energy during the milling of highly exothermic mixtures. This type of 2 

mechanochemical process is called a mechanically induced self-sustaining reaction (MSR) 3 

[24], and the critical milling time required to ignite the mixture is called the ignition time (tig). 4 

Sharifi et al. [11] proposed a mechanochemical processing to prepare a TiB2–Al2O3 5 

nanocomposite and reported that during the ball milling in a planetary mill, the Al/B2O3/Ti 6 

mixture reacted in a combustion mode after 30 hours at 500 rpm. The same nanocomposite 7 

powder was prepared by Rabiezadeh et al. [12, 13] by combining sol-gel and 8 

mechanochemical methods. In their study, the nanocomposite was obtained after milling a 9 

mixture of a dried gel (containing B and Ti) and Al powder for 30 hours at 300 rpm, without 10 

any evidence of the occurrence of an MSR process. Magnesium was used as an alternative to 11 

aluminium by Welham [14-16] and Akgun et al. [17] to synthesise TiB2 and ZrB2 from 12 

TiO2/B2O3/Mg or ZrO2/B2O3/Mg, respectively, using a ball-milling technique. Long milling 13 

times were always required, and no combustion reactions were reported. 14 

In this work, the synthesis of (Ti 1-xZr x)B2-Al 2O3, (Ti1-xHf x)B2-Al2O3 and (Zr 1-15 

xHf x)B2-Al 2O3 (x=0, 0.5 and 1) composite materials, in which the diboride phase is formed by 16 

a solid solution of two transition metals, was investigated. The process was conducted using 17 

the MSR mechanochemical method starting from stoichiometric mixtures of TiO2, ZrO2, 18 

HfO2, HBO2 and Al. This study demonstrates that the composite materials can be formed by 19 

high-energy ball milling, inducing a self-sustaining reaction without an external heat supply 20 

and in a short time. 21 

22 
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2. EXPERIMENTAL PROCEDURE  1 

Titanium oxide (anatase TiO2; 99%, Aldrich), zirconium oxide (ZrO2; 99%, Aldrich), 2 

hafnium oxide (HfO2; 99%, Alfa Aesar), metaboric acid (HBO2; 98%, Fluka, dried at 110ºC) 3 

and aluminium (Al; 99%, Aldrich) powders were used in this work. The appropriate powder 4 

mixtures according to the stoichiometric quantities fixed by equations (1) to (6) (table I) were 5 

ball-milled under 6 bars of high-purity argon gas (Linde) to avoid oxidation using a modified 6 

planetary ball-mill (Pulverisette 7, Fritsch). Then, 5 g of the powder reactive mixture and 7 

seven tempered steel balls were placed in a tempered steel vial (67 HRC) for each milling 8 

experiment. The volume of the vial was 45 mL. The diameter and weight of balls were 15 mm 9 

and 12.39 g, respectively, and the powder-to-ball mass ratio (PBR) was 1/17.5. A spinning 10 

rate of 600 rpm was used. The vial was purged with argon gas several times, and the desired 11 

pressure was selected before milling. The vial was connected to the gas cylinder during the 12 

grinding experiments by a rotary valve and a flexible polyamide tube. The argon pressure was 13 

continuously monitored during the milling process with an SMC solenoid valve (model 14 

EVT307-5DO-01F-Q, SMC Co.) and recorded in a paperless device (RSG30 Ecograph T, 15 

Endress+Hauser). When a self-sustaining reaction occurs, the increasing temperature due to 16 

the exothermic reaction produces an instantaneous increase in the total pressure. The ignition 17 

time (t ig) was thus determined from the time–pressure record. 18 

X-ray diffraction (XRD) analysis was performed on a PANalytical X´Pert PRO 19 

diffractometer equipped with a graphite diffracted beam monochromator and a solid state 20 

detector (X´Cellerator) with an angular aperture of 2.12º (2Θ) using Cu Kα radiation (45 KV, 21 

40 mA). The data were collected over a 2Θ-range of 20º to 150º using a step size of 0.017º 22 

and a counting time of 300 s/step. The Rietveld refinement method using the freely 23 

distributed programme FULLPROF was employed for refinement of the cell parameters in the 24 

diboride solid solutions and for the quantitative phase analysis of composite products. 25 
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Scanning electron microscopy (SEM) was performed using a Hitachi FEG S-4800 1 

microscope. Transmission electron microscopy (TEM), electron diffraction (ED) and energy 2 

dispersive X-ray spectroscopy (EDX) were performed in a Philips CM-200 microscope 3 

operating at 200 kV with a LaB6 filament (point resolution of 2.3 Å) and EDAX analysis 4 

system. 5 

 6 

3. RESULTS AND DISCUSSION 7 

 All the reactants were analysed using X-ray diffraction and SEM techniques; the 8 

results are presented in Figure 1, and the structural parameters are listed in table II. The Al 9 

powder is highly crystalline and shaped by large micrometric round particles, which are 10 

formed by smaller crystallites. The HBO2 is also a crystalline material with a smaller particle 11 

size. These two reactants were used for all the MSR reactions, and the transition metal (TM) 12 

oxides were varied as indicated in equations (1) to (6). The three transition metal oxides were 13 

formed by small round particles with similar mean particle sizes and shapes, which benefit the 14 

viability of obtaining similar results for all the composite materials. 15 

 The preparation of 6 different nanocomposites formed by diboride and Al2O3 phases in 16 

a molar ratio of 3/5 was attempted; the nomenclature of these nanocomposites is presented in 17 

table I. In a first attempt, stoichiometric amounts of the starting materials were mixed to 18 

obtain the T composite (equation 1) and milled under the aforementioned conditions. An 19 

abrupt increase in the pressure was observed in the time-pressure record after 16.5 min of 20 

milling (Fig. 2), which is a clear indication that a combustion or self-sustaining reaction 21 

occurred. The large increase in the pressure is due to the increase in temperature; the ball 22 

collisions with powder reactants activate the mixture until the reaction starts, and a large 23 
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amount of heat is liberated, producing a self-propagating front that spread out instantaneously. 1 

Then, the pressure suddenly decreases and reaches the starting value in a few seconds. 2 

For the T composite, milling was stopped directly after ignition (16.5 min), and the 3 

obtained powder (Ta) was analysed by XRD (Fig. 3). The XRD pattern reveals the formation 4 

of the diboride and Al2O3 phases in addition to a minor amount of reagents. Using the ball-5 

milling technique, we have obtained a composite powder in a very short time compared with 6 

the literature data for similar methods [11-15]. When the same experiment was repeated with 7 

the milling process continued for two hours to complete the reaction after combustion, the 8 

XRD pattern (Fig. 3) indicates that the reactants disappeared and a full conversion was 9 

attained. Peak broadening is observed due to the extended milling process, which decreased 10 

the coherent diffraction domains. The other five reactions were performed under the same 11 

conditions (2 hours of total milling), and the time-pressure records (Fig. 2) indicated that 12 

ignition was possible for all of the reactions. The successful synthesis of the intended 13 

composite materials was confirmed by XRD measurements (Fig. 4). 14 

All the combustion reactions occurred after a short milling time (16-24 minutes), as 15 

observed in table I and Figure 3. It is not easy to evaluate the slight differences in time 16 

observed as the global reactions (1) to (6) are composed of several semi-reactions that 17 

simultaneously occur. The formation of each TMB2-Al 2O3 nanocomposite implies three or 18 

four semi-reactions (table I); the first two or three are aluminothermic reactions, yielding 19 

Al 2O3, B and TM. The reduction of HBO2 by Al most likely initiates the process as it is a very 20 

exothermic self-propagating reaction (∆Hº=-1132.50 kJ) and is common for all the systems. 21 

Concerning the transition metal oxides, TiO2 reduction is the more exothermic reaction 22 

(∆Hº=-527.20 kJ) compared with the ZrO2 (∆Hº=-49 kJ) and HfO2 (∆Hº=1.1 kJ) reductions 23 

and can proceed through an MSR process. However, the reductions of ZrO2 and HfO2 by Al 24 

are not viable as self-propagating reactions even though the reactions were triggered by the 25 
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liberated heat from the HBO2 aluminothermy. The last concerned reaction is the synthesis of 1 

the binary or ternary diboride phases from the mixture of their elements obtained in the 2 

previous aluminothermic reactions. These mechanochemical reactions of the formation of 3 

binary and ternary (solid solution) diborides have been already reported [2, 3] and can also 4 

proceed via an MSR process, which is consistent with their high exothermic character (table 5 

I). 6 

However, it could be experimentally appreciated (Fig. 2) that the pressure inside the 7 

jar increases as more heat is released in the processes; in this manner, the attained pressure for 8 

reactions (1), (2) and (3), in which three different semi-reactions are involved, increases from 9 

(1) to (3). A similar tendency was observed for reactions (4), (5) and (6), in which four 10 

different semi-reactions occur. Nevertheless, a constant weight of reactants (5 g) was set for 11 

all the reactions, which means that the number of moles involved in each process was not 12 

constant. 13 

 As stated previously, the XRD analysis revealed that the six composites are formed by 14 

a hexagonal diboride phase (P6/mmm) and a rhombohedral Al2O3 phase (corundum R-3c). 15 

Only small amounts of ZrO2 and HfO2 were detected in the Z, H, TZ, TH  and ZH  samples. 16 

To confirm the formation of solid solution diboride phases, the obtained T-TZ-Z  (Fig. 4a), T-17 

TH-H  (Fig. 4b) and Z-ZH-H  (Fig. 4c) diffractograms corresponding to the same system were 18 

compared. The three solid solutions were formed, as can be appreciated by observing that the 19 

2Θ position of the reflexions of the ternary diboride phases appeared just in between those of 20 

the two binary diboride phases. Although the Al2O3/TMB2 molar ratio was 5/3 (table I) for all 21 

the samples, the relative intensity of the Al2O3 XRD peaks decreased from Ti < Zr < Hf 22 

because of the lower X-ray scattering factor as the atomic number decreased. To verify the 23 

phase proportion in each sample, Rietveld analysis was performed, and the fitting results as 24 

well as the lattice parameters for the binary and ternary diboride phases are presented in table 25 
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III. The calculated proportion in weight of the phases is consistent with the expected 1 

stoichiometry (table I) considering the amount of unreacted metal transition oxide. The lattice 2 

parameters of the ternary diborides exhibit the typical shift characteristic of a solid solution 3 

because of the partial substitutions of Ti, Zr and/or Hf in the (0,0,0) position of the AlB2-type 4 

structure. 5 

Microstructural characterisation of the six powder nanocomposites was performed 6 

using scanning and transmission electron microscopy techniques (SEM, EDX-mapping TEM, 7 

ED and EDX), and representative results are presented in figs 5 and 6. The SEM micrographs 8 

(Fig. 5a) show the morphology and particle size distribution of the six samples. All the 9 

materials are quite similar and are formed by agglomerates, in which faceted (100-200 nm) 10 

and rounded particles can be distinguished. In the T-Z-H  series, the particle size decreases 11 

from T to H, and consequently, the same trend was observed in the TZ-TH-ZH  series. Due to 12 

the great agglomeration of particles, it is almost impossible to distinguish the Al2O3 and 13 

diboride phases in the image contrast. EDX-mapping experiments were performed to analyse 14 

the element distribution, and the results for the TH  composite are presented in Figure 5b, 15 

where the secondary electron image and the Al, Ti and Hf elemental maps are shown. From 16 

the coloured maps, it can be assumed that the large particle in the middle of the image 17 

corresponds to Al2O3 and that the diboride phase is a solid solution, which is supported by the 18 

similarity of the Ti and Hf maps. A good distribution of the constituent phases in the 19 

composite material can also be inferred. 20 

Two representative TEM micrographs corresponding to the T and TH  powder 21 

nanocomposites are presented in Figure 6 and confirm the agglomerated particle distribution 22 

observed by SEM. An ED study established that the larger diffraction domains correspond to 23 

the diboride phase, TiB2 in the T composite and (Ti,Hf)B2 in the TH  composite (marked in 24 

image Fig. 6), with a hexagonal symmetry and P6/mmm space group. The TiB2 ED pattern 25 



9 
 

was oriented along the [101] zone axis, and the (Ti,Hf)B2 ED pattern was oriented along the 1 

[001] zone axis. The smallest diffraction domains correspond to the Al2O3 phase in both 2 

nanocomposites, as observed in the ED rings (Fig. 6, T and TH ), where all of the d spacing 3 

can be indexed in the corundum rhombohedral symmetry, R-3c space group. The ED results 4 

are supported by EDX analysis, and the spectra taken in the same regions as the ED patterns 5 

show Al and O in the Al2O3 region and Ti or Ti and Hf in the diboride area (Fig. 6, T and 6 

TH ). These results confirm the formation of a diboride solid solution. After many ED and 7 

EDX analyses, it can be concluded that the two phases are homogeneously distributed 8 

throughout the powder samples. 9 

 10 

4. CONCLUSIONS  11 

Six powder nanocomposites (TiB 2-Al2O3, ZrB 2-Al 2O3, HfB2-Al 2O3, (Ti 0.5Zr 0.5)B2-12 

Al 2O3, (Ti0.5Hf 0.5)B2-Al 2O3 and (Zr 0.5Hf0.5)B2-Al 2O3) were successfully synthesised using a 13 

mechanochemical method, starting from a mixture of very simple and inexpensive reactants 14 

(Al, HBO2 and Ti, Zr or Hf oxide powders). Additionally, this method can be completed in a 15 

short milling time (approximately 30 minutes), which can reduce contamination problems. 16 

The analysis of the experimental results in this work demonstrated that a mechanically 17 

induced self-sustaining reaction (MSR) process occurred during milling. This process can be 18 

useful for the synthesis of powder nanocomposite materials, even for complex system 19 

involving several reactions. The ability of the MSR process to tailor the chemical composition 20 

of composite materials belonging to the Ti-Zr-Hf diboride- Al2O3 system was demonstrated. 21 

The microstructural characterisation of the composite powders revealed an excellent 22 

distribution of the two phases, nanometric Al2O3 particles in all of the powders and Ti, Zr, Hf 23 
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binary or ternary diboride phases with micrometric faceted particles. The formation of 1 

diboride solid solutions was confirmed using various characterisation techniques. 2 
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FIGURE CAPTIONS 1 

Figure 1. X-ray diffraction patterns of the reactants and the corresponding SEM micrographs. 2 
The space group is indicated in each case. 3 

 4 

Figure 2. Pressure evolution versus time inside the vial to obtain all the composites: (T) TiB2-5 
Al 2O3, (Z) ZrB2-Al 2O3, (H) HfB2-Al 2O3, (TZ ) (Ti0.5Zr0.5)B2-Al 2O3, (ZH ) (Zr0.5Hf0.5)B2-Al 2O3 6 
and (TH ) (Ti0.5Hf0.5)B2-Al 2O3. The maximum pressure indicates the ignition time for all the 7 
MSR reactions. 8 

 9 

Figure 3. X-ray diffraction patterns corresponding to the TiB2-Al 2O3 composite directly after 10 
ignition (Ta) compared with the same composite milled for 2 additional hours (T). 11 

 12 

Figure 4. X-ray diffraction patterns of the obtained composites: (a) T, Z and TZ ; (b) T, H and 13 
TH;  and (c) Z, H and ZH  compared with the diboride solid solutions. 14 

 15 

Figure 5. (a) SEM micrographs corresponding to the obtained composites: (T) TiB2-Al 2O3, 16 
(Z) ZrB2-Al 2O3, (H) HfB2-Al 2O3, (TZ ) (Ti0.5Zr0.5)B2-Al 2O3, (TH ) (Ti0.5Hf0.5)B2-Al 2O3 and 17 
(ZH ) (Zr0.5Hf0.5)B2-Al 2O3. (b) SE image and elemental maps of the TH  composite. 18 

 19 

Figure 6. TEM, ED and EDX representative results corresponding to the (T) TiB2-Al 2O3 and 20 
(TH ) (Ti0.5Hf0.5)B2-Al 2O3 composites.  21 



Table I. Equations, ∆Hº [25] and ignition time values of the reactions to form the six composites: T 

(TiB2-Al 2O3); Z (ZrB2-Al 2O3); H (HfB2-Al 2O3); TZ  (Ti0.5Zr0.5B2-Al 2O3); TH  (Ti0.5Hf0.5B2-Al 2O3) 

and ZH  (Zr0.5Hf0.5B2-Al 2O3). Data of formation enthalpies for the ternary diborides are not available 

in the literature; the averaged values from the formation enthalpies of the binary compounds have 

been used. 
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Table II. Structural parameters of the used reactants to carry out the self-propagating 

reactions by mechanical milling.  

 

  

Symmetry 

 

Cell parameters 
(nm) (º) 

 

Space group 

 

Main particle 
size (nm) 

 

Al 

 

Cubic 

 

a=0.405 

 

Fm3m (25) 

 

10000 

 

HBO2 

 

Monoclinic 

a=0.712; α=90     
b=0.884 β=93.26 
c=0.677; γ=90 

 

P21/a (14) 

 

200 

 

TiO 2 

 

Tetragonal 
(anatase) 

 

a=0.378    c=0.950 

 

I41/amd (41) 

 

150 

 

ZrO 2 

 

Monoclinic 

a=0.532; α=90     
b=0.521; β=99.22 

c=0.515; γ=90 

 

P21/a (14) 

 

100 

 

HfO2 

 

Monoclinic 

a=0.528; α=90     
b=0.518; β=99.25 

c=0.512; γ=90 

 

P21/a (14) 

 

100 

 

 

 

 

 



Table III. Phase quantification (%wt,), diboride lattice parameters and goodness of fitness obtained 

by Rietveld analysis in the studied nanocomposites. 

Nano- 
composite 

Al 2O3 
XB2 XO2 

χ
2 

%wt. %wt. a, c (Å) %wt. 

T 73.9 26.1 3.032, 3.232  1.28 

Z 51.3 36.4 3.169, 3.529 12.2 4.07 

H 46.3 41.4 3.143, 3.476 12.3 4.07 

TZ 60.2 34.5 3.091, 3.375 5.3 1.51 

TH 48.0 42.2 3.080, 3.347 9.8 1.90 

ZH 46.1 49.6 3.158, 3.504 4.3 2.28 
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Figure 5 
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Figure 6 
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