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Abstract In many relevant path planning problems, loop closure constraints reduce

the configuration space to a manifold embedded in the higher-dimensional joint am-

bient space. Whereas many progresses have been done to solve path planning prob-

lems in the presence of obstacles, only few work consider loop closure constraints.

In this paper we present the AtlasRRT algorithm, a planner specially tailored

for such constrained systems that builds on recently developed tools for higher-

dimensional continuation. These tools provide procedures to define charts that lo-

cally parametrize manifolds and to coordinate them forming an atlas. AtlasRRT

simultaneously builds an atlas and a Rapidly-Exploring Random Tree (RRT), using

the atlas to sample relevant configurations for the RRT, and the RRT to devise di-

rections of expansion for the atlas. The new planner is advantageous since samples

obtained from the atlas allow a more efficient extension of the RRT than state of the

art approaches, where samples are generated in the joint ambient space.

1 Introduction

In the recent years, there has been a growing interest around the problem of path

planning with loop closure constraints [3, 6, 10, 20, 27, 31]. The reason behind this

interest is that this problem appears in many relevant problems in Robotics such

such as coordinated manipulation [19], motion planning with parallel robots [34],

robot grasping [25], constraint-based object positioning [24], or surgery robots [1].

This problem is also crucial in Biochemistry, when searching for conformational

changes in molecular loops [37].

The mainstream of research in path planning in the two last decades [4, 16] has

focused on variants of sampling-based path planners [14, 17] to efficiently solve
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Fig. 1 Two RRTs built on a torus-like manifold after throwing 500 samples. (a) With an ambient

space sampling, the exploration is focused on the exterior regions of the torus and many samples do

not produce any tree extension. (b) With an AtlasRRT, the diffusion process is largely independent

of the ambient space which improves the coverage.

the problem of robots with open loop kinematics operating in environments clut-

tered with obstacles. Obstacles induce a set of inequality constraints and planning

motions that respect these constraints can be a very tough task, especially when it

requires passing through narrow passages. Here, we address a more challenging sit-

uation where, beside the obstacles, the problem includes loop closure constraints

represented by a set of equalities that must be fulfilled. Such constraints reduce

the configuration space to a manifold embedded in the higher-dimensional ambient

space defined by the joint variables involved in the problem.

The efficiency of sampling-based path planning approaches such as the Rapidly

Exploring Random Trees (RRTs) relies in the so called Voronoi exploration bias [17]

which can only be obtained if the space to explore can be properly sampled. Thus,

ideally, these approaches would require an isometric parametrization of the con-

figuration space from which a uniform distribution of samples can be generated.

Whereas for non-constrained systems such parametrization is straightforward, this

is not the case when the loop closure constraints reduce the dimensionality of the

configuration space.

Distance-based formulations [9, 31] can provide a global parametrization of the

constrained configuration space for some particular families of mechanism with

kinematic loops. Other approaches try to infer the parametrization from large sets

of samples on the manifold [10], and task-space planners assume that a subset of

variables related to the end-effector are enough to parametrize the configuration

space [3, 27, 40].

In the absence of a global parametrization, Kinematics-PRM [8] samples a subset

of joint variables and uses inverse kinematics to find values for the remaining ones.

Unfortunately, this strategy is only valid for a limited class of mechanisms, and al-

though some improvements have been proposed [5], the probability of generating

invalid samples is significant. An alternative strategy to get valid configurations is

to sample in the joint ambient space and to converge to the configuration space after
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each tree extension using numerical iterative techniques, either implementing ran-

dom walks [38], or the more efficient Jacobian pseudoinverse method [2, 6, 30].

Despite being probabilistically complete [3], a uniform distribution of samples in

the ambient space does not necessarily translate to a uniform distribution in the con-

figuration space, which reduces the efficiency of these approaches. This problem is

illustrated in Fig. 1 where the configuration space to be explored is a torus-like man-

ifold of diameter four times smaller than the ambient space width. Fig. 1(a) shows

a RRT built from points sampled in the ambient space that has a poor coverage of

the manifold. With the AtlasRRT presented in this paper, the process of diffusion

is largely independent of the configuration space shape and of the ambient space

bounds which improves the coverage of the manifold, as shown in Fig. 1(b).

To improve the quality of the sampling, one can focus on a subset of the ambient

space around the configuration space [43]. However, with this method points are

still sampled in the ambient space, which can be of much higher dimensionality

than the configuration space. Um et al [35] sketch a lazy RRT scheme where loosely

coordinated RRTs are built on tangent spaces that locally approximates the manifold

and that have the same dimensionality as the configuration space. However, the

fact that the subtrees in different tangent spaces overlap affects the quality of the

resulting RRT.

From Differential Geometry, it is well known that a manifold can be described by

a collection of local parametrizations called charts, that can be coordinated within

an atlas [22]. Higher-dimensional continuation techniques provide principled nu-

merical tools to compute the atlas of an implicitly defined manifold starting from a

given point, whereas minimizing the overlap between neighboring charts [11, 12].

One-dimensional continuation methods, have been strongly developed in the con-

text of Dynamical Systems [15], whereas in Robotics, they have been mainly used

for solving problems related to Kinematics [26, 29]. To the best of our knowledge,

higher-dimensional continuation methods have been only used in Robotics to eval-

uate the dexterity of mechanisms [39]. In a previous work [20], we introduced a

resolution complete path planner on manifolds based on higher-dimensional con-

tinuation tools. Despite its efficiency, this planner relies on a discretization of the

manifold and the exploration could be blocked in the presence of narrow corridors,

unless using a fine resolution with the consequent loose in performance. Moreover,

the number of charts generated with this planner scales exponentially with the di-

mension of the configuration space. To overcome these limitations, we propose here

a probabilistic complete planner based on RRTs with the consequent gain of effi-

ciency, specially for high dimensional configuration spaces. The new method called

AtlasRRT is based on a coordinated construction of an atlas and a bidirectional RRT.

On the one hand, the atlas is used to adequately sample new configurations and thus,

to retain the RRT Voronoi bias, despite exploring a non Euclidean configuration

space. On the other hand, the RRT is used to determine directions of expansion for

the atlas, so that the charts generated are those useful to find solution paths.

This paper is organized as follows. Next section introduce the main mechanisms

of the approach, showing how the atlas and the RRT expansions are coordinated.

Then, Section 3 formally describes the algorithms implementing the AtlasRRT plan-
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Fig. 2 (a) A chart Ci is implemented as a mapping x j = ψi(u
i
j) between the tangent space at xi and

the manifold. (b) Growing a RRT on the manifold from a single chart. Black dots are the samples

thrown in the tangent space and blue dots are points on the manifold forming the RRT branches.

The inset shows the process of generating a branch by linear interpolation in the tangent space with

steps of size δ and successive projection.

ner and in Section 4 we compare its performance to other state of the art methods

for several benchmarks. Finally, Section 5 summarizes the contributions of this work

and indicates points that deserve further attention.

2 Building an RRT on a Manifold

In this section, we first describe the elements describing a chart and how to build a

RRT within it. Next, we describe how to define an atlas properly coordinating the

charts to obtain a RRT covering the whole configuration space manifold.

2.1 RRT on a Chart

Let us consider a n-dimensional joint ambient space and a k-dimensional configura-

tion space implicitly defined by a set of constraints

F(x) = 0, (1)

with F : Rn → R
n−k, and n > k > 0. Note that we adopt the standard convention

in Kinematics [18] where the configuration space is defined as the set of points

fulfilling the constraints (this is sometimes called constrained configuration space)

that is embedded in the ambient space of the joint variables (called configuration

space in some approaches). Moreover, we assume that the configuration space is

manifold everywhere, without considering the presence of singularities.

A chart, Ci, locally parametrizes the k-dimensional manifold around a given

point xi with a bijective map, x j = ψi(u
i
j), between points ui

j in R
k and points x j
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on the manifold, with ψi(0) = xi. Following [23], this mapping can be implemented

using the k-dimensional space tangent at xi (see Fig. 2). An orthonormal basis for

this tangent space is given by the m× k matrix, Φi, satisfying

[

J(xi)

Φ⊤i

]

Φi =

[

0

I

]

, (2)

with J(xi) the Jacobian of F evaluated at xi, and I, the identity matrix. Using this

basis, the mapping ψi is computed by first computing the mapping φi from points in

the tangent space to coordinates in the joint ambient space,

xi
j = φi(u

i
j) = xi +Φi ui

j , (3)

and then, orthogonally projecting this point on the manifold to obtain x j. This pro-

jection can be computed by solving the system

{

F(x j) = 0,

Φ⊤i (x j−xi
j) = 0,

(4)

using a Newton procedure where x j is initialized to xi
j and is iteratively updated by

the ∆x j increments fulfilling

[

J(x j)

Φ⊤i

]

∆x j =−

[

F(x j)

Φ⊤i (x j−xi
j)

]

, (5)

until the error is negligible or for a maximum number of iterations.

The inverse mapping ψ−1
i can be computed as the projection of a point on the

tangent subspace

ui
j = ψ−1

i (x j) = Φ⊤i (x j−xi). (6)

Using the mapping provided by a chart, Ci, we can define a RRT on the part of

the manifold covered by this chart, as shown in Fig. 2(b). This can be achieved using

the standard RRT exploration mechanism and projecting to the manifold whenever

necessary. Thus, the tree is initialized at xi, a random point, ur, is drawn in a ball of

radius R in R
k and their coordinates in ambient space are obtained as xr = φi(ur).

Then, the point, xn, already in the RRT and closer to xr is determined. The tree is

extended from xn by interpolating between un = ψ−1
i (xn) and ur, using steps of a

small size δ and projecting to the manifold after each step, as shown in the inset of

Fig. 2(b). If the projected sample is collision free, it is added to the RRT. Otherwise

the tree extension is stopped. The result is a tree with points in the n-dimensional

ambient space, but actually defined from a k-dimensional space.
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Fig. 3 (a) When a RRT leaves the validity area of chart Ci, a new chart, C j , is created and their

respective sampling areas are coordinated so that they do not overlap. (b) C j adds an inequality, f ,

to Ci reducing its actual validity area. Note that after adding f , the nodes in green move from Ci

to C j .

2.2 RRT on an Atlas

Unless for particularly simple problems, a single chart is not enough to parametrize

the whole configuration space. The validity area, Vi, for a chart, Ci, is defined as the

set of points ui
j in the tangent space associated with Ci such that

‖ui
j‖ ≤ β R , (7)

‖x j−φ(ui
j)‖ ≤ ε , (8)

‖Φ⊤i Φ j‖ ≤ 1− ε , (9)

where 0 < β < 1, R is the radius of the sampling ball, x j = ψi(u
i
j) is the projection

of ui
j on the manifold, and Φ j is the basis of the tangent space at x j.

The first condition in the definition of Vi ensures that new charts are eventu-

ally created if the boundaries of the search area are reached. The second condition

bounds the error between the tangent space and the manifold. The third condition

ensures a smooth curvature in the part of the manifold covered by Ci and a smooth

transition between charts. These two last conditions bound the distorsion introduced

by the chart map and, thus, ensure that a uniform distribution of samples in Vi trans-

lates to an approximately uniform distribution of configurations on the manifold.

The validity area of a chart is not precomputed, but discovered as the RRT grows.

Whenever the RRT reaches a point outside the validity area of a given chart Ci, a

new chart is added to the atlas on the last point still in Vi. To avoid the overlap be-

tween the validity areas of neighboring charts we introduce a mechanism to reduce

the validity areas, similar to that in [11] (see Fig. 3). We associate a set of inequali-

ties, Fi, to each chart. This set is initially empty and when two charts Ci and C j are
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Fig. 4 RRT extension on a one-dimensional cut. The RRT is extended towards xr , the randomly

selected point, from xn, the closest point already in the tree. In this case, xn is the center of a chart.

When the extension reaches a point (the green dot) where the error with respect to the chart at xn is

larger than ε , a new chart is created from the previous node already in the tree and xr is projected to

the new chart. Then, the RRT extension continues in the new chart until the projected xr is reached.

neighbors (i.e., when the center of one of the charts are inside the validity area of

the other chart) the following inequality is added to Fi

2 u⊤ui
j ≤ ‖u

i
j‖

2 , (10)

with ui
j = ψ−1

i (x j). This reduces the validity area to a half space defined in

the tangent space associated to Ci given by the plane orthogonally bisecting vec-

tor ui
j. Similarly, the validity area of C j is cropped with the inequality defined

from u
j
i = ψ−1

j (xi), the projection of xi on the tangent space associated with C j .

When a given chart Ci is fully surrounded by neighboring charts, the intersection of

the half spaces defined by the inequalities in Fi conform a polytope that conserva-

tively bounds the actual validity area for the chart, taking into account the presence

of neighboring charts.

The construction of an RRT on an Atlas proceeds as follows. First, a point ur is

sampled on the atlas. For this purpose, a chart Cr is randomly selected and a point

is sampled on the ball of radius R defined on the tangent space associated with

this chart. Random points not in the actual validity area (i.e., points not fulfilling the

inequalities in Fr) are rejected and the sampling process is repeated. Thus, the prob-

ability of generating a valid random point in a chart is proportional to the volume of

its actual validity area and therefore, the sampling process selects points uniformly

distributed within the area covered by the entire atlas.

The coordinates of sample ur in ambient space, xr, are computed using φr.

Then, xn, the node already in the RRT closer to xr, is determined, the random

point xr is projected to the tangent space of the chart Cc including xn, and the tree

extension proceeds in this chart as detailed in Section 2.1. The extension only stops

if the random point is reached or if the path is blocked by an obstacle. However,

during the tree extension the growing branch can leave Cc. If one of the inequalities

in Fc is not fullfilled by the new point to be added to the RRT, the extension entered

in the validity area of the neighboring chart that generated the violated inequality

in Fc. In this case, the tree extension continues in this neighboring chart by project-

ing xr on it. If the RRT extension leaves the validity area of Cc but the new point

fulfills all the inequalities in Fc (if any), a new chart is generated and the branch
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Algorithm 1: The AtlasRRT algorithm.

AtlasRRT(xs,xg,F)

input : The query configurations, xs and xg, a set of constraints, F.

output: A path connecting xs and xg.

Ts← INITRRT(xs)1

Tg← INITRRT(xg)2

A← INITATLAS(F,xs,xg)3

DONE← FALSE4

while not DONE do5

xr ← SAMPLEONATLAS(A)6

nr ← NEARESTNODE(Ts,xr)7

xl ← EXTENDTREE(Ts,A,nr,xr)8

nl ← NEARESTNODE(Tg,xl)9

x′l ← EXTENDTREE(Tg,A,nl ,xl)10

if ‖xl −x′l‖< δ then11

DONE← TRUE12

else13

SWAP(Ts,Tg)14

RETURN(PATH(Ts,xl ,Tg,x
′
l))15

extension continues on it (see Fig. 4). Note that after creating a chart, some of the

nodes assigned to neighboring charts might move to the area of validity of the new

chart. These nodes are readily identified since they are the ones that do not fulfill

the inequality introduced to by the new chart.

In the absence of other constraints, parameter β in Eq. (7) gives the ratio of

sampled points that are outside the validity area and, thus, the ratio of points that

will trigger the creation of new charts. Therefore, attending only to this criterion,

the probability of creating new charts is

p = 1−β k . (11)

3 AtlasRRT Algorithm

Algorithm 1 gives the pseudo-code for the AtlasRRT planner implementing the path

planning approach described in the previous section. The algorithm takes xs and xg

as start and goal configurations, respectively, and tries to connect them with a path

on the manifold implicitly defined by a given set of constraints F. The algorithm im-

plements a bidirectional search method.To this end, two RRTs are initialized (lines 1

and 2), with the start and the goal configurations as respective root nodes. An atlas

is also initialized with two charts centered at each one of these points (line 3). Next,

the algorithm iterates trying to connect the two trees (lines 5 to 14). First, a con-

figuration is sampled using the atlas and one of the RRT is extended as much as

possible towards this random sample from the nearest node already in the tree, mea-



Path Planning with Loop Closure Constraints using an Atlas-based RRT 9

Algorithm 2: Sampling on an atlas.

SampleOnAtlas(A)

input : The atlas, A.

output: A sample on the atlas.

repeat1

r← RANDOMCHARTINDEX(A)2

ur ← RANDOMONBALL(R)3

until ur ∈Fr4

RETURN(φr(ur))5

sured using the Euclidean distance. The other RRT is then extended towards the last

node added to the first tree, from the nearest node already in this second tree. If this

second extension reaches its objective, the trees are connected and the nodes in the

RRTs are used to reconstruct a path between xs and xg. Otherwise, the two RRTs

are swapped and the extension process is repeated. Note that this top level search al-

gorithm is the same as that in [3]. The differences appears in how to sample random

points and how to add branches to the RRTs.

In the sampling process we take advantage of the atlas, as shown in Algorithm 2.

A chart is selected at random with uniform distribution and then, a point is sampled

within the ball of radius R bounding the sampling area of this chart. The process is

repeated until a point is inside the actual validity area associated with its selected

chart, i.e., until it fulfills all the inequalities associated with the chart, if any. Finally,

the sample returned is formed by the ambient space coordinates for the selected

point computed using the mapping φr for the selected chart, r.

The addition of a branch to a tree T is done following the steps detailed in Algo-

rithm 3. This procedure operates in the chart Cc including the node to be extended,

that initially is the chart associated to the nearest node n (line 1). The sample to reach

in the tree extension is projected on Cc (lines 2 and 3) and the branch extension is

iteratively performed while the branch is not blocked and xr is not reached (lines 5

to 23). At each iteration, a node is added to the tree. To define the node to add, a

small step of size δ is performed in the parameter space of Cc from the parameters

of the current node un towards the parameters for the goal sample, ur. The resulting

parameters u j are projected to the manifold to obtain the configuration x j (line 7).

If the projection is not too far away from xn and if it is collision free, the point is

added to the tree. First, however, we verify if the new point is still inside Cc. On the

one hand, if the parameters for the point are outside the validity area of this chart

(line 12), a new chart is added to the atlas (line 13) which becomes the chart where

to operate. Procedure NEWCHART implements the chart creation, the detection of

neighboring charts, and the reassignment of tree nodes, if necessary. On the other

hand, if the parameters for the point are inside the validity area, but outside the area

defined by the inequalities associated with Cc, the point is in the validity area of a

neighboring chart. Procedure MOVETOCHART (line 17) identifies this chart. When-

ever the current chart changes (line 19), we compute the parameters for the current

sample and for the goal one in the new Cc. Note that this affects the computation of
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Algorithm 3: Adding a branch to the AtlasRRT.

ExtendTree(T,A,n,xr)

input : A tree, T , an atlas, A, the index of the nearest node in the tree, n, and the random

sample, xr .

output: The last node added to the tree or xn if no extension was performed.

c← CHARTINDEX(n)1

ur ← ψ−1
c (xr)2

xr ← φc(ur)3

BLOCKED← FALSE4

while not BLOCKED and ‖un−ur‖> δ do5

u j ← (ur−un)δ/‖ur−un‖6

x j ← ψc(u j)7

if ‖x j−xn‖> 2 δ or COLLISION(x j) then8

BLOCKED← TRUE9

else10

NEW← FALSE11

if u j /∈ Vc then12

c← NEWCHART(A,xn)13

NEW← TRUE14

else15

if u j /∈Fc then16

c←MOVETOCHART(xn,u j)17

NEW← TRUE18

if NEW then19

u j ← ψ−1
c (x j)20

ur ← ψ−1
c (xr)21

xr ← φc(ur)22

n← ADDNODE(T,A,c,x j)23

RETURN(xn)24

the next point, at line 6. Finally, the new point is added to the tree and associated

with the current chart, Cc (line 23).

Concerning the algorithm complexity and not considering the cost of collision

detection, the most expensive steps in the algorithm are the search for nearest nodes

in the tree (lines 7 and 9 of Algorithm 1), the identification of neighboring charts

when adding a chart to the atlas (line 13 of Algorithm 3), and the computation of the

mapping ψc in line 7 of Algorithm 3. The first two operations can be implemented

using hierarchical structures reducing their cost to be logarithmic in the number of

nodes of the corresponding tree and in the number of charts in the atlas, respectively.

The cost of computing the mapping ψc scales with O(n3) since it is implemented as

a Newton process with a bounded number of iterations where at each iteration a QR

decomposition is used.

The algorithm basically uses four parameters: R, ε , δ , and p that appears in

Eq. (11). R is a parameter defining the sampling area around a given point and can

be safely set to a large value since the other criteria defining the validity area of
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a chart will eventually trigger the chart creation. ε regulates the amount of charts

in the atlas. To address problems with a configuration space of moderate to large

dimensionality it should not be set too small. A small δ should be used to avoid un-

detected collision between consecutive nodes in the RRT and sudden changes in the

manifold curvature. Finally, p regulates the exploration since the larger this param-

eter the stronger the bias towards unexplored regions. In our experience adjusting

the parameters is not an issue since the same values give good results for a large set

of problems.

The probabilistic completeness of the RRT generated on a single chart over its

sampling area is the same as that of a RRT defined in a k-dimensional Euclidean

space. Thus, any point in the collision free region including the root of the tree

will be eventually reached by the tree. In particular, points out of its validity area

will be eventually reached and, consequently, new charts will be generated. The

probabilistic completeness over the area covered by a new chart is also equivalent

to that of a plain RRT. Assuming that the transition between charts is continuous

and smooth, the local probabilistic completeness for each chart implies a global

probabilistic completeness for the overall algorithm.

4 Experiments

We implemented the AtlasRRT planner described through Sections 2 and 3 in C.

The planner was integrated as a module of our position analysis toolbox [32], using

SOLID [33] as collision detector, the GNU Scientific Library [7] for the linear al-

gebra operations, and the kd-tree described in [42] for the nearest-neighbor queries.

In principle, simple formulations are advantageous for continuation methods [36]

and, thus, our position analysis toolbox is based on a formulation with redundant

variables that yields a system of simple equations only containing linear, bilinear,

and quadratic monomials [21]. This is a particularly challenging situation since the

manifold here arises not only because of the loop closure constraints, but also due

to the equations necessary to compensate for the redundancy in the formulation.

Due to this redundancy, the planning system introduced in [35] can not be directly

applied to this case. Thus, for the sake of comparison we use the HC-planner [20]

and an adaptation of the planner introduced in [3] that is called here CB-RRT. The

HC-planner is a resolution completed planner on manifolds that is based on a greedy

best first search strategy on the graph implicitly defined by the centers of the charts

in the atlas. The CB-RRT planner shares the bi-directional search strategy with

AtlasRRT, but randomly samples in the joint ambient space and uses the Jacobian

pseudo-inverse procedure to converge to points on the manifold when necessary.

Note, however, that in our implementation some aspects of the planner in [3] are not

considered (i.e., the Task Space Regions and the direct sampling using them) since

they are neither included in the AtlasRRT. The comparison with the HC-Planner

is used to evaluate the AtlasRRT search strategy whereas the comparison with the

CB-RRT is used to assess the advantage of the atlas-based sampling strategy.
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(a) (b)

(c) (d)

Fig. 5 The four benchmarks used to test the AtlasRRT planner. (a) A point moving on a torus with

obstacles and a narrow corridor. (b) The Barret arm solving a maze problem. (c) A planar parallel

manipulator moving a peg out of a cul-de-sac. (d) Two Stäubli Rx60 industrial arms collaborating

to move a cylindrical bar.

Table 1 Dimension of the configuration and ambient spaces, success rates, execution times, and

number of nodes/charts for the three methods compared in this paper.

HC-Planner CB-RRT AtlasRRT

Benchmark k n Succ. Time Charts Succ. Time Nodes Succ. Time Charts Nodes

Torus 2 7 0.76 0.03 77 1.0 26.07 3177 1.0 0.10 57 1456

Barret 4 84 0.36 279.98 2204 0.04 584.66 7563 0.76 356.36 477 14413

Star 5 18 0.68 49.08 2779 1.0 5.43 13989 1.0 4.70 1028 22394

Two Rx60 6 108 1.0 90.77 158 - - - 1.0 14.24 20 366

Fig. 5 shows the four benchmarks used in this paper, ordered by increasing con-

figuration space dimensionality. The first one is a problem where a ball has to pass

through a narrow corridor, while staying on the surface of a torus. This example is

used to emphasize the fact that AtlasRRT can be advantageous even in simple cases.

The second example is the Barret arm solving a maze where the start configuration

is depicted in the figure and the goal is marked with a red spot. The stick moved
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Fig. 6 For given resolution, the HC-planner can get blocked when trying to enter in a narrow

corridor since it only considers motions from the centers of chart (the red points in the figure) at

the borders of the atlas.

by the arm has to stay in contact with the maze plane and perpendicular to it. Note,

however, that the rotation around the stick is not blocked. This problem is specially

challenging due to the obstacles. The third example is a planar mechanism similar

to that used in [28] except that here, obstacles are considered since the manipulator

has to move a peg attached to the point marked in red out of a cul-de-sac. The goal

pose of the end effector is also marked with a red spot. This example is of mixed

difficulty with respect to the arrangements of obstacles and to the dimensionality

of the configuration space. Finally, the fourth example is a manipulation task with

two Stäubli Rx60 industrial arms. In this case, collisions are not considered and

the difficulty of the task arises only from the loop closure constraints and from the

dimensionality of the configuration space.

Table 1 shows the performance comparison between the HC-planner, the CB-RRT

and the AtlasRRT, averaged over 25 runs and for a maximal execution time of 600

seconds on a Intel Core i7 at 2.93 Ghz running Mac OS X with parameters set to

R = 0.75, ε = 0.5, δ = 0.05, and p = 0.9 for all the experiments. For each bench-

mark, the table gives the dimensionality of both the configuration space, k, and the

ambient space, n. It also provides for each planner, the percentage of success (in the

Succ. column), and for the successful runs, the execution times (in the Time col-

umn), as well as the number of charts and nodes required (given in the Charts and

Nodes columns, respectively).

The results show that the AtlasRRT has always a better (or the same) success

ratio than the HC-planner. For low dimensionality configuration spaces the HC-

planner, when successful, is significantly fast. However, as the complexity of the

obstacles grows, the probability of the HC-planner to fail also increases. The reason

behind these failures is that when the HC-planner tries to enter a narrow corridor

using too large charts, the atlas extension can get blocked as shown in Fig. 6. In

these situations, there is not straight line between the center of the charts at the

entrance of the corridor (marked with red dots) and the vertexes defining the frontier

of expansion of the atlas. These failures can be avoided using a smaller R, but this

will suppose an increase in memory use and a decrease in performance since more

charts will be generated for the same problem. In the same situation, AtlasRRT will
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eventually grow a branch passing through the narrow passage, without adjusting

the chart size. As the dimensionality of the configuration space increases, the HC-

planner is also less efficient than AtlasRRT, even in problems without obstacles as

for the manipulation problem with the two Rx60.

AtlasRRT is faster and at least as reliable as CB-RRT in all cases. Since both

methods share the same search strategy, the better performance of the AtlasRRT

can be explained by the higher quality of the samples obtained from the atlas. Note

that, in general, AtlasRRT generates more nodes with a lower computational cost

than CB-RRT since it does not suffer from unfruitful extensions, as when sampling

in the ambient space. Finally, the advantage of our method is particularly significant

in the Barret example where CB-RRT only succeeded once out of 25 attempts and in

the manipulation task problem with the two Rx60 where CB-RRT fails in all cases.

5 Conclusions

In this paper, we presented the AtlasRRT algorithm, an approach that uses an atlas to

efficiently explore a configuration space manifold implicitly defined by loop closure

constraints. The atlas is a collection of charts that locally parametrize the manifold.

Samples are thrown uniformly on the charts and, since the error from the chart to

the manifold is bounded, the distribution of samples on the manifold is close to be

uniform. These samples are then used to efficiently grow a RRT connecting two

given configurations and avoiding collisions with obstacles. This strategy contrasts

with state of the art approaches that generate samples on the configuration space

from uniformly distributed samples in the ambient space.

Since defining the full atlas for a given manifold is an expensive process, the

AtlasRRT algorithm intertwines the construction of the atlas and the RRT: the par-

tially constructed atlas is used to sample new configurations for the RRT, and the

RRT is used to determine directions of expansion for the atlas. The approach retains

the Voronoi exploration bias typical of RRT approaches in the sense that explo-

ration is strongly pushed towards yet unexplored regions of the configuration space

manifold.

The results included in this paper shows that our approach is more efficient than

existing state of the art approaches. A more thoughtful evaluation must be carried,

though, to fully characterize the performance of the new algorithm. Moreover, sev-

eral modifications to the basic AtlasRRT algorithm can be devised. In particular, it

might be useful to exploit the atlas structure to obtain a more meaningful distance

between samples than the Euclidean one. Moreover, the presented approach can be

combined with existing strategies to improve path planning in the presence of ob-

stacles such as, for instance, the dynamic domain sampling [41] or the integration

of cost functions to focus the planning on the relevant parts of the configuration

space [13]. Finally, we would like to explore the possible extension of the proposed

planner to problems with differential constraints.
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