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Abstract The obstacles in Configuration Space of quadratically-solvable Gough-
Stewart platforms, due to both kinematic singularities andcollisions, can be uni-
formly represented by a Boolean combination of signs of 4×4 determinants involv-
ing the homogeneous coordinates of sets of four points. ThisBoolean combination
induces a measure of distance to obstacles in Configuration Space from which a
simplified Voronoi diagram can be derived. Contrary to what happens with stan-
dard Voronoi diagrams, this diagram is no longer a strong deformation retract of
free space but, as Canny proved in 1987, it is still complete for motion planning.
Its main advantage is that it has lower algebraic complexitythan standard Voronoi
diagrams based on the Euclidean metric.
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1 Introduction

Gough-Stewart platforms whose assembly modes can be obtained by solving only
quadratic equations are said to bequadratically-solvable. This family of parallel
platforms is defined by certain geometric constraints in thelocation of their leg
attachments to the fixed base and/or moving platform such as coincidence and
collinearity (see Fig. 1), or, in general, certain algebraic relations between the coor-
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Fig. 1 Examples of two well-known quadratically-solvable Gough-Stewart platforms. Left: the
3-2-1 platform. Right: the Zhang-Song platform.

dinates of the attachments in their local reference frames (see [1] for a non-trivial
example).

It is interesting to observe how, when all the elements of a quadratically-solvable
Gough-Stewart platform and its environment are approximated by polyhedra, the
obstacles in its configuration space, due to both kinematic singularities and colli-
sions, can be uniformly represented by a Boolean combination of signs of 4× 4
determinants involving the homogeneous coordinates of sets of four points. This
Boolean combination induces a measure of distance to obstacles from which a sim-
plified Voronoi diagram can be derived. A detailed explanation of all these facts
requires a lot of mathematical details but, due to space limitations, we have opted
for an informal style to convey the main concepts.

This paper is organized as follows. Section 2 explains how the kinematic singu-
larities of quadratically-solvable Gough-Stewart platforms can always be interpreted
as degeneracies of a set of tetrahedra. Section 3 deals with the collision detection be-
tween arbitrary polyhedra. Then, it is shown how the regionswhere either collisions
or singularities occur can be uniformly represented by a Boolean combination of
signs of 4×4 determinants. How this representation induces a measure of distance
to these forbidden regions is explained in Section 4 and how asimplified Voronoi
diagram is derived, in Section 5. A simple planar case is analyzed in Section 6.
Finally, we conclude in Section 7.

2 Singularities of quadratically-solvable parallel robots

The singularities of quadratically-solvable Gough-Stewart obey a neat algebraic
structure. The pure condition of this kind of platforms factorizes into 4×4 determi-
nants which involve the homogeneous coordinates of sets of four attachments [3].
When the coordinates of the leg attachments in the moving platform are expressed
in terms of the position and orientation of the platform,x andΘ respectively, three
kinds of determinants arise:
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- Plane-Point determinants: They involve three attachments of the fixed base and
one of the moving platform. They vanish if, and only if, the point lies on the
plane defined by the three points fixed to the base.

- Point-Plane determinants: They involve three attachments of the moving plat-
form and one of the fixed base. The vanish if, and only if, the fixed point lies on
the moving plane defined by the three points attached to the platform.

- Line-Line determinants: They involve two attachments of the base and two of the
moving platform. They vanish if, and only if, the lines defined by the two couples
of points lie on the same plane.

Hence, the singularities of quadratically-solvable platforms can be geometrically
interpreted as the degeneracy of tetrahedra. For example, the pure condition of the
robot in Fig. 1(left) can be expressed as:

[p1p2p3p7][p5p6p7p8][p4p7p8p9] = 0

wherepi stand for the homogenous coordinates of leg attachmentPi in the world
reference frame. Then, this robot is in a singularity if any of the three determinants
vanish (i.e., if any of the three associated tetrahedra degenerate). Then, if we define
the predicate

△(i, j,k, l) =

{

true if [pip jpkpl ]> 0,
false otherwise,

(1)

the robot’s singularity-free region is the set of configurations where

(△(1,2,3,7)∨△(1,2,3,7))∧ (△(5,6,7,8)∨△(5,6,7,8))∧ (△(4,7,8,9)∨△(4,7,8,9)) (2)

is true. This boolean expression can be seen as a shallow (depth 2) AND-OR
tree with an AND node at the root. The interest of expressing singularity-free re-
gions in this apparently awkward way becomes obvious when integrating them with
collision-free regions as described next.

3 Basic contacts between polyhedra

The configuration space obstacle for a pair of polyhedra is the set of configurations
at which the two polyhedra overlap. The overlap predicates between polyhedra are
logical combinations of primitive predicates. These primitive predicates correspond
to the three basic types of contacts between polyhedra [7], which in turn can be
expressed using the same three kinds of determinants already used to characterize
the singularities of quadratically-solvable platforms.

The formulation of polyhedral interference detection as the evaluation of a
boolean formula that depends only on the features (vertices, edges, and faces) of
polyhedra with convex faces was proposed by Canny [5]. This test was later gener-
alized, and fully expressed in terms of signs of 4×4 determinants, by Thomas and
Torras [9].
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As a simple example of boolean formulas for overlap detection, let us consider
the segment defined byP1P2 and the triangle defined byP3P4P5 in 3D. Then, the
segment is intersecting the triangle if

(△(1,3,4,5)⊗△(2,3,4,5))∧ [(△(1,2,3,4)∧△(1,2,4,5)∧△(1,2,5,3))

∨ (△(1,2,3,4)∧△(1,2,4,5)∧△(1,2,5,3))]

is true,⊗ being the exclusive or operator defined as(a⊗b) = (a∧b)∨ (a∧b).
Then, the predicates that define collision-free regions canalso be represented

as AND-OR trees that can be fused in a seamless way with those representing
singularity-free regions through an AND node. The resulting trees can be obviously
organized in different ways for higher efficiency using the properties of boolean al-
gebra. One of the overlap predicates for polyhedra with convex faces given in [5]
generate a shallow (depth 2) AND-OR predicate tree, whose root is an OR node.
Nevertheless, as Canny already observed, it is computationally advantageous to
make the predicate tree as deep as possible and it is also desirable for the root to
be an AND node.

4 A measure of distance to obstacles in Configuration Space

Following the discussion in [4], we can now observe that by letting positive real
values represent logical one, and non-positive values represent logical zero, that the
min function implements logical AND, and themax function implements logical
OR. Thus, for example, the predicate (2) that characterizesthe obstacle in config-
uration space due to kinematic singularities of the robot inFig. 1 can be expressed
as:

ρ(x,Θ) = min(max([p1p2p3p7],−[p1p2p3p7]),

max([p5p6p7p8],−[p5p6p7p8]),

max([p4p7p8p9],−[p4p7p8p9])).

The above quantity can be used as a measure of distance —it is not a true
metric— to the robot’s kinematic singularities, because itvaries continuously through
configuration space. Thus, the translation from a predicaterepresenting the singu-
larity and collision-free regions to a measure of distance to forbidden regions is
straightforward. It will be positive at configurations outside them and negative at
configurations inside them. Clearly, this measure of distance decomposes the robot’s
configuration space into regions in which one of the involveddeterminants is crit-
ical in determining the value ofρ , that is, small changes in its value cause identi-
cal changes in the value ofρ . The boundaries between these regions can be seen
as a Voronoi diagram. Then, searching the configuration space for singularity and
collision-free paths can be reduced to a search on this diagram as explained in the
next section.
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5 Simplified Voronoi diagrams

A Voronoi diagram is defined to be the set of points equidistant from two or more
generators (points, segments, polygons, ...) under the appropriate metric (usually the
Euclidean distance). This construction received considerable attention in the early
eighties as a useful tool for motion planning (see the textbook of Schwartz and Yap
[8], and the references therein, for an introduction and review of the use of Voronoi
diagrams in motion planning).

The main advantage of using the Voronoi diagrams based on themeasure of dis-
tance described in the previous section is that they have a lower algebraic complexity
than those resulting from using the Euclidean distance. These diagrams are piece-
wise linear for fixed orientations of the moving platform while standard Voronoi
diagrams would contain quadratic sheets. These simplified Voronoi diagrams are
sometimes also calledstraight skeletons [6]. Despite this important simplification,
they still have an important property: any path through freespace which starts and
ends on the diagram can be continuously deformed so that it lies entirely on the di-
agram [4]. Thus, they are complete for motion planning,i.e., searching the original
space for paths can be reduced to a search on the diagram.

Now, to find a path between two points in free space, it sufficesto find a path for
each point onto the diagram, and to join these points with a path that lies wholly on
the diagram.

6 Example

The ideas presented above are for spatial parallel robots. Nevertheless, to exemplify
them, we will rely on a planar case because the correspondingconfiguration space
is three-dimensional and hence easily representable.

Let us consider a planar robot whose base is determined by thesegmentP1P2,
its moving platform by the segmentP3P4, and its three legs by the segments
P1P3, P2P3, and P2P4. Let us also assume that the homogeneous coordinates of
these points are given byp1 = (0,0,1)t , p2 = (15,0,1)t , p3 = (x,y,1)t , andp4 =
(x+ 10cos(φ),y+ 10sin(φ),1)t . Therefore, the configuration of the moving plat-
form is determined by(x,y,φ). We also introduce a boundary region determined
by the squareP5P6P7P8 whose vertex coordinates arep5 = (−25,40,1)t , p6 =
(−25,−40,1)t , p7 = (55,−40,1)t , andp8 = (55,40,1)t .

In this planar case, the regions free from singularities andcollisions can be rep-
resented by a Boolean combination of signs of 3× 3 determinants. Actually, the
region free from kinematic singularities is defined by the predicate

P1 = (△(1,2,3)∨△(1,2,3))∧ (△(2,3,4)∨△(2,3,4)),

and the region free from collisions between the moving platform, the base, and the
four segments defining the boundary, by the predicate
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Measure of distance to the kinematic singularities (a), and the corresponding Voronoi di-
agram (b). Measure of distance to the regions where collisions occur (c), and the corresponding
Voronoi diagram (d). Measure of distance taking into account both singularities and collisions (e),
and the corresponding Voronoi diagram (f). All images are slices of the robot’s configuration space
for φ = π

4 .
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Fig. 3 Representation of the analyzed robot’s configuration space inthe region defined by
(x,y,φ) = ([−30,60], [−45,45], [−π/2,π/2]). The plot shows the measure of distance associated
with P1 ∧P2 for φ = −π/2,0, andπ/2, and slices of the corresponding Voronoi diagram for
values ofφ where there is a change in its topology. The lines connectingthem correspond to the
edges of the Voronoi diagram.

P2 =(△(1,2,3)⊗△(1,2,4))∧ (△(1,3,4)⊗△(2,3,4))

∧(△(5,6,3)⊗△(5,6,4))∧ (△(5,3,4)⊗△(6,3,4))

∧(△(6,7,3)⊗△(6,7,4))∧ (△(6,3,4)⊗△(7,3,4))

∧(△(7,8,3)⊗△(7,8,4))∧ (△(7,3,4)⊗△(8,3,4))

∧(△(8,5,3)⊗△(8,5,4))∧ (△(8,3,4)⊗△(5,3,4))

Figs. 2(a) and 2(b) show the measure of distance associated with P1 and its
corresponding Voronoi diagram, respectively. Figs. 2(c) and 2(d) show the same
information forP2. These Voronoi diagrams represent the regions free from kine-
matic singularities and free from collisions, respectively. Figs. 2(e) and 2(f) show
the measure of distance associated withP1∧P2 and the corresponding Voronoi di-
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agram thus integrating all the information in a single diagram. Finally, Fig. 3 shows
how this diagram evolves, asφ varies, and a singularity and collision-free path con-
necting the configuration(35,−20,π/2) and(−10,−15,−π/2). Observe how all
slices for fixed orientations are arrangements of straight line segments.

7 Conclusion

The use of Voronoi diagrams for motion planning received a lot of attention in the
eighties. This interest progressively decreased in favor of algorithms based on ran-
dom samplings. Nevertheless, it still remains as a fundamental tool for those appli-
cations in which an exact representation of free space is required. This paper shows
how a simplified Voronoi diagram of the singularity and collision-free regions of
any quadratically-solvable Gough-Stewart platform can beobtained assuming that
the robot itself and its environment can be well-approximated by sets of polyhedra.
The result is an elegant algorithm fully expressed in terms of 4×4 determinants.

Finally, concerning computational efficiency, it is worth noting that many basic
geometric tests other than interference detection such as classification, containment,
and depth priority tests can be performed by computing sets of determinants. This
has motivated the search for efficient determinant computations using hardware im-
plementations such as the triangle processor and its successor, the polygon engine
[10]. This is a point that could be explored if the presented ideas should be imple-
mented for complex Gough-Stewart platforms in cluttered environments.
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