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Simplified Voronoi diagrams for motion
planning of quadratically-solvable
Gough-Stewart platforms

Ruben Vaca, Joan Aranda, and Federico Thomas

Abstract The obstacles in Configuration Space of quadraticallystaés Gough-
Stewart platforms, due to both kinematic singularities aallisions, can be uni-
formly represented by a Boolean combination of signsw#determinants involv-
ing the homogeneous coordinates of sets of four points. Bbadean combination
induces a measure of distance to obstacles in ConfigurapaneSfrom which a
simplified Voronoi diagram can be derived. Contrary to whapens with stan-
dard Voronoi diagrams, this diagram is no longer a strongmedition retract of
free space but, as Canny proved in 1987, it is still completerfotion planning.
Its main advantage is that it has lower algebraic complekian standard Voronoi
diagrams based on the Euclidean metric.

Key words: Gough-Stewart platform, pure condition, Voronoi diagrapath plan-
ning.

1 Introduction

Gough-Stewart platforms whose assembly modes can be etithinsolving only
quadratic equations are said to tpeadratically-solvable. This family of parallel
platforms is defined by certain geometric constraints inltmation of their leg
attachments to the fixed base and/or moving platform suchosmidence and
collinearity (see Fig. 1), or, in general, certain algebraiations between the coor-
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Fig. 1 Examples of two well-known quadratically-solvable Gougkv&irt platforms. Left: the
3-2-1 platform. Right: the Zhang-Song platform.

dinates of the attachments in their local reference frarses [1] for a non-trivial
example).

Itis interesting to observe how, when all the elements ofadcatically-solvable
Gough-Stewart platform and its environment are approéchdsty polyhedra, the
obstacles in its configuration space, due to both kinematgugarities and colli-
sions, can be uniformly represented by a Boolean combimaticsigns of 4x 4
determinants involving the homogeneous coordinates af agfefour points. This
Boolean combination induces a measure of distance to déstom which a sim-
plified Voronoi diagram can be derived. A detailed explamatdf all these facts
requires a lot of mathematical details but, due to spacddiions, we have opted
for an informal style to convey the main concepts.

This paper is organized as follows. Section 2 explains hakthematic singu-
larities of quadratically-solvable Gough-Stewart platfis can always be interpreted
as degeneracies of a set of tetrahedra. Section 3 dealdwitiollision detection be-
tween arbitrary polyhedra. Then, it is shown how the regishere either collisions
or singularities occur can be uniformly represented by al@&wocombination of
signs of 4x 4 determinants. How this representation induces a mea$distance
to these forbidden regions is explained in Section 4 and heinalified Voronoi
diagram is derived, in Section 5. A simple planar case isyaedl in Section 6.
Finally, we conclude in Section 7.

2 Singularities of quadratically-solvable parallel robots

The singularities of quadratically-solvable Gough-Steévadbey a neat algebraic
structure. The pure condition of this kind of platforms tazes into 4x 4 determi-
nants which involve the homogeneous coordinates of setsunfdttachments [3].
When the coordinates of the leg attachments in the movindppfatare expressed
in terms of the position and orientation of the platfornrand® respectively, three
kinds of determinants arise:
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- Plane-Point determinants: They involve three attachmehthe fixed base and
one of the moving platform. They vanish if, and only if, theipgdies on the
plane defined by the three points fixed to the base.

- Point-Plane determinants: They involve three attachsehthe moving plat-
form and one of the fixed base. The vanish if, and only if, thedigoint lies on
the moving plane defined by the three points attached to #téopin.

- Line-Line determinants: They involve two attachmentshefbase and two of the
moving platform. They vanish if, and only if, the lines defi®y the two couples
of points lie on the same plane.

Hence, the singularities of quadratically-solvable miatis can be geometrically
interpreted as the degeneracy of tetrahedra. For exarhglg@ure condition of the
robot in Fig. 1(left) can be expressed as:

[P1P2P3P7][PsPeP7Ps] [Pap7PsPe) = O

wherep; stand for the homogenous coordinates of leg attachigentthe world
reference frame. Then, this robot is in a singularity if ahyhe three determinants
vanish (.e, if any of the three associated tetrahedra degenerate), fftvee define
the predicate

o _ [ trueif [pipjpkpi] > O,
A, k1) = { false otherwise, @

the robot’s singularity-free region is the set of configimas where
(A(1,2,3,7)vA(1,2,3,7)) AN (A(5,6,7,8) vV A(5,6,7,8)) A (A(4,7,8,9) VA(4,7,8,9) (2)

is true. This boolean expression can be seen as a shallowh(8AND-OR
tree with an AND node at the root. The interest of expressingutarity-free re-
gions in this apparently awkward way becomes obvious whiggiating them with
collision-free regions as described next.

3 Basic contacts between polyhedra

The configuration space obstacle for a pair of polyhedrads#t of configurations
at which the two polyhedra overlap. The overlap predicaswéen polyhedra are
logical combinations of primitive predicates. These ptivei predicates correspond
to the three basic types of contacts between polyhedra [fighwin turn can be
expressed using the same three kinds of determinants wlusad to characterize
the singularities of quadratically-solvable platforms.

The formulation of polyhedral interference detection as #valuation of a
boolean formula that depends only on the features (vertedges, and faces) of
polyhedra with convex faces was proposed by Canny [5]. Hsswas later gener-
alized, and fully expressed in terms of signs of 4 determinants, by Thomas and
Torras [9].



4 R. Vaca et al.

As a simple example of boolean formulas for overlap detactiet us consider
the segment defined By P> and the triangle defined bigsP,Ps in 3D. Then, the
segment is intersecting the triangle if

(A(1,3,4,5)® A(2,3,4,5)) A[(A(1,2,3,4) AA(1,2,4,5) A A(1,2,5,3))
V(A(1,2,3,4) NA(1,2,4,5) A A(1,2,5,3))]

is true,® being the exclusive or operator defined as)b) = (aAb) v (aAb).

Then, the predicates that define collision-free regionsataa be represented
as AND-OR trees that can be fused in a seamless way with tlegsesenting
singularity-free regions through an AND node. The resgltiees can be obviously
organized in different ways for higher efficiency using tmeperties of boolean al-
gebra. One of the overlap predicates for polyhedra with eprigices given in [5]
generate a shallow (depth 2) AND-OR predicate tree, whoseiscan OR node.
Nevertheless, as Canny already observed, it is compugdlifoadvantageous to
make the predicate tree as deep as possible and it is alsaldedor the root to
be an AND node.

4 A measure of distance to obstacles in Configuration Space

Following the discussion in [4], we can now observe that lijirlg positive real
values represent logical one, and non-positive valueesepit logical zero, that the
min function implements logical AND, and thmax function implements logical
OR. Thus, for example, the predicate (2) that charactettz®bstacle in config-
uration space due to kinematic singularities of the robdtign 1 can be expressed
as:

p(x,©) = min(max([p1p2pap7], —[P1P2P3pP7]),
max([psPeP7Ps], —[PsPeP7Ps]),
max([pap7PsPo), —[PaP7PsP9]))-

The above quantity can be used as a measure of distance —it & tmoe
metric— to the robot’s kinematic singularities, becausaites continuously through
configuration space. Thus, the translation from a prediegieesenting the singu-
larity and collision-free regions to a measure of distarméotbidden regions is
straightforward. It will be positive at configurations ods them and negative at
configurations inside them. Clearly, this measure of digalecomposes the robot’s
configuration space into regions in which one of the involdeterminants is crit-
ical in determining the value @, that is, small changes in its value cause identi-
cal changes in the value @f. The boundaries between these regions can be seen
as a Voronoi diagram. Then, searching the configurationesfacsingularity and
collision-free paths can be reduced to a search on thisatiagis explained in the
next section.
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5 Simplified Voronoi diagrams

A Voronoi diagram is defined to be the set of points equidistiaam two or more

generators (points, segments, polygons, ...) under th®ppate metric (usually the
Euclidean distance). This construction received conalalerattention in the early
eighties as a useful tool for motion planning (see the teodthaf Schwartz and Yap
[8], and the references therein, for an introduction anéewewf the use of Voronoi
diagrams in motion planning).

The main advantage of using the Voronoi diagrams based andlasure of dis-
tance described in the previous section is that they haweex lalgebraic complexity
than those resulting from using the Euclidean distances@&ltkagrams are piece-
wise linear for fixed orientations of the moving platform Vehstandard Voronoi
diagrams would contain quadratic sheets. These simplif@dni diagrams are
sometimes also callestraight skeletons [6]. Despite this important simplification,
they still have an important property: any path through pace which starts and
ends on the diagram can be continuously deformed so thasitlitirely on the di-
agram [4]. Thus, they are complete for motion planning, searching the original
space for paths can be reduced to a search on the diagram.

Now, to find a path between two points in free space, it suffieéimnd a path for
each point onto the diagram, and to join these points withtla {bat lies wholly on
the diagram.

6 Example

The ideas presented above are for spatial parallel robetgertheless, to exemplify
them, we will rely on a planar case because the correspomdinfiguration space
is three-dimensional and hence easily representable.

Let us consider a planar robot whose base is determined bsetpaent?, P,
its moving platform by the segmeri%P,;, and its three legs by the segments
PiPs, P,Ps, and RP,. Let us also assume that the homogeneous coordinates of
these points are given gy, = (0,0,1)!, p2 = (15,0,1)}, p3 = (x,y, 1)}, andps =
(x+ 10cog9),y + 10sin),1)'. Therefore, the configuration of the moving plat-
form is determined by(x,y, @). We also introduce a boundary region determined
by the squarePsPsP;Ps whose vertex coordinates apg = (—25,40,1)!, pg =
(—25,—-40,1)!, p7 = (55,—40,1)!, andpg = (55,40,1)".

In this planar case, the regions free from singularities@oilisions can be rep-
resented by a Boolean combination of signs of 3 determinants. Actually, the
region free from kinematic singularities is defined by thedicate

P =(L(1,2,3) VA(L2,3)) A (A(2,3,4) vV A(2,3,4)),

and the region free from collisions between the moving platf the base, and the
four segments defining the boundary, by the predicate
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Fig. 2 Measure of distance to the kinematic singularities (a), and dhesponding Voronoi di-
agram (b). Measure of distance to the regions where collisiongrdc), and the corresponding
Voronoi diagram (d). Measure of distance taking into accouett Bingularities and collisions (e),
and the corresponding Voronoi diagram (f). All images are slafehe robot’s configuration space
forp=1.
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Fig. 3 Representation of the analyzed robot’s configuration spactheénregion defined by
(%Y, @) = ([—30,60],[—45,45],[—11/2,/2]). The plot shows the measure of distance associated
with 924 A 2, for ¢ = —1/2,0, and 11/2, and slices of the corresponding Voronoi diagram for
values of@ where there is a change in its topology. The lines connettiag correspond to the
edges of the Voronoi diagram.

=(0(123) @ A(L2,4) A (A(L3,4) @ A(2,3,4))
NA(5,6,3)® A(5,6,4)) A (A(5,3,4) @ A(6,3,4))
NA(6,7,3) @ A(6,7,4)) A (A(6,3,4) @ A(7,3,4))
(A( (7.8,4) N (A(7,3,4) )
(A( (8,5,4) 7 (A(8,3,4) )

AD(7,8.3) @ A(7,8,8) AA(7,3,4) @ A (8,34
A(D(8,5,3) @ A(8,5,4)) A (A(8,3,4) @ A(5,3,4

Figs. 2(a) and 2(b) show the measure of distance associdated%y and its
corresponding Voronoi diagram, respectively. Figs. 2@ &(d) show the same
information for &%,. These Voronoi diagrams represent the regions free fromkin
matic singularities and free from collisions, respectivéligs. 2(e) and 2(f) show
the measure of distance associated withA &, and the corresponding Voronoi di-
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agram thus integrating all the information in a single déemr Finally, Fig. 3 shows
how this diagram evolves, gsvaries, and a singularity and collision-free path con-
necting the configuratio(35, —20, 17/2) and (—10,—15,—11/2). Observe how all
slices for fixed orientations are arrangements of straightdegments.

7 Conclusion

The use of Voronoi diagrams for motion planning receivedtafattention in the
eighties. This interest progressively decreased in faatgorithms based on ran-
dom samplings. Nevertheless, it still remains as a fundshtool for those appli-
cations in which an exact representation of free space isnext] This paper shows
how a simplified Voronoi diagram of the singularity and cgitin-free regions of
any quadratically-solvable Gough-Stewart platform cambiined assuming that
the robot itself and its environment can be well-approxeddiy sets of polyhedra.
The result is an elegant algorithm fully expressed in terfris>04 determinants.

Finally, concerning computational efficiency, it is wortbhtimg that many basic
geometric tests other than interference detection suclassification, containment,
and depth priority tests can be performed by computing dadeterminants. This
has motivated the search for efficient determinant comiausiuising hardware im-
plementations such as the triangle processor and its s@rcéise polygon engine
[10]. This is a point that could be explored if the presentéehs should be imple-
mented for complex Gough-Stewart platforms in clutteredrenments.
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