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Abstract 

The thermal degradation kinetics of several ethylene-propylene copolymers (EPM) and 

ethylene-propylene-diene terpolymers (EPDM), with different chemical compositions, 

have been studied by means of the Combined Kinetic Analysis. Until now, attempts to 

establish the kinetic model for the process have been unsuccessful and previous reports 

suggest that a model other than a conventional nth order might be responsible. Here, a 

random scission kinetic model, based on the breakage and evaporation of cleavaged 

fragments, is found to describe the degradation of all compositions studied. The 

suitability of the kinetic parameters resulting from the analysis has been asserted by 

successfully reconstructing the experimental curves. Additionally, it has been shown 

that the activation energy for the pyrolysis of the EPM copolymers decreases by 

increasing the propylene content. An explanation for this behavior is given. A low 

dependence of the EPDM chemical composition on the activation energy for the 

pyrolysis has been reported, although the thermal stability is influenced by the 

composition of the diene used. 
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1. Introduction 

 

The ethylene-propylene-diene terpolymer (EPDM) is an elastomer based on the EPM 

copolymer, which consists of ethylene and propylene units as part of the main polymer 

chain. For the commercial preparation, a third diene co-monomer is included, 

introducing an unsaturation on a side chain to facilitate peroxide crosslinking reactions 

and to permit sulfur vulcanization [1]. The EPDM itself may vary in ethylene and 

propylene proportions, as well as in the amount and type of diene used. The 

vulcanization is possible because the non-conjugated diene is grafted onto the main 

polymer chain creating interchain sulfur cross-linking. EPDM has a relatively low 

unsaturation level and therefore requires complex cure systems to achieve the desired 

properties. Nearly every conceivable combination of curing ingredients has been 

evaluated in various EPDM polymers over the years [2, 3]. Vulcanized EPDM shows 

some interesting properties, such as ozone, heat, light, weathering and chemical 

resistance [4]. The EPDM blends have also been extensively studied, dealing with the 

synthesis, characterization and applications of these systems and their nanocomposites 

[5-11]. Moreover, it has been reported that the ethylene content influences the properties 

of the EPDM polymers [12], and that a higher ethylene content gives more green 

strength (high elongation in the uncured state), poorer low temperature properties, 

imparts a more crystalline nature to the EPDM and increases its glass transition 

temperature. 

The main application of this material is in automotive industry because of its low cost, 

low specific density, ease of processability, paintability and weatherability. Another 

uses are as bumper fascias, grilles, wire and cable jacketing, air dams, rub strips, swim 

fins, handle grips and weatherstripping. Due to these applications, the degradation of 
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EPDM and its blends is a very important issue, and has been widely studied in the 

literature under diverse settings, i.e. oxidative degradation [13], artificial weathering 

environments [14], ultrasonic irradiation [15], photo-oxidation [16, 17], thermal 

degradation [12, 18-21], etc. However, only some of those previous works deal with the 

kinetics of thermal degradation of this material [12, 19, 22]. Moreover, the use of 

conventional nth order kinetic equations, commonly used for polymer thermal 

degradation processes, has proven unsuccessful for describing the thermal degradation 

of EPDM and it has been suggested that another, more complex, model should be used 

for describing the degradation. Gamlin et al, studying a set of isothermal curves 

suggested an Avrami-Erofeev nucleation and growth model [19].  So far, such model is 

not well established, so further investigation is necessary.  

In recent works, it has been demonstrated that the thermal degradation of polymers may 

obey mechanisms other than nth order [23-27]. In these papers, the determination of the 

kinetics parameters was done from the study of curves obtained under different 

conditions and without the previous assumption of kinetic models. 

The scope of this work is to study the pyrolysis kinetic mechanism of a set of EPM and 

EPDM samples supplied by the two most important industrial manufacturers of these 

products for industrial use. The knowledge of both the kinetic parameters and the 

kinetic model is very important in order to predict the burning behavior at different 

temperatures, which would be of crucial importance provided the massive use of EPDM 

as thermal and acoustic isolating of buildings.  
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2. Materials and Methods 

The samples of EPDM and EPM studied are manufactured for industrial use and were 

supplied by ExxonMobil (Vistalon rubbers) and DSM Elastomers (named C2 EPM and 

EPDMs). The chemical composition of the different studied samples is included in 

Table 1. Thermogravimetric (TGA) measurements were performed in a TA Instruments 

Q5000 thermobalance (New Castle, DE, USA). Small pieces (~8mg) of the original 

samples were placed on a platinum pan. The experiments were recorded under linear 

heating, isothermal and controlled rate thermal analysis. 

3. Theory 

3.1 Theoretical background  

The reaction rate, dα/dt, of a solid state reaction can be described by the following 

equation:     

   
fRTEaA

dt

d
 exp    (1), 

Where A is the Arrhenius pre-exponential factor, R is the gas constant, Ea the apparent 

activation energy, α the reacted fraction, T is the process temperature and f(α) accounts 

for the reaction rate dependence on α. The kinetic model f(α)is an algebraic expression 

which is usually associated with a physical model that describes the kinetics of the solid 

state reaction. Table 1 lists the functions corresponding to the most commonly used 

mechanisms found in literature. The reacted fraction, α, can be expressed as defined 

below: 
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wherewo is the initial mass, wf the mass of residual char and w the sample mass at an 

instant t. 

3.2 Isoconversional Analysis 

Isoconversional methods, also known as “model-free”, are used for determining the 

apparent activation energy as a function of the reacted fraction without any previous 

assumption on the kinetic model fitted by the reaction [28, 29]. The Friedman 

isoconversional method  is a widely used differential method that, unlike conventional 

integral isoconversional methods, provides accurate values of the activation energies 

even if they were a function of the reacted fraction[30].  Eq. (1) can be written in 

logarithmic form: 

 
RT

Ea
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dt
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          (3) 

The activation energy at a constant  value can be determined from the slope of the plot 

of the left hand side of Eq. (3) against the reverse of the temperature, at constant values 

of α. 

 

3.3 Combined Kinetic Analysis. 

The logarithmic form of the general kinetic Eq. (1) can be rewritten as follows: 

   
RT

Ea
A

f

dtd









ln

)(
ln




        (4) 

The plot of the left hand side of the equation versus the reverse of  temperature will 

yield a straight line if the proper f(α) is considered for the analysis [31]. The apparent 
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activation energy can be calculated from the slope of such plot, while the intercept leads 

to the pre-exponential factor. As no assumption regarding the thermal pathway is made 

in Eq. (3), the kinetic parameters obtained should be independent of the thermal 

pathway. Thus, this method would allow for the simultaneous analysis of any set of 

experimental data obtained under different thermal schedules [32]. Recently, it has been 

reported that a modified Sestak and Berggren equation, i.e. f(α)=c αn (1-α)m, with values 

for n and m in the range from 0.4 to 0.8 and -1 to 0.7, respectively, not only fits every 

kinetic ideal model proposed for solid state processes, but also accounts for the 

deviations of the ideal kinetic models due to, for example, inhomogeneities in particle 

size and shapes [32], what means that this equation behave as a umbrella, covering the 

whole set of kinetic equations describing solid state reactions. Thus, the use of this 

equation does not limit the kinetic analysis to the use of exclusively ideal kinetic 

models. This is especially important because if the kinetic model is discriminated from 

a predefined set of models, one of them would be selected as the “best model” even if 

the set does not contain the true one [33]. Also, it has been observed that deviations 

from the ideal situations assumed in the kinetic models change the form of the 

f(α)functions and consequently the experimental curves cannot be properly fitted by the 

theoretical  f(α)functions. 

Introducing the modified Sestak-Berggren equation in (4) we reach: 

    
  RT

EacA
dtd

mn
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The Pearson linear correlation coefficient between the left hand side of the equation and 

the reverse of the temperature is set as an objective function for optimization. By means 

of the maximize function of the software Mathcad, the parameters Ea, A, n and m 
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leading to the best linear correlation are determined from the simultaneous fitting of the 

whole set of α-T plots obtained under different heating schedules[32]. Nevertheless, it 

should be noted that the modified Sestak-Berggren equation is used here as a fitting 

function without physical meaning. Thus, the shape of the resulting Sestak-Berggren 

function with the n and m parameters obtained from the fitting should be compared with 

those of the function of the ideal kinetic models to determine the true kinetic model that 

describes the process. 

 

4. Results and discussion 

Figure 1 shows the thermal degradation curves of the different EPDM and EPM tested 

compositions (included in Table 1), all experiments were recorded at the same linear 

heating rate (5 K min-1). Figure 1a includes the results for the EPDM samples whereas 

Figure 1b shows the results for EPM samples. Moreover, the temperatures 

corresponding to 10% (α=0.1) and 50% (α=0.5) degradation as obtained from Figure 1 

have been included in Table 1 for the different compositions. For the EPM samples 

(Figure 1b, Table 1), the different structure produced by the different ethylene content 

of both samples plays a role in the thermal stability of the material, and the larger the 

ethylene contents the higher the degradation temperature, in agreement with previous 

reports [12]. For the EPDM samples, the situations seems to be a little more complex as 

samples differ in ethylene, propylene and diene contents as well as in the type of diene. 

Nevertheless, some trends can be found in the thermal behavior of those samples. Thus, 

compositions that include dicyclopentadiene (DCPD) are less stable than compositions 

with ethylidene norbornene (ENB). Moreover, the larger the DCPD content the lower 

the degradation temperature (Figure 1b, Table 1). Thus, the sample EPDM 58C2 (4.5% 
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DCPD) degrades at the lowest temperature followed by EPDM 67C2 (2% DCPD) and 

EPDM 64C2 (1% DCPD). Interestingly, sample EPDM 67 C2 has both DCPD and ENB 

diene groups, in such a way that the total amount of diene from both types of diene 

groups is larger than that of EPDM 67C2, but the thermal stability seems to be 

determined by the DCPD groups rather than by the ENB ones. For those compositions 

that include only ENB groups differences in stability are very small, but the degradation 

temperature is related with the total content of ethylene + diene groups, which is related 

to the content of propylene, independently of the origin or manufacturer of the sample. 

Thus, the larger the total amount of ethylene + diene groups, the higher the 

decomposition temperature, and the decomposition sequence from smaller to higher 

decomposition temperature is the following: Vistalon5601 < EPDM70C2 < 

Vistalon7001 < Vistalon7800. 

A set of TGA curves was recorded under linear heating rate, isothermal and constant 

rate experimental conditions for every elastomer sample shown in Table 1. The 

collected experimental data were employed to perform a thorough kinetic analysis, 

including Friedman isoconversional and combined analysis methods, as described in the 

theoretical section. Given the amount of samples studied, for the sake of brevity, the 

kinetic analysis procedure is fully detailed exclusively for the degradation of the 

Vistalon7800. The results obtained for the rest of the elastomers, using the same 

analysis procedure, are included in Table 1. Figure 2 shows a set of experimental curves 

recorded under different linear heating rate (Figure 2a), isotherm (Figure 2b) and 

constant decomposition rate (Figure 2c) conditions corresponding to the thermal 

degradation of Vistalon7800. Valuable information can be extracted from the shape of 

the isothermal and constant decomposition rate curves. Firstly, the derivative of the 

isotherm shown in Figure 2b (dotted line) evidences an autoaccelerated process is 
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taking place; that is, the maximum reaction rate occurs not at the onset of the reaction 

but after it has already started. Such feature is characteristic of nucleation or chain 

scission driven reactions [24]. Likewise, the CRTA curve in Figure 2c displays a 

minimum in the T-α profile, also typical of nucleation or chain scission mechanisms 

[24]. These results clearly show that “n order” models are undoubtedly invalidated for 

describing the decomposition kinetics of EPDM because such models cannot at all 

reproduce an autoaccelerating behavior [25]. While not shown here, a similar 

conclusion was reached for the whole set of EPM and EPDM samples here investigated, 

regardless of its chemical composition. 

 

Figure 3 shows the evolution of the activation energy with the extent of degradation 

process of the different EPM and EPDM samples, as calculated by means of the 

Friedman isoconversional method, described in section 3.2. There is no significant 

variation in the activation energy with the process progress, which supports that the 

degradation takes place through a single step process. Average values of activation 

energies as obtained by the Friedman analysis are included in Table 1 for all studied 

compositions. Figure 4 shows the results of the combined kinetic analysis of the 

degradation curves of Vistalon7800 appearing in Figure 2. The fitting of the 

experimental data to the Sestak-Berggren modified equation, as described in Section 

3.3, results in all experimental data aligning when the m and n parameters take the 

values 0.418 and 1.013, respectively. The slope of the fit leads to an activation energy 

of 261.0±0.5 kJ mol-1and the intercept to a preexponential factor of 3.8 1018±0.3 1016 

min-1. It is noteworthy to point out the excellent agreement between this activation 

energy and those obtained for the same compound from the isoconversional method of 

Friedman, what supports the correctness of the kinetic analysis here outlined. It can be 
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observed that the error of the activation energy determined from combined kinetic 

analysis is considerably lower than the one obtained from the Friedman method. This 

behavior can be easily understood if we consider that the Friedman method takes a 

single point from every α-T plot for determining the activation energy at a given value 

of α while the combined method analyses at once the whole set of data obtained under 

different experimental conditions, leading to a considerably higher statistical weight. 

The master plot of the kinetic model obtained from this analysis, α0.418(1-α)1.013, is 

compared in Figure 5a with a set of kinetic models reported in the literature for 

describing solid state reactions. The whole set of plots are normalized at α = 0.5 for a 

clearer comparison. It can be noticed how the deducted model resembles a chain 

scission kinetic model, confirming the observations made from the isothermal and 

constant rate curves in Figures 2b and 2c. In order to validate the kinetic parameters 

obtained from the analysis, a set of curves were simulated using a fourth order Runge-

Kutta numerical integration method, assuming the aforementioned kinetic parameters 

and the experimental heating conditions used to obtain the experimental data. The 

simulations were performed using the Mathcad software (Mathsoft, Cambridge, MA, 

USA). Figure 2 shows the simulated curves match perfectly the experimental ones. The 

chain scission mechanism also explains previous findings by Gamlin, who detected the 

autoaccelerating nature of the EPDM degradation and found similarities with an 

Avrami-Erofeev two dimensional nucleation model [12, 19, 22]. As seen in Figure 5, 

both Avrami and chain scission are acceleratory models, but the latter underlying 

physical meaning is much more appropriate to a polymer degradation process. The fact 

that the thermal decomposition of these compounds follows a random scission kinetic 

model has important implications at a practical level. The initial induction period means 

that, if the material goes through a high temperature event during 
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processing, recycling or any application, the chain scission process 

will be already initiated and the degradation will speed up. 

 

A similar analysis procedure was applied to the rest of the EPM and EPDM samples, 

reaching equivalent conclusions regarding the kinetic model. The activation energies, 

preexponential factors and m and n parameters corresponding to the f(α) kinetic models 

resulting from the kinetic analysis are included in Table 1. The full set of graphs 

showing the results of the analysis for each sample studied are included in the 

Supporting Information (Figs S1 to S24). In Figures 5b to 5f, the estimated f(α) kinetic 

models found for a selection of the tested elastomers are graphically compared with 

theoretical models. From these figures, it is clear that all processes can be attributed to a 

random scission model; in other words, the thermal decomposition of the whole set of 

samples here studied takes place through a mechanism that implies the random breakage 

of the polymer chain and the subsequent vaporization of the released fragments [25]. It 

is noteworthy to remark that it has been demonstrated for the first time in literature that 

the pyrolysis of EPM and EPDM takes place through a random chain scission 

mechanism. Considering the wide range of samples studied, differing in the 

ethylene/propylene ratios and in the type and quantity of diene, it can be assumed that 

they possess different polymer architectures due to varying crosslinking densities. It has 

been proposed that the degradation starts from a labile center; like a site of unsaturation 

or a tertiary carbon [22]. It has not been found a correlation between kinetic parameters 

of the pyrolysis of the EPDM samples and their composition, because a set of industrial 

samples have been used and there is not a systematic variation of the composition of the 

three components not even in the type of diene employed. Thus, the commercial 

samples incorporate two types of dienes, ENB and DCPD. Further studies using 
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synthesized samples of EPDM designed with a systematic variation of the composition 

would be required for clarifying the pyrolysis mechanism of these compounds. 

However, it is noteworthy to point out that the two EPDM samples that have practically 

the same composition, Vistalon7001 (manufactured by ExxonMobil) and EPDM70C2 

(manufactured by DSM elastomers), have very close kinetic parameter for the pyrolysis, 

what suggests that the thermal stability of EPDM is exclusively depending on the 

composition of the polymer and is not influenced by particle size or other parameters 

depending of the processing method.  

In the case of the EPM samples, which have no diene content and are exclusively 

constituted by ethylene and propylene, it is clearly noticeable a diminution of the 

activation energy with the increase of the percentage of propylene. This behaviour 

would be explained considering the higher vulnerability of the propylene molecule 

because of its tertiary carbon.   

 

CONCLUSIONS 

It has been demonstrated for the first time in literature that the pyrolysis of EPM and 

EPDM polymers fit a random scission kinetic model instead of a first order kinetics, 

independently of the chemical composition of the polymers, which means that the 

reaction rate is controlled by a random breakage of the polymer chain followed by the 

vaporization of the released fragments. It has been shown that, in the case of the binary 

copolymers constituted by ethylene and propylene (EPM), the activation energy clearly 

decreases by increasing the percentage of propylene in the polymer. This behavior has 

been explained as a function of the lower stability of the bond associated to the ternary 

carbon of polyethylene. It has not been possible to establish a clear correlation between 

the activation energy of the pyrolysis of EPDM samples and their composition because 
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of a lack of systematic variation in the composition of the industrial samples supplied 

that does not allow a systematic analysis. However, no significant changes of the 

activation energy with the composition of these terpolimers have been observed, 

although an increase of the stability as a function of the percentage of diene seems to be 

observed. 
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Figure Captions. 

 

Figure 1. Thermal degradation curves of the different EPM and EPDM samples studied 

in this work, recorded under a linear heating rate of 5 K min-1. The plots show the 

reacted fraction as a function of the temperature. (a) EPDM and (b) EPM samples.  

 

Figure 2. Vistalon7800 degradation curves, recorded under (a) linear heating rate, (b) 

isothermal and (c) constant rate experimental conditions. Curves represented by 

symbols correspond to the experimental curves whereas the solid lines correspond to the 

curves reconstructed assuming the kinetic parameters deduced from the combined 

kinetic analysis, that is, E= 261 kJmol-1, A= 3.8 1018 and f(α)= α0.418(1-α)1.013. 

 

Figure 3. Activation energies as a function of the reacted fraction deduced for each 

elastomer. Values obtained by means of the Friedman isoconversional method.  

 

Figure 4. Result of the Combined Kinetic Analysis for the case of the Vistalon7800 

EPDM.  The figure is obtained by plotting the left hand of Eq. (5) for every 

experimental curves in Figure 2 against the reverse of the temperature. The linear fit of 

such plot yields the kinetic parameters describing the process. 

Figure 5. Comparison between some of the most usual ideal kinetic models and those 

deducted from the combined kinetic analysis for the degradation of (a) Vistalon 7800; 

(b) Vistalon 5601; (c) Vistalon 722; (d) EPDM 58%C2; (e) EPDM 70%C2 and (f) 

EPDM 49%C2 
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Table 1. List of the EP(D)M samples studied in this work. The weight percentage of ethylene 
and diene in the final polymer is included, as well as the type of diene employed(ENB stands 
for ethylidenenorbornene while DCPD stands for dicyclopentadiene). Temperatures 
corresponding to 10% (α=0.1, Tα=0.1) and 50% (α=0.5, Tα=0.5) degradation as obtained from 
Figure 1 (linear heating rate experiments at 5 K min‐1) are also displayed. Average activation 
energy values obtained by Friedman analysis and activation energy, preexponential factor and 
n and m parameters determined by combined kinetic analysis have also been incorporated. 
 
 
 

 

Sample 

Ethylene 

Content 

(wt%)* 

Type of 

diene 

and 

content 

(wt%)* 

Tα=0.1 

(K) 

Tα=0.5 

(K) 

Friedman 

analysis 

Combined kinetic analysis 

  Average Ea 

(kJ mol‐1) 

Ea 

(kJ mol‐1) 

Ln(A) 

Ln(min‐1) 
n  m 

EP
D
M
 

Vistalon 

5601 
69.0  ENB 5.0 

705.1  720.2 
252±8  252±1  41.5±0.1  0.991 0.445

Vistalon 

7001 
73.0  ENB 5.0 

707  721.8 
255±8  256±1  42.0±0.1  1.005 0.445

Vistalon 

7800 
79.0  ENB 6.0 

707  721.9 
260±9  260±2  42.5±0.2  1.013 0.418

EPDM 

58 C2 
58.0 

DCPD 

4.5 

686.1  703.6 
256±10  254±1  42.0±0.2  1.048 0.383

EPDM 

64C2 
64.0 

DCPD 

1.0 

697.6  716.5 
250±10  251±1  41.3±0.1  0.971 0.38 

EPDM 

67C2 
67.0 

ENB 4.3; 

DCPD 

2.0 

692.2  711.3 

246±7  245±1  40.6±0.1  0.997 0.356

EPDM 

70C2 
70.0  ENB 4.6 

706.2  721,5 
256±9  257±2  42.3±0.2  1.021 0.44 

EP
M
 

Vistalon 

722 
72.0  ‐ 

702.8  721,6 
248±7  248±1  40.2±0.1  0.906 0.399

EPM 

49C2 
49.0  ‐ 

682.4  712 
230±9  230±1  37.6±0.1  0.871 0.268

*Balanced to 100% with propylene 
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FIGURE 1 

 

Figure 1. Thermal degradation curves of the different EPM and EPDM samples studied 

in this work, recorded under a linear heating rate of 5 K min-1. The plots show the 

reacted fraction as a function of the temperature. (a)  EPDM and (b) EPM samples.  
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FIGURE 2 

 
 

 
 
Figure 2. Vistalon7800 degradation curves, recorded under (a) linear heating rate, (b) 

isothermal and (c) constant rate experimental conditions. Curves represented by 

symbols correspond to the experimental curves whereas the solid lines correspond to the 

curves reconstructed assuming the kinetic parameters deduced from the combined 

kinetic analysis, that is, Ea= 261 kJmol-1, A= 3.8 1018 and f(α)= α0.418(1-α)1.013. 
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FIGURE 3 

 

 
 
Figure 3. Activation energies as a function of the reacted fraction deduced for each 

elastomer. Values obtained by means of the Friedman isoconversional method.  
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FIGURE 4 

 

 
 

 
 
Figure 4. Result of the Combined Kinetic Analysis for the case of the Vistalon7800 

EPDM.  The figure is obtained by plotting the left hand of Eq (5) for every experimental 

curves in Figure 2 against the reverse of the temperature. The linear fit of such plot 

yields the kinetic parameters describing the reaction. 
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FIGURE 5 

 

 
 

Figure 5.Comparison between some of the most usual ideal kinetic models and those 

deducted from the combined kinetic analysis for the degradation of (a) Vistalon 7800; 

(b) Vistalon 5601; (c) Vistalon 722; (d) EPDM 58%C2; (e) EPDM 70%C2 and (f) 

EPDM 49%C2 
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