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Abstract 

 

Deficit irrigation strategies save water, but may enhance soil salinization and sodification when irrigated with 

low-quality waters. The objectives of this five-year study performed in the middle Ebro Basin (Spain) were to 

quantify these processes and assess their potential deleterious impact on the response of peach trees 

subjected to full irrigation (FULL), sustained deficit irrigation (SDI, irrigated at 62.5% of FULL) and regulated 

deficit irrigation (RDI, irrigated at 50% of FULL in Stage II of fruit development). In relation to FULL, water 

savings were 40% in SDI and 9% in RDI. Soil salinity (ECe), chloride concentration (Cle) and sodicity 

(SARe) measured in the saturation extract of 480 soil samples generally increased in the irrigation seasons, 

particularly in the more severe deficit irrigation strategy (SDI). These increases were counteracted by the 

leaching of salts induced by high leaching fractions (LF) and low water deficits (WD) attained during the non 

irrigation seasons. The changes in ECe, Cle and SARe measured between sampling dates were significantly 

correlated (p < 0.01) with WD and LF calculated for the periods between sampling dates. These parameters 

were therefore suitable to estimate the required irrigation depths for soil salinity and sodicity control. Peach 

trees were unaffected by the irrigation treatments, but yield productivity tended to decline above a threshold 

ECe of 4 dS m-1. Under the irrigation salinity (mean EC = 1.1 dS m-1) and the semiarid climatic 

characteristics of the study area, the three examined irrigation strategies proved to be sustainable in the five 

studied years.    

 

Keywords: Drip irrigation, salinity, sodicity, leaching fraction, water deficit, leaf ions 
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1. Introduction 

 

Deficit irrigation consists in the application of water below full crop water requirements, so that a mild 

crop water stress is allowed with minimal effects on yield. The three most common deficit irrigation strategies 

are: (1) regulated deficit irrigation (RDI), where water deficit is applied at certain developmental stages, (2) 

partial root-zone drying (PRD), where alternatively half of the root system is fully wetted while the other half 

is allowed to dry, and (3) sustained deficit irrigation (SDI), where water deficit is uniformly distributed over the 

whole crop cycle (FAO 2002).  

Deficit irrigation strategies have potential benefits such as substantial savings of water with little 

impact on the quality and quantity of the harvested yield, increased crop water productivity and farm 

profitability, and enhanced environmental protection (Ragab 1996; Fereres and Soriano 2007; Geerts and 

Raes 2009; Ruiz Sanchez et al. 2010). With increasing growing competition for water, there will be a more 

widespread adoption of deficit irrigation, particularly in areas with limited water resources. However, it is 

uncertain whether deficit irrigation is a sustainable strategy, particularly in arid and semiarid areas irrigated 

with low-quality waters. Thus, several publications have indicated that soil salinization is a potential problem 

linked to deficit irrigation (Sarwar and Bastiaanssen 2001; Kaman et al. 2006; Hsiao et al. 2007; Raine et al. 

2007; Geerts and Raes 2009) but few of them have quantified this risk.  

Shalhevet (1994) indicated that although deficit irrigation has the potential to improve soil salinity 

management by a better control of rising water tables and by a reduction in the import of salts by irrigation 

water, it does not provide the same degree of leaching than full irrigated conditions. Ghrab et al. (2013) 

evaluated root zone salinity distribution in an olive orchard subjected to PRD that supplied a volume of saline 

water that was 50% of the volume applied to the full irrigation treatment. PDR added less salts to the soil 

than the full irrigation treatment, and these salts were leached during the wet season keeping soil salinity to 

levels not harmful to olive trees. These authors concluded that PRD with their saline waters assured long 

term olive yields. In contrast, Nasr and Ben Mechlia (2002) studied the application of RDI to reduce soil 

salinization in an apple orchard and concluded that the potential reductions in soil salinization because of the 

lower amounts of added salts were only experienced under natural salt leaching arising from high 

precipitations and that, otherwise, irrigation should be increased to control root zone salt accumulation.  

Boland et al. (1993) determined in a lysimeter trial the yield response of thirty-three peach trees to 

saline irrigations (0.25 to 1.0 dS m-1) when combined with RDI. Significant adverse effects were observed on 

the productivity of peach trees, even with the low EC water of 0.25 dS m-1. Although these authors indicated 

that winter leaching under field conditions would be more extensive than in the lysimeters, their results would 
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oppose the use of restricted irrigations given the severe effects of quite low levels of irrigation water salinity, 

highlighting the need for leaching and modification of current RDI management when using saline waters. 

Mounzer et al (2013) showed the development of high transient saline-sodic conditions under the combined 

effects of saline reclaimed water and RDI in Mandarin trees, and concluded that soil water deficits should be 

avoided whenever saline reclaimed water is used for irrigation.  

Soil salinization is a major threat in fruit trees since they are among the most salt-sensitive 

horticultural crops (FAO 1985). The reduction in growth and yield is related to the osmotic potential of the soil 

solution and to specific ion toxicities. In the absence of specific ion effects and based on the vegetative 

response of scions from young trees, Maas and Hoffman (1977) ranked the salinity tolerance of peach trees 

with a threshold ECe (soil saturation extract electrical conductivity) of 1.7 dS m-1 and a slope (yield decrease 

per unit increase in ECe above the threshold) of 21% per dS m-1. Bernstein (1980) specified that the yield of 

peach trees decreases by 10% at an ECe of 2.5 dS m-1, whereas Hoffman et al. (1989) reported that peach 

fruit weight and the number of peach fruits per tree were reduced by about 50% at an ECe, dominated by 

chloride salts, of about 3 dS m-1.  

Besides the osmotic potential effect, fruit trees are also very sensitive to leaf Cl and Na toxic 

concentrations depending on rootstocks and cultivars. There has been little documentation on the effect of 

soil salinity on Na and Cl levels on peach trees, although Cl concentrations of about 0.5-1.0% (leaf dry 

weight) and Na concentrations of about 0.2-0.5% generally cause toxicity problems in most deciduous fruit 

trees (Bernstein 1980; Boland et al. 1993). In contrast, Myers et al. (1995) quoted “excess” levels as low as 

0.02% (Na) and 0.1% (Cl) for pear trees.   

Leaching of salts from the root zone is an obligate requirement under both full and deficit irrigation 

strategies since all irrigation waters add salts to the soil and the subsequent crop ET brings about salt 

evapo-concentration. The risk of soil salinization under deficit irrigation strategies using moderately saline 

waters may be relevant in salt-sensitive crops such as peach trees, particularly when grown in arid and 

semiarid areas with insufficient precipitation for leaching of accumulated salts.  

The objectives of this research were (1) to analyze soil salinity [saturation extract electrical 

conductivity (ECe) and chloride concentration (Cle)] and sodicity [sodium adsorption ratio (SARe)] changes 

in a peach orchard subjected to a full irrigation and two deficit irrigation strategies, (2) to establish 

relationships between changes in soil salinity and sodicity with leaching fraction (LF) and water deficit (WD), 

and (3) to assess the potential impact of deficit irrigation strategies and soil salinity on peach yield, and Na 

and Cl leaf ion concentrations.    
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2. Material and methods 

 

 2.1. Experimental orchard 

 

The experiment was conducted from 2008 to 2012 in a peach orchard located in the AFRUCCAS 

(Fruit Growers Association of the Caspe County) experimental farm in the county of Caspe (Middle Ebro 

River Basin, Spain) (41.16°N, 0.01°W). Late-maturin g cv. Calrico peach trees (Prunus persica L. Batsch) 

grafted on GF-677 rootstock were pruned to an epsilon system with trees spaced 6 m x 2 m. The 0.1-ha 

orchard was planted in 2005 on a 1.5-m deep sandy-loam soil (calcic haploxerept, fine loamy, mixed, 

thermic). The average soil saturation percentage, field capacity (FC) and permanent wilting percentage 

(PWP) were 36%, 21% and 12%, respectively, and the available water capacity of the 1.5 m soil profile, 

determined as the difference between the volumetric water contents at FC and PWP, was 224 mm.   

The peach trees, managed according to the usual cultural practices in the farm, were daily irrigated 

by an automated drip system with two laterals per tree row located at 0.5-m from the rows with 1-m spaced 

self compensating emitters. With this lateral disposition each tree was positioned in the center of 1-m square 

with the four emitters located in the vertices.  Fruits were thinned in early June to a target crop load of about 

150 fruits per tree, and the fruits were harvested twice by mid September. 

The 2008-2012 average annual values at the site were 318 mm (precipitation, P) and 1451 mm 

(reference evapotranspiration, ETo) calculated with the FAO Penman-Monteith equation (Allen et al. 1998) 

using the information gathered through the SIAR (Spanish Irrigation Advisory System) weather station 

network (MARM 2011). The P/ETo ratio was 0.22, classifying this Mediterranean climate as semi-arid. About 

50% of the annual P and 15% of the annual ETo were recorded in the non-irrigation season (October to 

March). 

 

2.2. Experimental design 

 

Three irrigation treatments were implemented: a) FULL, peach trees irrigated at 100% of Gross 

Irrigation Requirements (I) estimated by the farmer according to the recommendations of the Irrigation 

Advisory System of Aragón (http://servicios.aragon.es/oresa/); b) SDI, Sustained Deficit Irrigation irrigated at 

62.5% of I throughout the irrigation season; and c) RDI, Regulated Deficit Irrigation irrigated at 100% of I 

throughout the irrigation season except in the lag phase or pit hardening Stage II of fruit development, when 

the trees were irrigated at 50% of I. The length of Stage II was about one month and started by early or mid 
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May, depending on years. Although water savings for late maturing peach trees are small with this RDI, it 

may have the benefits of controlling vegetative growth and increasing flower density and commercial fruit 

load (Girona et al. 2003).     

In the FULL treatment, four emitters of 4 L h-1 per tree were used. In the SDI treatment two emitters 

of 3 L h-1 and two of 2 L h-1 were used. In the RDI treatment the 4 L h-1 emitters were substituted by 2 L h-1 

emitters during Stage II. All treatments were irrigated simultaneously with the same duration. Irrigations were 

scheduled weekly and initiated each season in late March or early April and stopped by late September or 

early October. Irrigation treatments were arranged in a randomized complete block design with five 

replicated blocks per treatment. Each treatment plot consisted of three adjacent rows of 7 trees. 

 The daily values of peach crop evapotranspiration (ETc) were estimated by multiplying the daily ETo 

by the Kc values obtained by Ayars et al. (2003). These authors developed Kc values for late season 

peaches in an area of California with climatic conditions relatively similar to those in our study area under 

regulated deficit irrigation as a function of the intercepted photosynthetic active radiation (iPAR). The 

following expression was used:  

        Kc = 1.59 iPAR + 0.082                                                              (1) 

The iPAR was measured at weekly intervals with a ceptometer (Sunscan, Delta T) located in 18 

positions in the spacing of a tree (6 m x 2 m) in two trees of each treatment. Once full cover was reached, 

the measurements were made monthly.  

The data for soil salinity and its relations with yield and leaf Na and Cl concentrations were examined 

using individual trees because there was considerable heterogeneity in both soil salinity and yield in each 

replication. A preliminary assessment was performed in 2008 using 6 trees (two trees per irrigation 

treatment). Since the gathered data suggested that soil salinity could be a potential problem, a total of 30 

trees (2 trees x 3 treatments x 5 blocks) were selected for soil and crop measurements during years 2009 to 

2012.  

 

2.3. Measurements  

 

Water applications given at farmer’s demand were measured in each year and irrigation treatment 

with water meters installed in each drip line. Based on the depths of irrigation (I), precipitation (P) and crop 

evapotranspiration (ETc) measured in a given period, the corresponding field-wide leaching fraction (LF) and 

water deficit (WD) parameters were calculated as: 
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where LF express the concentration factor Fc (Fc = LF-1) of the irrigation and precipitation waters and their 

dissolved salts in the soil due to ETc assuming steady-state conditions, and WD express the peach water 

needs (ETc) not satisfied by irrigation (I) and precipitation (P).  

The LF and WD calculations were based on field-wide or average values for the plot, so that 

unrealistic and negative LF values were obtained in periods when ETc is higher than I and P. Although 

actual LF values can not be negative, these field-wide negative LFs reflect the high potential risk for soil 

salinization during these periods. Similarly, high field-wide WD values would imply a high soil salinization risk 

due to ETc values higher than water applications (I + P) that prevent salt leaching. Even though field-wide LF 

could be negative and field-wide WD could be positive, the wetting pattern around the emitters results in 

higher localized LF and lower localized WD values. Thus, Hanson et al. (2008) demonstrated through 

HYDRUS-2D computer simulations that the localized LF were positive for applied water amounts equal to or 

smaller than ETc, when the field-wide LF would be zero or negative for these water applications.      

Samples of irrigation water pumped from the Ebro River at farmer’s demand were taken on a weekly 

basis for chemical analysis. The ECw (electrical conductivity of the irrigation water) was low at the beginning 

of the irrigation seasons (ECw values of about 0.7 dS m-1) and increased up to about 1.6 dS m-1 by the end 

of the irrigation seasons, except in 2012 when ECw remained below 1.2 dS m-1 throughout the season. The 

mean (2008-2012) ECw, SARw , Na, Ca, Mg, Cl, SO4 and HCO3 values of irrigation water were 1.1 dS m-1, 

2.5 (mmol l-1)0.5, and 4.6, 4.7, 1.8, 4.6, 4.2 and 2.7 meq l-1. According to FAO guidelines (FAO 1985), waters 

with these ECw values are suitable for high-frequency irrigated peach trees.    

Soil samples were taken by auger at a soil depth of 0-60 cm at the closest emitter to each control 

tree in two positions from the emitter: next to the emitter (0 cm distance from the emitter) and in front of the 

emitter in between the drip line and the tree row (25 cm distance from the emitter). For representativeness 

reasons, this sampling procedure was replicated at both sides of the tree rows and the two sub-samples 

were mixed together to get one sample at 0 cm and another sample at 25 cm from the emitter. This 

procedure was performed at the beginning (early April, except in the preliminary 2008 year where the 

sampling was performed in early June) and the end of each irrigation season (late September) at the 

emitter’s left and right sides, respectively. All the auger holes were refilled with soil after each sampling. The 

soil samples were analyzed for its gravimetric water content (GWC) and, after air-dried, ground and sieved 
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(< 2 mm), for its saturation extract electrical conductivity (ECe), chloride concentration (Cle) and sodium 

adsorption ratio (SARe). The gypsum qualitative analysis performed through the acetone method showed 

that gypsum was present in 35% of the soil samples. All the soil analyses were carried out according to Page 

et al. (1982).   

The yield of fresh fruits, the fruit weight, the number of fruits per tree and the trunk cross-sectional 

area were measured annually at harvest in each control tree. The yield productivity (YPR) was calculated as 

the yield divided by the cross-sectional area (Kg cm-2) of each control tree. The irrigation water productivity 

(IWP) was calculated as the yield divided by the irrigation depth (g mm-1).  

Some 20 young apical leaves located in shoots of the present year were sampled in mid July and 

mid September between 2009-2011 in ten trees per irrigation treatment. The leaves were washed three 

times with deionized water for a few seconds to rinse off residual salts on the leaf surface, dried in an oven 

at 70ºC to a constant weight and finely ground in a blender. The leaf Cl and Na concentrations were 

determined on dilute nitric-acetic acid extracts of the grounded leaves, expressing the concentrations on a 

percent dry weight basis.  

 

2.4. Statistical analyses 

 

Data were analyzed by analysis of variance (ANOVA) and General Linear Model (GLM) procedure of 

the SAS 9.1 software (SAS Institute 2004). The means were separated using the Tukey’s multiple 

comparison test at p = 0.05. 

 

3. Results 

 

3.1. Irrigation (I), precipitation (P), crop evapotranspiration (ETc) and field-wide leaching fraction (LF) and 

water deficit (WD) 

 

Table 1 summarizes the annual depths of I, P and ETc in each year and irrigation treatment. P and 

ETc were similar among years (coefficients of variation (CV) of the means about 10%), whereas I was more 

variable (CV close to 30% in the three irrigation treatments). Irrigation depths consistently increased during 

2008-2012, although the much lower I value in 2008 was due to technical problems that occurred in the 

irrigation pumping station.  
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Overall, the sum of I and P was similar to ETc in the FULL treatment and somewhat lower and much 

lower in the RDI and SDI treatments, respectively. LF and WD varied according to the irrigation depths given 

in each irrigation treatment, with maximum LF and minimum WD in FULL, similar values in RDI, and 

minimum LF and maximum WD values in SDI. In contrast, the non irrigation season 2008-2012 (NIS in Table 

1) mean LF values were high (0.27 to 0.18) and the WD values were low (-56 to -32 mm), suggesting that 

soil salinity and sodicity would be higher in the irrigated than in the non irrigated season. In terms of the 

yearly values, LF was highest in 2010 and lowest in 2008 and 2009, and vice versa for the yearly WD. Based 

on previous considerations, these LF and WD values should imply that soil salinity and sodicity would 

increase more in 2008 and 2009 than in the other years.       

 

3.2. Gravimetric soil water content (GWC), soil salinity (ECe, Cle) and soil sodicity (SARe) 

 

Soil salinity and sodicity were positively correlated (P < 0.001) (SARe = 1.27 ECe + 0.91; R2 = 0.72; 

n = 479 samples taken during 2009-2012). For the same set of samples, GWC was negatively and linearly 

correlated (P < 0.001) with ECe, Cle and SARe (R2 values of 0.34, 0.44 and 0.39, respectively).  

Figure 1 shows that GWC was 15% lower, ECe and SARe about 100% higher and Cle about 200% 

higher at 25 cm than at 0 cm from emitters (all differences significantly different at p < 0.05). Due to this large 

spatial variability, the average values for the 0 and 25 cm distances to emitters will be considered in the next 

sections in order to have the best possible representativeness of these variables within the crop’s root zone.   

Table 2 summarizes the yearly GWC, ECe, Cle and SARe means measured in the soil samples 

taken in the three irrigation treatments, the two distances to emitters and the two sampling dates. The 

standard deviations (not shown) were high as a result of the high and typical spatial and temporal variability 

of these variables in drip irrigation systems and, therefore, they are irrelevant for statistical comparisons. The 

purpose of this Table is to provide yearly-integrated values of these variables, and to assess general trends 

during the studied period rather than establishing statistical differences among years.  

In agreement with the lower LF and higher WD values in 2009, GWC was generally lower and ECe, 

Cle and SARe generally higher than in the other years (ECe in 2008 was not compared with the rest of years 

because of its later initial soil sampling date and its lower number of soil samples) (Table 2). ECe, Cle and 

SARe decreased during 2009-2011 but increased in 2012, probably because P was lower and ETc was 

higher than in previous years (Table 1), and these are the main driving variables for salt leaching (P) and salt 

concentration (ETc). The mean (2009-2012) ECe and SARe values of 4.8 dS m-1 and 7.0 (mmol l-1)0.5 , 

respectively, classify this soil as saline and moderately sodic.  
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 Table 3a summarizes the irrigation treatment’s GWC, ECe, Cle and SARe means measured in the 

479 soil samples taken in 2009-2012, the two distances to emitters and the two sampling dates. No 

significant differences were observed among irrigation treatments (except GWC, significantly lower at p < 

0.05 in SDI) due to the high standard deviations of these means affected by the soil spatial and temporal 

variability previously indicated. Even so, this table shows that Cle and SARe had a tendency to be higher 

(13% and 17%, respectively) in SDI than in the other two irrigation treatments. Table 3b summarizes the 

irrigation treatment’s GWC, ECe, Cle and SARe means measured in the 120 soil samples taken in 

September 2009-2012 at 25 cm distance from emitters. These samples were selected because they should 

give the lowest water content and the highest soil salinity and sodicity values (i.e., samples taken at the 

farthest distance to emitters and at the end of the irrigation season). In relation to the FULL and RDI 

treatments (similar among them), the SDI treatment had GWC values that were 18% lower (p < 0.05), and 

ECe, Cle and SARe values that were 9%, 16% and 9% higher respectively, although in some cases these 

differences were only significant at p < 0.1 (analysis not given).      

 Figure 2 shows the evolution of ECe, Cle and SARe in the FULL and SDI irrigation treatments during 

the studied periods. The RDI treatment is not represented because the results were quite similar to those in 

the FULL treatment. The percent changes at the end of each irrigation season relative to the values at the 

beginning were higher (except for Cle and SARe in September 2009) in SDI than in FULL; and the percent 

changes at the end of each non irrigation season relative to the values at the beginning were also generally 

higher in absolute terms in SDI than in FULL. Thus, soil salinization was higher in the irrigation seasons and 

salt leaching was higher in the non irrigation season in SDI than in FULL. Fig. 2 also shows that, irrespective 

of the irrigation treatments, the values of the three variables generally increased in the irrigation seasons and 

decreased in the non irrigation seasons. Overall, soil salinity and sodicity did not show an increasing trend 

during the studied period because the accumulation of salts in the irrigation seasons were offset by the 

leaching of salts in the non irrigation seasons.   

 The 2009-2012 means at the end of the irrigation season (September) were similar or lower (GWC) 

and higher (ECe, Cle and SARe) than at the beginning (April) (Fig. 3). All the ECe, Cle and SARe differences 

were significant at p < 0.05, except ECe in RDI. The percent changes of the values measured in September 

relative to the values measured in April were 6% lower for GWC and 39%, 63% and 30% higher for ECe, Cle 

and SARe, respectively, in the SDI than in the other two irrigation treatments. As a result of these differential 

increases, the September ECe, Cle and SARe values were higher in SDI than in the other treatments (Fig. 

3). The 2009-2012 September ECe, Cle and SARe values were high, particularly in SDI (5.7 dS m-1, 30.4 
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meq L-1 and 8.7 (mmol L-1)0.5, respectively). These SDI September values were even higher at 25 cm 

distance from emitters (7.2 dS m-1, 43.8 meq L-1 and 10.6 (mmol L-1)0.5, respectively; Table 3b).     

Based on our findings in this work and those reported in other studies, it was hypothesized that soil 

salinity (ECe, Cle) and sodicity (SARe) should be correlated with the three main variables affecting salt 

leaching (irrigation, I and precipitation, P) and salt accumulation (crop evapotranspiration, ETc). These three 

variables were pooled together to obtain the field-wide LF (eq. 2) and field-wide WD (eq, 3). Fig. 4 shows 

that, irrespective of the irrigation treatment, the relative percent ECe, Cle and SARe daily changes (∆) in a 

given period were significantly (p < 0.01) and linearly correlated with WD (positive relationships) and LF 

(negative relationships) calculated for the given period. The slopes of the regressions in Fig. 4 indicate that 

the highest increases with increases in WD and decreases in LF were obtained with Cle, whereas these 

increases were more similar with ECe and SARe. The higher Cle increases were explained because chloride 

does not reacts with the soil matrix and does not precipitates in the soil, whereas the cations associated to 

EC and SAR may react with the soil matrix, and calcium minerals may precipitate as the soil water evapo-

concentrates (i.e., as WD increases and LF decreases).  

 

3.3. Effects of soil salinity on peach yield, productivity and leaf Na and Cl concentrations 

 

Peach tree response (yield, fruit weight, number of fruits, trunk cross sectional area and yield 

productivity) was unaffected by irrigation treatments, except irrigation water productivity (IWP) that was 65% 

higher in the more severe deficit irrigated treatment (SDI, IWP = 63 g tree-1 mm-1 water) than in the other two 

irrigation treatments (about 38 g tree-1 mm-1 water) (Table 4). The higher irrigation water productivity in the 

more severe deficit irrigated treatment without any adverse effect on peach tree response has been 

advocated as a relevant benefit of deficit irrigation strategies (FAO 2002; Fereres and Soriano 2007; Geerts 

and Raes 2009). 

Soil salinity in the root zone of some control trees was relatively high so that, irrespective of the 

irrigation treatment, they could be negatively affected by this osmotic stress. The data were examined for 

correlations between yield and soil salinity using data for individual trees because there was considerable 

heterogeneity in both soil salinity and yield in each replication. There was no correlation between yield and 

soil salinity because there were some high yielding trees on relatively high ECe soils and, particularly, low 

yielding trees on relatively low ECe soils that could be affected by a matric or other unidentified stress. Thus, 

the classical "bent-stick" response model described by Maas and Hoffman (1977) did not fit the experimental 

data. Even so, based on the upper boundary line approach (Urdanoz and Aragüés 2009) our results suggest 
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that the relative productivity of the individual peach trees examined during 2008-2012 consistently decreased 

below 100% at a threshold ECe of about 4 dS m-1 (Fig. 5), where ECe is the mean of the 0-60 cm soil depth 

measured in April and September of each year at 0 cm from emitters. This threshold ECe is similar to the 

FAO threshold ECe of 3.7 dS m-1 given for peach trees in soils with gypsum (FAO 1985).     

Leaf Cl concentrations almost doubled leaf Na concentrations (0.09% and 0.05%, respectively, 

means for all the samples taken in 2009-2011). Leaf Cl remained relatively constant, but leaf Na tended to 

increase during the studied years, so that in 2009 leaf Cl was more than three times leaf Na, whereas in 

2011 it was only 50% higher (Fig. 6a). The mean 2009-2011 concentrations in April and September were 

0.04% and 0.05% for Na (not significantly different at p > 0.05) and 0.07 and 0.11% for Cl (significantly 

different at p < 0.05). Leaf Na and Cl concentrations were low and similar in the three irrigation treatments 

(Fig. 6b), indicating that these ions did not accumulate in the leaves when the peach trees were subject to 

these irrigation strategies.  

 

4. Discussion 

 

In relation to the FULL irrigation treatment, the 2008-2012 mean depths of saved water were 262 

mm (40% saving) in SDI and 56 mm (9% saving) in RDI. Thus, irrigation savings were very high with SDI 

and low with RDI. Water savings of similar magnitude using these deficit irrigation strategies were previously 

reported in the literature (Girona et al. 2003; Fereres and Soriano 2007; Ruiz Sanchez et al. 2010).       

The lower soil water content and higher soil salinity and sodicity values at 25 than at 0 cm from 

emitters (Fig. 1) are consistent with the localized LFs in drip irrigation systems that decrease radially with 

distance to emitters (Hanson 2012). Cle increased more (196%) than ECe and SARe (about 98%) at 25 cm 

from emitters because chloride does not precipitates in the soil with increases in soil salinity, whereas both 

ECe and SARe are affected by the selective precipitation of calcium minerals with increases in soil salinity. 

This chemical process results from the evapo-concentration of salts in the soil and explains the positive 

correlation between ECe and SARe indicating that soil salinization induced soil sodification. Similarly, the 

negative correlations between GWC and ECe, Cle and SARe indicate that the increases in soil salinity and 

sodicity were largely driven by ETc and the corresponding decreases in soil water content. Dehghanisanij et 

al. (2006) found a high and negative power-regression correlation between soil water content and soil 

salinity, showing that relatively small changes in water content could bring about considerable changes in 

salinity. 
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Both on a yearly and on a year-average basis, the more severe deficit irrigation treatment (SDI) 

provoked a higher soil salinization and sodification in the irrigation seasons then the FULL and RDI irrigation 

treatments. The high SDI September values, particularly at 25 cm from emitters (Table 3b)  could be 

potentially deleterious to peach trees in terms of yield (threshold ECe of 3.7 dS m-1 in soils with gypsum) and 

chloride toxicity (maximum permissible Cl without leaf injury of 10 to 25 meq L-1 in stone fruits), and to soils 

in terms of soil’s structural stability (slight to moderate reductions in rate of infiltration for a combination of 8.7 

or 10.6 SARe and 1.1 EC irrigation water) (FAO 1985). However, the highest September values decreased 

in the non-irrigation seasons (Fig. 2), so that peach trees and soils were subject to lower soil salinity and 

sodicity values in other periods of the year.      

Overall, the seasonal variation of soil salinity and sodicity showed that they increased in the irrigation 

season and decreased in the non-irrigation season. The higher soil salinity and sodicity increases were 

observed in 2009, when P, I and LF were lower (Table 1) and  Fc was higher than in 2010-2012. These 

results are in agreement with findings of Melgar et al. (2009) showing that salts were leached by rainfall 

occurring at the end of the irrigation period in southern Spain, with a Mediterranean climate where the 

average mean annual precipitation was 702 mm. Results reported by Intrigliolo and Castel (2011) showed 

similar levels of soil salinity (ECe of about 0.7 dS m-1 measured in winter at the end of the 7-years 

experiment) in the control treatment (watered at 100% ETc) and in the more severe deficit-irrigated treatment 

(33% water saving with respect to the control treatment), indicating that in conditions of relatively low salt 

concentrations (EC irrigation water = 1.1 dS m-1), well drained soils and high rainfall in autumn (about 200 

mm), deficit irrigation applied during seven consecutive years did not increase soil salinity in the root zone of 

a drip irrigated Japanese plum tree orchard. Metochis (1999) reported that soil salinity under saline drip 

irrigation remained stable after nine years with rainfall about 400 mm year−1, whereas there was a high risk 

of soil salinization for rainfall values lower than 250 mm. Raine et al. (2007) indicated that there is sufficient 

evidence to suggest that in situations of point water applications and associated salt distribution, rainfall 

could be advantageously used in displacing salts and moving them below the root zone. Domínguez et al 

(2011) indicated that according to results with the MOPECO-Salt model, deficit irrigation strategies without 

LF are remediable if the off-season rainfall is sufficient to leach out the salts supplied with irrigation water. 

Kaman et al (2006) evaluated soil salinization under full irrigation and partial root zone drying (irrigation 

water reduced by 50% of full irrigation) in tomato and cotton irrigated with a good-quality water (EC = 0.4 dS 

m-1) and concluded that although soil salinity at harvest under partial root zone drying was 35% higher 

compared to full irrigation, there will be no risk of salt accumulation and decreased yields if soils initially have 

no salinity problems and available irrigation water is of good quality. 
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The significant correlations between soil salinity and sodicity changes and field-wide WD (positive 

correlation) and LF (negative correlation) indicate that they are suitable parameters to estimate the required 

irrigation depths for soil salinity and sodicity control. Based on the equations presented in Fig. 4, field-wide 

WD values of -35 to -100 mm and field-wide LF values of 0.10 to 0.16 would be needed to avoid soil 

salinization and sodification risks (i.e., ∆ ≤ 0) in this peach orchard which is drip irrigated with moderately 

saline irrigation waters. The values obtained in the non irrigation season (NIS in Table 1) were similar or 

lower (WD) and higher (LF) than the estimated WD and LF values obtained with the equations presented in 

Fig. 4, justifying the lack of significant salinization and sodification trends during the studied period (Fig. 2). 

These equations depend on soil, climate and irrigation characteristics, and should be developed on a case 

by case basis. It is interesting to notice that even though LF and WD vary with distance to emitters in drip 

irrigation systems (Hanson 2012), and although salt concentrations in irrigation and precipitation may be 

different by one order of magnitude or higher (i.e., salt leaching per volume of water would be more efficient 

for precipitation than for irrigation waters), these easily obtainable field-wide LF and WD parameters may be 

satisfactorily applied to assess trends on the accumulation or leaching of salts in the crop’s root zone. 

In relation to the response of peach trees to soil salinity, the results were not conclusive due to large 

data scattering. Nevertheless, Fig. 5 suggests that the relative productivity tended to decrease with soil 

salinity, so that all the observations (with two exceptions) were below the relative productivity of 100% for 

ECe values above 4 dS m-1. Hoffman et al. (1989) reported that peach fruit weight and the number of peach 

fruits per tree were reduced by about 50% at an ECe, dominated by chloride salts, of about 3 dS m-1. The 

results obtained in our work (data not given) show that fruit weight was independent of soil salinity, whereas 

the number of peach fruits per tree was significantly reduced (p < 0.05) by soil salinity, so that the maximum 

decreases obtained at 5 dS m-1 in this gypsum-rich soil (equivalent to about 3 dS m-1 in chloride-dominated 

soils) were of the same order of magnitude as those reported by these authors. Overall, our tentative results 

suggest that the relative productivity of peach trees tended to decrease above a threshold ECe value of 

about 4 dS m-1 (i.e., similar to the threshold ECe of 3.7 dS m-1 reported by FAO (1985) in soils with gypsum, 

Fig. 5) and that these decreases could be ascribed to decreases in the number of fruits per tree rather than 

to decreases in fruit weight.  

Leaf Na and Cl concentrations were similar in the three irrigation treatments and were well below 

levels reported as toxic in fruit trees (0.2 to 0.5% Na and 0.5 to 1% Cl as reported by Bernstein 1965, 

Hoffman et al. 1989 and Boland et al. 1993). The higher Cl than Na levels in the leaves indicate that peach 

trees were able to take less Na than Cl from the soil during the three studied irrigation seasons, and/or that 

Na was preferentially excluded from the leaves. Boland et al. (1997) also reported that leaf Na was 
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consistently lower than leaf Cl, but the former increased more rapidly after several years of exposure to salts. 

Overall, these results indicate that the Calrico peach trees grafted on GF-677 rootstock did not show leaf Na 

and Cl toxicity symptoms when subject to drip irrigation during the studied years using moderately saline 

waters.  

 

5. Conclusions 

 

A drip-irrigated peach orchard located in a semi-arid area of Northeastern Spain was subject during 

five years to three irrigation treatments (FULL irrigation, SDI or Sustained Deficit Irrigation, and RDI or 

Regulated Deficit Irrigation). In relation to FULL, irrigation water use was reduced by 40% in SDI and 9% in 

RDI, and irrigation water productivity was increased by 65% in SDI without adverse effects in peach tree 

response (i.e., yield, productivity and Na and Cl toxicity symptoms).  

Soil salinity (ECe, Cle) and sodicity (SARe) increased in the April to September irrigation seasons 

(low field-wide leaching fraction LF, high field-wide water deficit WD), particularly in the more severe deficit 

irrigation strategy (SDI). ECe, Cle and SARe at the end of the irrigation season were high and potentially 

deleterious to peach trees and soil’s structural stability. However, these values decreased by salt leaching in 

the October to March non-irrigation seasons (high LF and low WD). 

Despite the typical high spatial variability of LF and WD in drip irrigation systems, the changes in soil 

salinity and sodicity and the field-wide LF and WD at given periods were significantly correlated. Hence, 

these variables could be advantageously used on a case by case basis to estimate the required irrigation 

depths for root zone soil salinity and sodicity control.  

Overall, soil salinity and sodicity did not increase during the 2008-2012 study period because of salt 

leaching by precipitation in the low-ETc non irrigation seasons. Thus, climatic characteristics are critical 

when assessing the sustainability of deficit irrigation strategies in arid and semi-arid areas subject to 

irrigation waters of low to moderate salinity (EC of about 1 dS m-1).  

The ultimate conclusion is that without significant changes in the actual irrigation, soil and climate 

characteristics in the area, both SDI and RDI strategies could be advantageously used to save high to 

moderate irrigation volumes without compromising soil quality and peach orchard performance. 
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Table 1. Annual depths of irrigation (I), precipitation (P) and crop evapotranspiration (ETc), and field-wide 

leaching fraction (LF) and water deficit (WD) in each year (2008 to 2012) and irrigation treatment (FULL-full 

irrigation, SDI-sustained deficit irrigation, and RDI-regulated deficit irrigation). The mean 2008-2012 values 

and the mean 2008-2012 values for the October-March non-irrigation season (NIS) are also given. 

 

Year 
P 

(mm) 

ETc 

(mm) 

FULL SDI RDI 

I 

(mm) 
LF 

WD 

(mm) 

I 

(mm) 
LF 

WD 

(mm) 

I 

(mm) 
LF 

WD 

(mm) 

2008 355 823 390 -0.11 79 209 -0.46 260 328 -0.21 141 

2009 277 903 543 -0.10 83 305 -0.55 321 516 -0.14 110 

2010 315 877 734 0.16 -172 489 -0.09 73 682 0.12 -121 

2011 347 1007 740 0.07 -80 429 -0.30 232 675 0.01 -15 

2012 298 1055 831 0.07 -74 499 -0.32 258 759 0.00 -1 

2008-2012 

     Mean 

     NIS 

 

318 

148 

 

933 

148 

 

648 

56 

 

0.03 

0.27 

 

-33 

-56 

 

386 

31 

 

-0.33 

0.18 

 

229 

-32 

 

592 

55 

 

-0.02 

0.27 

 

23 

-55 
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Table 2. Gravimetric soil water content (GWC) and soil saturation extract electrical conductivity (ECe), 

chloride concentration (Cle) and sodium adsorption ratio (SARe) measured in years 2008-2012: mean 

values of the 120 soil samples taken in each year (except in 2008, where 48 samples were taken) at 0-60 cm 

soil depth in the three irrigation treatments (FULL, SDI and RDI), the two distances to emitters (0 and 25 cm) 

and the two sampling dates (April and September). 

 

 2008 2009 2010 2011 2012 

GWC (%) --- 17.1 21.9 22.9 17.0 

ECe (dS m-1) 3.9 5.4 4.7 4.2 4.8 

Cle (meq l-1) --- 27.6 18.0 17.4 27.3 

SARe [(mmol l-1)0.5] --- 7.4 6.9 5.7 8.0 
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Table 3. Gravimetric soil water content (GWC) and soil saturation extract electrical conductivity (ECe), 

chloride concentration (Cle) and sodium adsorption ratio (SARe) measured in the irrigation treatments FULL 

(full irrigation), SDI (sustained deficit irrigation) and RDI (regulated deficit irrigation): (a) mean values of the 

479 soil samples taken in years 2009-2012 at 0-60 cm soil depth, the two distances to emitters (0 and 25 

cm) and the two sampling dates (April and September); (b) mean values of the 120 soil samples taken in 

years 2009-2012 at 0-60 cm soil depth, 25 cm distance to emitters and September sampling date. For each 

variable, values with different letters are significantly different at p < 0.05. 

 

 
(a) all soil samples 

(479) 

(b) soil samples taken in September 

at 25 cm from emitters (120) 

 FULL SDI RDI FULL SDI RDI 

GWC (%) 20.7 a 17.9 b  20.6 a 18.9 a 15.5 b 19.2 a 

ECe (dS m-1) 4.8 a 4.9 a 4.7 a 6.6 a 7.2 a 6.2 a 

Cle (meq l-1) 22.0 a 24.5 a 21.3 a 37.9 ab 43.8 a 33.4 b 

SARe [(mmol l-1)0.5] 6.7 a 7.7 b 6.5 a 9.7 ab 10.6 a 9.0 b 
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Table 4. Yield, fruit weight (FW), number of fruits (NF), trunk cross sectional area (TCSA), yield productivity 

(YPR) and irrigation water productivity (IWP) measured at harvest in the irrigation treatments FULL (full 

irrigation), SDI (sustained deficit irrigation) and RDI (regulated deficit irrigation): mean values of the two 

control trees measured in 2008 and the ten control trees measured in 2009-2012 in each irrigation treatment. 

For each variable, values with different letters are significantly different at p < 0.05. 

 

 FULL SDI RDI 

Yield (kg tree-1) 24.5 a 24.6 a 24.1 a 

FW (g fruit-1) 197 a 179 a 191 a 

NF (No. tree-1) 125 a 140 a 129 a 

TCSA (cm2) 79.1 a 77.7 a 73.7 a 

YPR (kg tree-1 cm-2 TCSA) 0.34 a 0.37 a 0.36 a 

IWP (g tree-1 mm-1 water) 37 a  63 b  39 a  
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Fig. 1. Mean (2009-2012 years, irrigation treatments FULL, SDI and RDI, and April and September sampling 

dates) gravimetric soil water content (GWC), soil salinity (ECe), chloride concentration (Cle) and sodicity 

(SARe) measured at 0 and 25 cm distances from emitters. The percent changes of the values measured at 

25 cm relative to the values measured at 0 cm are also given. 



 24

0

2

4

6

8

Jun-08 Sep-08 Apr-09 Sep-09 Apr-10 Sep-10 Apr-11 Sep-11Feb-12 Sep-12

Soil sampling (month-year)

E
C

e 
(d

S
 m

-1
)

FULL SDI

43%

77%

149%

125%

20%

- 5%

54%

6% -16%

-23%

-32%

-42%

-37%

-42%
-31%

-16%

26%

5%

0

10

20

30

40

50

Apr-09 Sep-09 Apr-10 Sep-10 Apr-11 Sep-11 Feb-12 Sep-12

Soil sampling (month-year)

C
le

 (m
eq

 l-1
) 92%

20%

58%

13%

349%

261%

-27%

-15%

-65%

-64%

-26%

-40% 72%

24%

0

2

4

6

8

10

12

Apr-09 Sep-09 Apr-10 Sep-10 Apr-11 Sep-11 Feb-12 Sep-12

Soil sampling (month-year)

S
A

R
e 

[(m
m

ol
 l-1

)0.
5 ] 

47%

10%

7%

-6%

168%

113%

-16%

- 7%

-36%

-27%

-19%

-33%

22%

42%

 
 
Fig. 2. Mean soil salinity (ECe), chloride concentration (Cle) and sodicity (SARe) measured in the irrigation 

treatments FULL (full irrigation) and SDI (sustained deficit irrigation) during the studied years. The percent 

ECe, Cle and SARe changes at the beginning (end) relative to the values at the end (beginning) of each 

irrigation season are also given. 
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Fig. 3. Mean (2009-2012 years, 0 and 25 cm from emitters) gravimetric soil water content (GWC), soil 

salinity (ECe), chloride concentration (Cle) and sodicity (SARe) measured in the irrigation treatments FULL 

(full irrigation), SDI (sustained deficit irrigation) and RDI (regulated deficit irrigation) at the beginning (April) 

and end (September) of the irrigation season. The percent changes of the values measured in September 

relative to the values measured in April are also given. 
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Fig. 4. Relationships and linear regression equations between changes in soil salinity (∆ECe), chloride 

concentration (∆Cle) and sodicity (∆SARe) measured between sampling dates, and field-wide Water Deficits 

(WD) and leaching fractions (LF) calculated for the periods between sampling dates. ∆ is given in terms of 

percent change per day at the end of each period between sampling dates relative to the values at the 

beginning. 
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Fig. 5. Relationships between relative productivity of peach trees and soil salinity (mean ECe of soil samples 

taken at 0-60 cm depth and at 0 cm distance to emitters in each year). The FAO piecewise linear response 

model of peach to soil salinity in gypsum-rich soils is also represented for comparison purposes. 
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Fig. 6. Leaf Na and Cl concentrations measured at the beginning (April) and end (September) of (a) each 

2009-2011 irrigation season, and (b) each irrigation treatment FUL (full irrigation), SDI (sustained deficit 

irrigation) and RDI (regulated deficit irrigation). Vertical bars represent one standard deviation. 

 


