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Summary  30 

 31 

During a study of “tunta” (frozen-dry potato) production process in Peru a strain 32 

named LMT03T was isolated from the grasses straw in which the potato are dried. 33 

This strain was classified into genus Pseudomonas on the basis of the 16S rRNA gene 34 

sequence analysis, and the closest related species is Pseudomonas argentinensis 35 

CH01T with 99.3% identity in this gene and 96%, 92% and 86% identities in rpoB, 36 

rpoD and gyrB genes, respectively. The strain shows a polar single flagellum, like 37 

other related yellow pigment producing pseudomonads. The major quinone was Q9. 38 

The major fatty acids were 18:1 7c in summed 8 (40.82%), 16:1 6c/ 16:1 6c in 39 

summed feature 3 (23.72%) and C16:0 (15.20%). The strain produces oxidase but it 40 

does not produce gelatinase, indole, urease, arginine dihidrolase or -galactosidase. 41 

Catalase production was very weak after 28 and 48h incubation on nutrient agar 42 

medium. Nitrate reduction was negative. It does not hydrolyse aesculin. The G+C 43 

DNA content was 57.8 mol %. DNA-DNA hybridization results showed lower than 44 

52% relatedness with respect to the type strain of Pseudomonas argentinensis CH01T. 45 

These results together with other phenotypic characteristics support the definition of a 46 

new species within genus Pseudomonas, for which the name P. punonensis sp. nov. is 47 

proposed. The type strain is LMT03T = M4PAPS15 T (LMG 26839T, CECT 8089T).  48 

49 
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Bitter potatoes (Solanum juzepczukii and Solanum curtilobum) play a definitive role 50 

in the balance of the fragile ecosystem of the Altiplano, because they can resist frost, 51 

(up to -5 or -7 °C), drought and grow up to 4200 m. Since ancestral times, these 52 

potato varieties were domesticated by the ancient Andean people belonging to the 53 

aymara culture, who also invented the process of dehydration and freezing potatoes 54 

for comsumption and conservation, as bitter potatoes can not be consumed fresh due 55 

to its high content of glycoalkaloids, process named “tunta”. The "tunta", elaborated 56 

in the southern highlands of Peru and northern Bolivia, is traditionally obtained from 57 

frozen potato tubers in the cold bitter frost, its immersion in river pools for periods 58 

between 15 to 20 days, drying, shelling and a final freeze. The strain LMT03T was 59 

isolated during a process for evaluating the microbiological quality control of this 60 

manufacturing chain. The organism was found in certain grasses grown in moderate to 61 

strongly acidic soils pH 5.0 - 5.5 from the Andean Churomaquera community in the 62 

province of El Collao (Puno, Peru) at 3860 m, used as bedding for the exposure of 63 

potatoes to the frost. For isolation, 10g of these grasses were submerged in 90 mL 64 

peptone water 0.1% and shaken thoroughly. 1 mL aliquots were inoculated into 65 

asparagine broth tubes and incubated at 28ºC for seven days, and tubes with positive 66 

growth were streaked in cetrimide agar and incubated at 28ºC for 48h. The strain 67 

LMT03T was classified into genus Pseudomonas after 16S rRNA gene analysis and 68 

the phylogenetic, chemotaxonomic and phenotypic analysis showed that it represents 69 

a novel species for which we propose the name Pseudomonas punonensis sp. nov.  70 

The cells were stained according to the Gram procedure described by Doetsch (1981). 71 

Motility was checked by phase-contrast microscopy after growing them in nutrient 72 

agar medium at 22°C for 48 h. The flagellation type was determined by electron 73 

microscopy after 48h incubation in TSA at 22°C as was previously described (Rivas 74 

et al., 2007). Strain LMT03T is Gram negative, rod-shaped (0.4-0.5 x 1.2-1.3m) and 75 

motile by a single polar flagellum (Figure S1 is available at IJSEM on-line). Cells 76 

grew as round translucent yellow coloured colonies on nutrient agar.  77 

For 16S rDNA sequencing and comparison analysis, DNA extraction, amplification 78 

and sequencing were performed as reported by Rivas et al. (2007). The amplification 79 

and partial sequencing of gyrB, rpoB and rpoD housekeeping genes was performed as 80 

described by Mulet et al. (2010), using the primers PsEG30F/PsEG790R for rpoD 81 

gene (Mulet et al. 2009), LAPS5F/LAPS27R for rpoB gene (Tayeb et al., 2005) and 82 

GyrBPUN1F (5’-AAGGAGCTGGTGYTGACC-3’) and GyrBPUN1R (5’-83 
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GCGTCGATCATCTTGCCG-3’) designed in this study for amplification of gyrB 84 

gene. 85 

The sequences obtained were compared with those from the GenBank using the 86 

BLASTN (Altschul et al., 1990) and EzTaxon (Chun et al., 2007) programs. For 87 

phylogenetic analysis sequences were aligned using the Clustal_X software 88 

(Thompson et al., 1997). The distances were calculated according to Kimura´s two-89 

parameter model (Kimura, 1980). Phylogenetic trees of 16S rRNA were inferred 90 

using the neighbour-joining analysis (NJ, Saitou & Nei, 1987), and maximum 91 

likelihood (ML; Rogers & Swofford, 1998). MEGA5 software (Tamura et al., 2011) 92 

was used for all analyses.  93 

The comparison of the 16S rRNA gene sequence of strain LMT03T against the type 94 

strains of bacterial species recorded in the EzTaxon database showed that the new 95 

strain belong to genus Pseudomonas being P. argentinensis CH01T its closest relative 96 

with 99.3% identity (11 different nucleotides). Other related species are P. straminea 97 

IAM 1598T and P. flavescens B62T with 98.8% (17 different nucleotides) and 98.5% 98 

(22 different nucleotides) identities, respectively. The remaining species of genus 99 

Pseudomonas presented identities lower than 98.5%. All the species showing more 100 

than 97% identity in the 16S rRNA gene as well as the type species of the genus, P. 101 

aeruginosa LMG 1242T, were included in the phylogenetic analysis. The NJ 102 

phylogenetic tree (figure 1) showed that strain LMT03T occupied a branch related 103 

with a cluster formed by P. argentinensis CH01T, P. straminea IAM 1598T and P. 104 

flavescens B62T. Similar results were obtained after ML phylogenetic analysis (data 105 

not shown). 106 

Additionally to the 16S rRNA gene, three housekeeping genes widely used in the 107 

phylogenetic analysis of Pseudomonas species were studied in this work (Tayeb et al., 108 

2005; Mulet et al., 2009, 2010). In agreement with the results of the 16S rRNA gene 109 

analysis, the phylogenies obtained with these housekeeping genes also show the 110 

affiliation of LMT03 as a separated species within the P. straminea group. The 111 

concatenated rpoD, rpoB and gyrB genes phylogenetic tree (figure 2) showed that 112 

LMT03T cluster together with the type strains of P. argentinensis, P. straminea and P. 113 

flavescens, being P. argentinensis the closest related species (figure 2). The identities 114 

of rpoD gene calculated from pairwise distances matrix done by Mega 5.0 program 115 

were 91.6% with respect to P. argentinensis and P. straminea and 86% with respect to 116 

P. flavescens. For rpoB gene, the identities were 95.8%, 90.5% and 90.7% 117 
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respectively, and for gyrB gene 86%, 87.8% and 89%, respectively. These values are 118 

similar or lower than those found among several species of genus Pseudomonas. For 119 

example, in the case of rpoD gene, P. jessenii showed about 92% identity with respect 120 

to P. vancouverensis, P.moorei and P. mohnii; P. reinekii showed 94% with respect to 121 

P.moorei and P. mohnii, P.moorei and P. mohnii showed 96% identity and P. 122 

koreensis and P. moraviensis 93.7% identity. In the rpoB gene P. vancouverensis and 123 

P. mohnii have 95.6% identity. P.moorei and P. mohnii, P. jessenii and P. reinekii, P. 124 

koreensis and P. moraviensis and P. vancouverensis, P. jessenii and P. reinekii 125 

showed about 97% identity. All these species showed values ranging from 89% to 126 

97% in the gyrB gene among them. Therefore the results of the rpoD, rpoB and gyrB 127 

gene analysis also suggested that strain LMT03T belongs to an undescribed species of 128 

Pseudomonas. 129 

DNA-DNA hybridization was carried out by the method of Ezaki et al. (1989), 130 

following the recommendations of Willems et al. (2001). LMT03T was hybridized 131 

with P. argentinensis CH01T and P. argentinensis PA01, and after four replicates less 132 

than 52% hybridization was obtained in both cases. LMT03T showed a mean value of 133 

51% (47/56 reciprocal values) with respect to CH01T and 46% (42/50 reciprocal 134 

values) with respect to PA01. Therefore the strain LMT03T represents a different 135 

species within genus Pseudomonas when the recommendation of a threshold value of 136 

70% DNA-DNA similarity for definition of a bacterial species is considered (Wayne 137 

et al., 1987).  138 

For base composition analysis, DNA was prepared according to Chun & Goodfellow 139 

(1995). The mol % G+C content of DNA was determined using the thermal 140 

denaturation method (Mandel & Marmur, 1968). The G+C content of strain LMT03T 141 

was 57.8 mol %. These values are similar to those obtained for P. argentinenis and 142 

related species (Peix et al., 2005). 143 

The cellular fatty acids were analysed by using the Microbial Identification System 144 

(MIDI; Microbial ID) Sherlock 6.1 and the library RTSBA6 according to the technical 145 

instructions provided by this system (Sasser, 1990). P. punonensis LMT03T was 146 

grown on TSA plates (Becton Dikinson, BBL) for 24h at 28°C as was previously 147 

described for P. argentinensis CH01T, P. straminea IAM 1598T and P. flavescens 148 

DSM12071T. The major fatty acids of strain LMT03T were 18:1 7c in summed 8 149 

(40.82%), 16:1 6c/ 16:1 6c in summed feature 3 (23.72%) and C16:0 (15.20%). As 150 
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expected, all the relatives clustering in the same phylogenetic group that strain 151 

LMT03T shared similar fatty acid profiles (Table 1), although slight differences were 152 

found in the amounts of C10:0 3OH, C12:0 3OH and C16:0. Therefore LMT03T has the 153 

three fatty acids typically present in genus Pseudomonas according to Palleroni 154 

(2005) which are C10:0 3OH, C12:0 and C12:0 3OH. 155 

The strain LMT03T was cultivated for 24h in TSA plates (Becton Dikinson, BBL) at 156 

28°C to obtain the cell mass required for quinone analysis that was carried out by the 157 

Identification Service and Dr. Brian Tindall at DSMZ (Braunschweig, Germany) from 158 

freeze dried cells using the methods described by Tindall (1990a; 1990b). The novel 159 

isolate LMT03T contained Q9 as major quinone (96%) and low levels of Q8 (4%). 160 

The presence of Q9 as major quinone is in agreement with the results obtained in the 161 

species of genus Pseudomonas (Palleroni, 2005). 162 

For pigment analysis, cells were grown in King B agar and nutrient agar, and testing 163 

for pigment production and spectral characteristics was performed by extraction with 164 

methanol according to Hildebrand et al. (1994), using a visible-UV Kontron Uvikon 165 

860 spectrophotometer. The spectral analysis of the methanol-extracted yellow 166 

pigment of strain LMT03T revealed a major peak at 446 nm, the same absorbance 167 

position of the yellow pigment of P. flavescens (Hildebrand et al. 1994) and slightly 168 

different to that of the closest relative P. argentinensis, whose major peak was at 442 169 

nm (Peix et al., 2005), revealing high similarity of yellow-insoluble pigments in this 170 

phylogenetic subcluster of genus Pseudomonas. As for the fluorescent pigment 171 

analysis, the spectral study of supernatants from King's B broth cultures revealed a 172 

peak at 334 nm, which is also in the range found for absorption peaks of other 173 

fluorescent Pseudomonas species such as P. argentinensis (Peix et al., 2005) or P. 174 

flavescens (Hildebrand et al., 1994).  175 

The physiological and biochemical tests were performed as previously described 176 

(Peix et al., 2005). Additionally API 20NE, API ID32GN and API 50CH 177 

(BioMérieux, France) were used following the manufacturer’s instructions. The 178 

results of API 20NE and API ID32GN and API 50CH were recorded after 48h 179 

incubation at 28ºC. Phenotypic characteristics of the new species are reported below 180 

in the species description and the differences with respect to the closest Pseudomonas 181 

species are recorded in Table 2. The phenotypic characteristics of strain LMT03T 182 

support its classification within genus Pseudomonas since it is a motile Gram negative 183 

rod strictly aerobic, catalase positive (weak) and oxidase positive and produces a 184 
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fluorescent pigment typical of this genus (Hildebrand et al., 1994). Nevertheless as 185 

was stated by Palleroni (2005) these characteristics do not allow an absolute 186 

differentiation of genus Pseudomonas to other ribosomal RNA groups of aerobic 187 

‘pseudomonads’. The analysis of the 16S rRNA genes and that of chemotaxonomic 188 

characteristics such as fatty acids and ubiquinone composition are necessary for this 189 

purpose (Palleroni, 2005). 190 

Therefore, from the analysis of all phylogenetic, chemotaxonomic and phenotypic 191 

data, it can be concluded that LMT03T represents a new species within genus 192 

Pseudomonas, for which we propose the name Pseudomonas punonensis sp. nov.  193 

 194 

Description of Pseudomonas punonensis sp. nov. 195 

Pseudomonas punonensis (pu.no.nen'sis. N.L. fem. adj. punonensis, of or belonging to 196 

Puno, a region of Peru where the type strain was isolated) 197 

Gram negative, strictly aerobic, non-spore forming rod-shaped cells of 1.2-1.3m in 198 

length and 0.4-0.5 m in diameter, motile by a single polar flagellum. Colonies 199 

morphology on nutrient agar are circular convex, yellow, translucid and usually 0.5 to 200 

2.5 mm in diameter within 2 days growth at 25°C. It grows at 5ºC but not at 41ºC and 201 

pH range for growth is 5 to 9. A diffusible fluorescent pigment is produced on King B 202 

medium. Strictly aerobic with oxidative metabolism and no fermentation of sugars in 203 

peptone media. The major quinone was Q9. The major fatty acids were 18:1 7c in 204 

summed 8, 16:1 6c/ 16:1 6c in summed feature 3 and C16:0. Oxidase positive and 205 

catalase weakly positive. The arginine dihydrolase system is not present. Urease, 206 

indol and –galactosidase are not produced. Nitrate reduction and esculine hydrolysis 207 

were negative. Assimilation of glucose, L-arabinose, mannitol, glycerol, galactose, 208 

fructose, mannose, D-sucrose, turanose, gluconate, caprate, malate, citrate, itaconate, 209 

malonate, acetate, lactate, valerate, 3-hydroxybenzoate, 4-hydroxybutyrate, L-alanine, 210 

L-serine and L-proline was positive. Assimilation of N-acetyl-glucosamine, D-211 

maltose, L-rhamnose, inositol, salicine, melibiose, L-fucose, sorbitol, glycogen, 212 

erythritol, L-xylose, D-xylose, adonitol, methyl--D-xyloside, methyl--D-glucoside, 213 

methyl--D-mannoside, dulcitol, amygdaline, arbutine, cellobiose, lactose, trehalose, 214 

melezitose, raffinose, starch, inulin, xylitol, gentiobiose, caprate, adipate, 215 

phenylacetate, L-histidine, 2 and 5-keto-gluconate, suberate, 3-hydroxybenzoate was 216 

negative. Assimilation of D-ribose and propionate is weak. G+C base composition 217 
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was 57.8 mol%. The type strain is LMT03T (LMG 26839T, CECT 8089T) that was 218 

isolated from straw in Peru.  219 
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Figure legends: 
 

Figure 1. Neighbour-joining tree based on nearly complete 16S rRNA gene sequences 

of Pseudomonas punonensis LMT03T and closely related Pseudomonas species. The 

significance of each branch is indicated by a bootstrap value calculated for 1000 

subsets. Bar, 2 nt substitutions per 100 nt.  

 

Figure 2. Neighbour-joining tree based on concatenated partial rpoD, rpoB and gyrB 

gene sequences of Pseudomonas punonensis LMT03T and closely related 

Pseudomonas species. The significance of each branch is indicated by a bootstrap 

value calculated for 1000 subsets. Bar, 2 nt substitutions per 100 nt. 
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 Table 1. Cellular fatty acid composition (in percentage) of P. punonensis LMT03T, its 
closest related species and the type species of the genus Pseudomonas. Data for P. 
argentinensis CH01T (LMG22563T), P. straminea IAM 1598T and P. flavescens B62T 
(LMG18387T) were obtained in the same conditions by Peix et al. (2005). Data for P. 
aeruginosa KCTC1750T are from Xiao et al. (2009) in the same conditions. nd: no detected, 
tr: traces. Summed feature 3: C16:1 7c/16:1 6c. Summed feature 8: C18:1 7c.  

 
Fatty acids P. punonensis P. argentinensis P. straminea P. flavescens P. aeruginosa 
10:0 3OH 4.83 2.40 3.91 3.74 3.6 
11:0 3OH 0.93 0.10 nd nd nd 
12:0 2OH nd 0.09 0.21 nd 3.7 
12:0 3OH 4.54 2.58 3.57 3.55 4.5 
10:0 0.14 0.09 0.20 nd tr 
11:0 nd 0.09 nd nd nd 
12:0 8.31 7.88 9.58 9.23 4.8 
13:0 nd 0.08 nd nd nd 
14:0 0.56 0.69 0.78 0.71 1.3 
15:1 6c 0.15 0.14 nd nd nd 
15:0 nd 0.97 nd nd tr 
16:0 15.20 19.69 17.63 19.75 20.5 
17:1 nd 0.73 0.54 0.31 nd 
17:0 0.27 0.52 0.36 nd tr 
18:0 0.58 0.51 0.52 0.78 tr 
Summed feature 3 23.72 21.34 22.40 22.39 20.0 
Summed feature 8 40.82 41.52 39.73 38.51 38.9 
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Table 2. Differential phenotypic characteristics among P. punonensis LMT03T, its 
phylogenetically closest related species and the type species of this genus P. 
aeruginosa. The type strains of P. argentinensis, P. straminea and P. flavescens were 
included in this study as reference and the data obtained coincide with those 
previously published in Peix et al., (2005), Uchino et al., (2000) and Hildebrand et al., 
(1994). Data for P. aeruginosa are from Palleroni (1984 and 2005). ‡Data from Xiao et 
al. (2009). ¥Data from Clark et al. (2006) for the type strain ATCC 10145T. +: 
positive, -: negative, v: variable, w: weak. *The production of catalase is very weak 
 
 P. punonensis P. argentinensis P. straminea P. flavescens P. aeruginosa
Catalase w* + + + + 
Non fluorescent 
yellow pigment  

+ + + + - 

Growth at:      
4°C + - + + - 
37°C + + w - + 
Nitrate reduction - + - - + 
Acid from:      
Glucose - - - + +‡ 
Assimilation of:      
D-malate + + - + v 
Trehalose - + - + - 
Sucrose + - - + - 
Turanose + - - - -¥ 
Valerate + + - - + 
L-histidine - + v + + 
L-alanine + + - + + 

 

 
 



Pseudomonas cremoricolorata NRIC 0181T (AB060136) 

Pseudomonas fulva IAM 1529T (D84015) 

Pseudomonas parafulva AJ 2129T (AB060132)

Pseudomonas putida DSM  291T (Z76667) 

Pseudomonas taiwanensis BCRC 17751T (EU103629)

Pseudomonas mosselii CIP 105259T (AF072688) 

Pseudomonas monteilii CIP 104883T (AF064458) 

Pseudomonas plecoglossicida FPC951T (AB009457) 

Pseudomonas vancouverensis ATCC 700688T (AJ011507) 

Pseudomonas moorei RW10T (AM293566 ) 

Pseudomonas mohnii Ipa-2T (AM293567) 

Pseudomonas koreensis Ps 9-14T (AF468452) 

Pseudomonas reinekei Mt-1T (AM293565) 

Pseudomonas jessenii CIP 105274T (AF068259) 

Pseudomonas moraviensis CCM 7280T (AY970952) 

Pseudomonas baetica a390T (FM201274) 

Pseudomonas benzenivorans DSM 8628T (FM208263) 

Pseudomonas punonensis M4PAPS15T (JQ344321)

Pseudomonas flavescens B62T (U01916) 

Pseudomonas argentinensis CH01T (AY691188) 

Pseudomonas straminea IAM 1598T (D84023) 

Pseudomonas alcaliphila AL15-21T (AB030583) 

Pseudomonas oleovorans subsp lubricantis RS1T (DQ842018) 

Pseudomonas toyotomiensis HT-3T (AB453701) 

Pseudomonas composti C2T (FN429930) 

Pseudomonas cuatrocienegasensis 1NT (EU791281) 

Pseudomonas aeruginosa LMG 1242T (Z76651)

Acinetobacter baumannii DSM 30007T (X81660) 

99

99

87

98
96

86

86

85
98

92
9981

96

94

95

97

0,01



Pseudomonas moorei CCUG 53114T (FN554489, FN554742, AM293560)

Pseudomonas mohnii CCUG 53115T (FN554487, FN554741, AM293561)

Pseudomonas reinekei CCUG 53116T (FN554508, FN554754, AM293559)

Pseudomonas vancouverensis ATCC 700688T (FN554517, AJ717473, FN554232)

Pseudomonas jessenii CIP 105274T (FN554473, AJ717447, FN554191)

Pseudomonas koreensis LMG 21318T (FN554476, FN554737, FN554194)

Pseudomonas moraviensis DSM 16007T (FN554490, FN554743, FN554206)

Pseudomonas putida LMG 1246T (HE586437, AJ717485, AB039483)

Pseudomonas cremoricolorata DSM 17059T (FN554462, AJ717476, FN554181)

Pseudomonas fulva IAM 1529T (AB039586, AJ717419, AB039395)

Pseudomonas parafulva DSM 117004T (FN554500, AJ717471, FN554216)

Pseudomonas mosselii  ATCC-BAA99T (FN554491, FN554744, FN554207)

Pseudomonas taiwanensis DSM 21245T (HE577796, HE577797, FJ418634)

Pseudomonas monteilii DSM 14164T (FN554488, AJ717455, FN554205)

Pseudomonas plecoglossicida CIP 106493T (FN554503, AJ717456, AB178854)

Pseudomonas toyotomiensis HT-3T (AB548145, AB548147,  AB494447)

Pseudomonas aeruginosa CCM 1960T (AJ633568, AJ717442, AJ633104)

Pseudomonas alcaliphila LMG 23134T (FN554448, AJ717463, FN554167)

Pseudomonas flavescens LMG 18387T (FN554465, AJ748201, FN554183)

Pseudomonas straminea IAM 1598T (AB039600,  FN554758, AB039410)

Pseudomonas argentinensis CH01T (FN554451 ,FN554728, FN554170)

Pseudomonas punonensis LMT03T (JX435103, JX435104, JX435105)

99

83

84

99

99

99

94

81

99

96

99

98

99
80

99

98

99

99

54

0.02



Figure S1. Electron micrograph of strain LMT03T showing the polar flagellum. Bar (1
cm), 0.1 m
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