

1	Plant Breeding
2	Short communication
3	
4	Combining Abilities in Maize for the Length of the Internode Basal Ring,
5	the Entry Point of the Mediterranean Corn Borer Larvae
6	
7	J. Barros*, R.A. Malvar, A. Butrón, and R. Santiago
8	
9	
10	Misión Biológica de Galicia, Spanish Council for Scientific Research. CSIC
11	Apartado 28, 36080
12	Pontevedra-Spain.
13	Phone +34986854800
14	Fax +34986 841362
15	
16	* Corresponding author jbarros@mbg.cesga.es

Abstract

19	Length of the internode basal ring (LIBR) in maize (Zea mays L.) is							
20	a morphological character that has been associated with resistance to							
21	Mediterranean corn borer (MCB), Sesamia nonagrioides Lef. The present							
22	study is the first research to evaluate the usefulness of this trait in breeding							
23	programs. Six maize hybrids, from a complete diallel set of four inbred lines							
24	(two resistant and two susceptible to MCB), were evaluated under early and							
25	late sowing conditions at three locations in Northwestern Spain. General and							
26	specific combining ability (GCA and SCA, respectively) for LIBR were							
27	estimated, and LIBR correlations with grain yield and other important							
28	agronomic traits were evaluated. Hybrid by environment interactions were							
29	not significant for LIBR and the sums of squares partitioning indicated a							
30	greater GCA effect (95%), suggesting that this trait is stable and shows							
31	important additive effects for this set of hybrids. Correlation coefficients							
32	indicate that selection for increasing LIBR could enhance grain yield and							
33	other related plant traits (height and silking), but also an increase in the							
34	MCB susceptibility. Based on the limited number genotypes evaluated,							
35	LIBR could be modified by selection; however, if LIBR is used as an							
36	indirect selection criterion to improve MCB resistance, some negative							
37	effects on yield may be expected.							
38								
39								
40								
41	Keywords: Zea mays, Sesamia nonagrioides, diallel cross combining ability,							
42	intercalary meristem, structural borer resistance.							

Introduction

44	The Mediterranean corn borer (MCB), Sesamia nonagrioides Lef.,
45	also called pink stem borer, is the most important pest of maize in
46	Northwestern Spain (Velasco et al., 2007). There is ample evidence to
47	suggest that morphological and structural maize defenses have a role as
48	resistant factors to borer attack (Malvar et al., 2008).
49	Length of the internode basal ring (LIBR) refers to the area located
50	between the node complex and the pulvinus line in the internode. The rind
51	tissue corresponding to this area is light green or white in color, contrasting
52	with the darker green color of the rest of the internode (Kiesselbach, 1999).
53	This region arises from the intercalary meristem at the base of the internode
54	and includes the youngest, least differentiated tissues. Cell walls of the
55	lower internode are physiologically younger and less developed (less
56	lignified) than those of the upper internode (Morrison et al., 1998; Jung et
57	al., 1998).
58	Neonate larvae of MCB feed arround the basal area of the internode
59	before penetrating into the stem (Butrón et al., 2002). Impact of LIBR was
60	evaluated previously by Santiago et al. (2003) who observed differences
61	between MCB susceptible and resistant inbred lines. Susceptible inbreds
62	had the largest LIBR, suggesting that the size and/or properties of this area
63	could be related to the ability of the larvae to enter the plant. Furthermore,
64	this character was highly related ($r = 0.84$, $P < 0.01$) with stem damage,
65	measured as tunnel length (Santiago et al., 2003). Current studies with the
66	synthetic variety EPS20 (originating from the US Corn Belt population

67 "Reid") showed a significant simple positive correlation (0.95) of LIBR and

resistance to MCB, measured as tunnel length, over seven cycles of

69 selection for resistance (unpublished data).

The relationship of LIBR with corn borer resistance suggests that 70 LIBR may be a useful indirect selection trait for resistance to MCB. There is 71 no information about inheritance of LIBR or its relationship with other 72 economically important traits. In addition, in the previous study LIBR was 73 only evaluated in a single environment. Therefore, the current study was 74 conducted to assess the usefulness of this trait in future selection programs. 75 Three objectives were evaluated: first, to estimate the general and specific 76 combining ability (GCA and SCA, respectively) of LIBR in a set of inbreds 77 previously evaluated for this trait; second, to determinate the stability of 78 79 LIBR among different environments; and third, to evaluate the relationship 80 of LIBR with important agronomic traits, such as grain yield, and pest resistant traits such as MCB tunnel length. 81

83	Materials and Methods				
84	Four unrelated inbred lines of maize (CM151, EP39, EP42 and				
85	EP47) from the germplasm collection of the Misión Biológica de Galicia				
86	(MBG), previously evaluated by Santiago et al. (2003) for LIBR, were				
87	selected for this study. Lines resistant to MCB (CM151 and EP39) had				
88	lower LIBR values, while susceptible lines (EP42 and EP47) had higher				
89	LIBR values in the previous study. Inbred lines were mated in 2006 to				
90	produce a complete diallel set of crosses excluding reciprocals. The six				
91	hybrids were evaluated in a randomized complete block design with three				
92	replicates. Field trials were grown in Pontevedra (Northwestern Spain) in				
93	2007 at three different locations (20, 50 and 300 meters above sea level) and				
94	two sowing dates (early and late). Each plot had two rows, with 15 plants				
95	per row, for a density of approximately 60,000 plants ha ⁻¹ .				
96	Data collected for each plot were days to 50 % silking (days from				
97	sowing to the date when 50% of plants showed silks), plant height (cm),				
98	kernel moisture at harvest (%), grain yield (weight of grain expressed as Mg				
99	ha ⁻¹ , adjusted to a kernel moisture of 140 g H_2O kg ⁻¹), LIBR (mm), and				
100	MCB tunnel length (cm). Tunnel length data were measured in the same				
101	hybrids and similar field trials in 2008 and 2009. Five typical plants from				
102	each experimental plot were randomly selected for recording observations				
103	on plant height and kernel moisture. The LIBR area was identified by its				
104	light green or white color, in contrast to the darker green color of the rest of				
105	the internode (Kiesselbach, 1999), and the LIBR was measured at the base				
106	of the fourth internode above ground with a Vernier caliper for 10 typical				
107	plants. The LIBR measurement was made in the middle of the long axis of				

the node cross section on one side of the stalk surface, after removing the 108 109 sheath (see Figure 1A in Santiago et al., 2003). Natural MCB infestation was evaluated as tunnel length at two sowing dates (early and late). Stems 110 111 of five plants were split into longitudinally and tunnel length was measured. Combined analyses of variance across environments were performed 112 considering environment, replication, genotype, and their interactions as 113 sources of variation. Each sowing date-location was considered one 114 environment. Genotypes were considered as fixed effects, while the 115 remaining sources of variation were considered as random effects. Variation 116 117 among hybrids of the diallel was further partitioned into GCA and SCA. Griffing's Method 4, Model I (fixed effects) (Griffing, 1956) was used to 118 determine GCA, SCA, and their interactions with environment for LIBR, 119 120 days to silking, plant height, kernel moisture, and grain yield. The diallel was analyzed using a program developed by Zhang and Kang (1997). Mean 121 122 comparisons were accomplished using Fisher's protected least significant difference (LSD) method. The phenotypic and genotypic correlations, and 123 their standard errors between pair of traits, were calculated as suggested by 124 Holland (2006). All analyses were performed using the SAS software 125 package (SAS Institute, 2007) 126

127

128	Results and Discussion						
129	The combined analysis of variance of the diallel indicated significant						
130	GCA effects for all traits except tunnel length. Because maize plants in the						
131	trials were not artificially infected with MCB larvae, the lack of significance						
132	of GCA for tunnel length was expected. Specific combining ability effects						
133	were significant (P<0.05) for silking and plant height. Interactions of GCA						
134	by environment were significant for days to silking, plant height, and grain						
135	yield while SCA by environment interactions were significant for silking,						
136	plant height, and kernel moisture (data not shown).						
137	Orthogonal subdivision of GCA and SCA effects showed that SCA						
138	explained 5% of the sum of squares due to hybrids while GCA effects						
139	explained 95% (data not shown). Consequently, most of the variation for						
140	LIBR among this set of hybrids was controlled by genes with additive gene						
141	action as opposed to other types of gene action (dominance, epistasis,						
142	overdominance, etc). In addition, there were no significant interactions with						
143	environment, indicating that genotypic differences for LIBR were						
144	environmentally stable.						
145	All hybrids obtained from the susceptible inbred line EP47 showed						
146	high values for LIBR, with the maximum (5.59 mm) observed in the						
147	resistant by susceptible EP39×EP47 hybrid. The LIBR values for that hybrid						
148	were not significantly different from the CM151×EP47 and EP42×EP47						
149	hybrids. Hybrids obtained from resistant inbred line CM151 showed the						
150	lowest values for LIBR, with lowest LIBR observed in resistant by resistant						
151	hybrid CM151×EP39. There were no significant differences in mean tunnel						
152	length among the hybrids under these natural infestation conditions.						

However, the resistant by resistantCM151×EP39 hybrid had the lowest(5.94 cm) mean tunnel length.

155	The hybrids EP42×EP47 and EP39×EP47 had the highest grain
156	yields (up to 7.34 Mg ha ⁻¹), and CM151×EP47 was not different from these
157	two highest yielding hybrids. The hybrid CM151×EP39 had the lowest yield
158	(5.5 Mg ha ⁻¹). The inbred EP47 was a parent in all the highest yielding
159	crosses and CM151 was a parent in the lowest yielding crosses. Inbred line
160	EP47 was the only inbred that had a significant positive GCA for LIBR
161	(0.49 mm), whereas CM151 had a significant negative GCA (-0.26 mm).
162	Previous resistance evaluations of these inbreds to MCB showed that
163	CM151 exhibited significantly less S. nonagrioides damage, lower larvae
164	incidence, and reduced larval growth than EP47 (Butrón et al., 1999; Ordás
165	et al., 2002); however, GCA effects for tunnel length were not significant in
166	the current study. Significant GCA effects for yield were detected for the
167	inbreds EP47 and CM151. Compared to the hybrid average, crosses
168	including EP47 and CM151 increased (1.02 Mg ha^{-1}) and reduced (0.62 Mg
169	ha ⁻¹) grain yield (Table 1), respectively. Although the inbred line CM151
170	may be a good parent in hybrid combination relative to MCB damage, its
171	negative effects on yield must be considered.
172	Concerning MCB damage, just natural infestation was possible in
173	order to prevent pest dispersion. To clarify the results, only the crosses
174	CM151 (resistant) × EP39 (resistant) and EP47 (susceptible) × EP42
175	(susceptible) are discussed. Damage was insignificant (means around 0.5
176	cm) for one location, therefore only results for two locations and the three
177	years evaluated are presented (Table 2). In general, the cross between

178	resistant lines (CM151×EP39) showed less damage than the cross between
179	susceptible lines (EP47×EP42), although just differences were significant in
180	2008 early sow and evaluation in location 1, and 2009 late sow and
181	evaluation in location 2 (Table 2). The results suggest, as previously
182	mentioned, that LIBR and MCB resistance could be negatively linked in
183	agreement with previous research (Santiago et al. 2003).
184	Both genotypic and phenotypic correlation coefficients among traits
185	were calculated. Maize LIBR had significant positive genotypic correlations
186	with grain yield (1.00) and silking (0.95). Phenotypic correlations were
187	significant and positive between LIBR and grain yield (0.49), plant height
188	(0.49), and silking (0.45) ; but no significant correlations of LBIR with
189	tunnel length were detected. Several studies showed that selection to
190	improve maize resistance to insect pests has been associated with
191	unfavorable responses in grain yield (Russell et al., 1979; Klenke et al.,
192	1986; Nyhus et al., 1989; Butrón et al., 2002; Sandoya et al., 2008). The
193	correlation coefficients indicate that selection for increasing LIBR could
194	enhance yield and its components (plant height and silking); however, the
195	resulting genotypes should be more susceptible to MCB (Santiago et al.,
196	2003). However, the resistant lines may be inherently lower yielding due to
197	factors not related to resistance to stem borers or length of LIBR. Evaluation
198	of more resistant and susceptible genotypes will be needed to determine if
199	the observed correlations are causal or simply due to limited genetic
200	sampling.
201	In conclusion, the importance of additive effects and the stability
202	over different environments of LIBR for the inbred lines studied indicate

203	that LIBR can be effectively modified and acceptable gain from selection
204	can be expected. In the inbred lines studied, we expect that selection for
205	increasing LIBR would increase yield and other important agronomic traits
206	such as plant height and silking, but also could increase susceptibility to
207	MCB. Future studies should establish if the LIBR-yield relationship is direct
208	or is dependant on other traits related with yield such as plant height or
209	vigor. With regard to corn borer resistance, these preliminary results suggest
210	that LIBR may be useful in breeding programs for MCB resistance.
211	

212	Acknowledgments
213	This research was supported by the National Plan for Research and
214	Development of Spain (Projects Cod. AGL2006-13140, AGL 2009-09611).
215	J. Barros acknowledges a grant from the Ministry of Science and Innovation
216	(Spain). R. Santiago acknowledges a postdoctoral contract "Juan de la
217	Cierva" partially financed by the European Social Fund.
218	

219	References					
220	Butrón, A., R.A. Malvar, P. Revilla, A. Ordás, and A. Álvarez, 1999:					
221	Resistance of maize inbreds to pink stem borer. Crop Science 39,					
222	102-107.					
223	Butrón, A., R.A. Malvar, P. Revilla, P. Soengas, and A. Ordás, 2002: Rind					
224	puncture resistance in maize: inheritance and relationship with					
225	resistance to pink stem borer attack. Plant breeding 121 , 378-382.					
226	Griffing, B., 1956: Concept of general and specific combining ability in					
227	relation to diallel crossing systems. Australian Journal of Biological					
228	Science 9 , 463-493.					
229	Holland, J.B., 2006: Estimating genotypic correlations and their standard					
230	errors using multivariate restricted maximum likelihood estimation with					
231	SAS Proc MIXED. Crop Science 46, 642-654.					
232	Jung, H.G., Morrison, T.A., Buxton, D.R., 1998: Degradability of cell-wall					
233	polysaccharides in maize internodes during stalk development. Crop					
234	Science 38 , 1047–1051.					
235	Kiesselbach, T.A., 1999: The structure and reproduction of corn. 50th					
236	Anniversary ed. Cold Spring Harbor Laboratory Press, New York.					
237	Klenke, J.R., W.A. Russell and W.D. Guthrie, 1986: Grain yield reduction					
238	caused by second-generation European corn borer in BS9 corn					
239	synthetic. Crop Science 26 , 859 - 863.					
240	Malvar, R.A., A. Butrón, B. Ordás and R. Santiago, 2008: Causes of natural					
241	resistance to stem borers in maize, In: E. N. B. a. P. V. Williams,					
242	(ed.) Crop Protection Research Advances. Nova Science Publishers,					
243	Inc., pp 57-100.					

244	Morrison, T.A., Jung, H.J.G., Buxton, D.R., Hatfield, R.D, 1998: Cell-wall
245	composition of maize internodes of varying maturity. Crop Science
246	38 , 455-460.
247	Nyhus, K.A., W.A. Russell and W.D. Guthrie, 1989: Changes in agronomic
248	traits associated with recurrent selection in two corn synthetics. Crop
249	Science 29 , 269-275.
250	Ordás, B., A. Butrón, P. Soengas, A. Ordás, and R.A., Malvar, 2002:
251	Antibiosis of the pith maize to Sesamia nonagrioides (Lepidoptera:
252	Noctuidae). Journal of Economic Entomology 95(5), 1044-1048.
253	Russell, W.A., G.D. Lawrance, and W.D. Guthrie., 1979: Effects of
254	recurrent selection for European corn borer resistance on other
255	agronomic characters in synthetic cultivars of maize. Maydica 24,
256	33-47.
257	SAS Institute, 2007: The SAS System. SAS Online Doc. HTML Format
258	Version Eight. Cary, North Carolina, SAS Institute Inc.
259	Sandoya, G., A. Butrón, A. Álvarez, A. Ordás, and R.A. Malvar, 2008:
260	Direct response of a maize synthetic to recurrent selection for
261	resistance to stem borers. Crop Science 48, 113-118.
262	Santiago, R., X.C. Souto, J. Sotelo, A. Butrón, and R.A. Malvar, 2003:
263	Relationship between maize stem structural characteristics and
264	resistance to pink stem borer (Lepidoptera: Noctuidae) attack.
265	Journal of Economic Entomology 96, 1563-1570.
266	Velasco, P., P. Revilla, L. Monetti, A. Butrón, A. Ordás, and R.A. Malvar,
267	2007: Corn borers (Lepidoptera : Noctuidae; Crambidae) in

- Northwestern Spain: Population dynamics and distribution. Maydica
 52, 195-203.
 Zhang, Y., and M.S. Kang, 1997: DIALLEL-SAS: A SAS Program for
 Griffing's Diallel Analyses. Agronomy Journal 89, 176-182.

Table 1. Estimates of General Combining Ability (GCA) and means for

274	tunnel length,	LIBR and	grain	yield :	from a	complete	diallel	of four	inbred
-----	----------------	----------	-------	---------	--------	----------	---------	---------	--------

lines of maize.

	General Combining Ability (GCA)					
Inbred	Tunnel length	LIBR	Grain Yield			
	(cm)	(mm)	(Mg ha ⁻¹⁾			
CM151 (R)	-0.30	-0.26*	-0.62*			
EP39 (R)	0.16	-0.13	-0.30			
EP42 (S)	0.95 -0.09		-0.08			
EP47 (S)	-0.80 0.4		1.02*			
	Means ¹					
Hybrid	Tunnel length	LIBR	Grain Yield			
	(cm)	(mm)	(Mg ha ⁻¹⁾			
CM151 (R) × EP39 (R)	5.94a	4.73c	5.38c			
CM151 (R) × EP42 (S)	10.22a	4.88c	6.11bc			
CM151 (R) × EP47 (S)	8.10a	5.53a	6.62ab			
EP39 (R) × EP42 (S)	9.23a	5.12b	6.31bc			
$EP39(R) \times EP47(S)$	8.98a	5.59a	7.34a			
$EP42(S) \times EP47(S)$	7.60a	5.53a	7.43a			

276

* GCA effects, significantly different from zero at P < 0.05.

²⁷⁸ ¹ Least Significant Difference (LSD) for LIBR was 0.25 mm and LSD for

279 grain yield was 1.03 Mg ha^{-1} .

280 Means within a column not sharing a common letter are significantly

different ($P \le 0.05$).

Table 2. Means for natural tunnel length (cm) in two locations for early and late sowing and evaluation in the resistant by resistant (CM151 \times

EP39) and susceptible by susceptible (EP42×EP47) hybrids during three years.

			Tunnel length (cm)					
			Year 2007		Year 2008		Year 2009	
Trials	Sowing	Tunnel Length	CM151 × EP39	$EP42 \times EP47$	CM151× EP39	$EP42 \times EP47$	CM151 × EP39	$EP42 \times EP47$
	Time	Evaluation	$(\mathbf{R} \times \mathbf{R})$	$(\mathbf{S} \times \mathbf{S})$	$(\mathbf{R} \times \mathbf{R})$	$(\mathbf{S} \times \mathbf{S})$	$(\mathbf{R} \times \mathbf{R})$	$(\mathbf{S} \times \mathbf{S})$
Location 1	Early	Early	5.3	21.0	3.3*	13.7*	13.3	16.4
	Early	Late	1.1	1.6	10.1	9.3	16.4	28.9
	Late	Early	3.3	1.0	5.1	11.5	12.5	15.9
	Late	Late	5.8	10.3	13.9	20.7	22.7	41.7
Location 2	Early	Early	9.0	14.0	12.5	14.3	5.2	9.7
	Late	Early	12.6	14.1	8.3	5.7	3.7	8.7
	Early	Late	18.0	15.0	2.7	7.2	2.2	15.1
	Late	Late	24.9	17.0	7.3	7.7	8.9*	20.9*

* Hybrid means within year, location, sowing time, and evaluation were statistically significant different at 5% level of probability