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ABSTRACT  

 

Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor 

molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, 

cysteine per se and its derivative molecules play roles in the redox signaling of processes 

occurring in various cellular compartments. Cysteine is synthesized during the sulfate 

assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-

acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts 

and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent 

years, significant progress has been made in Arabidopsis, in determining the specific roles of the 

OASTLs, and the metabolites produced by them. Thus, the discovery of novel enzymatic 

activities of the less abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-

sulfocysteine synthase activity, has provided new perspectives on their roles, besides their 

metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and 

chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the 

photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in 

the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is 

essential for root hair development and plant responses to pathogens. 
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INTRODUCTION 

 

Sulfur is a macronutrient essential for plant growth and development that constitutes 0.3-0.5% of 

the total dry weight of plants. The most abundant form of sulfur present in nature is sulfate that is 

taken up by plants, and reduced and assimilated into cysteine (Cys). Therefore, Cys is the first 

organic compound containing reduced sulfur synthesized by the plant (Takahashi et al., 2011). 

The importance of Cys in plants is defined not only by its role as an amino acid in proteins but 

also by its function as a precursor for a large number of essential bio-molecules (Figure 1). The 

thiol group of cysteine is susceptible to oxidation, rendering disulfide bridges, which are 

determinants of the structure and folding of proteins and, consequently, of their stability and 

function (Haag et al., 2012). In addition, some proteins may undergo reversible reduction / 

oxidation of these disulfide bridges as a mechanism of redox regulation of their functions 

(Buchanan and Balmer, 2005). Moreover, thiol groups of cysteines, often located in their active 

sites, are essential for catalysis in many enzymatic reactions, like for example, the papain-like 

cysteine proteases that have been implicated in numerous plant cell processes (Richau et al., 

2012). 

Another equally important characteristic of cysteine is that it is the precursor molecule from 

which numerous sulfur-containing metabolites that are necessary for the development of life are 

synthesized. Examples of such metabolites include the other proteinogenic amino acid 

methionine, vitamins, cofactors and Fe-S clusters (Droux, 2004; Van Hoewyk et al., 2008; Wirtz 

and Droux, 2005). Of particular interest is the antioxidant glutathione (GSH) (Figure 1), the 

tripeptide γ-glutamyl-cysteinyl-glycine, which is regarded as the major determinant of cellular 

redox homeostasis (Foyer and Noctor, 2011; Noctor et al., 2012). This property of GSH is based 

on the redox regulation of the thiol group of its containing cysteine. Similarly, other functions of 

GSH, such as its role in the plant response to adverse environmental conditions, can also be 

attributed to the high reactivity of its thiol group. Examples of such functions include heavy 

metal detoxification through the GSH-derived peptides phytochelatins (Mendoza-Cozatl et al., 

2011; Rea, 2012), or xenobiotic detoxification by GSH-conjugation via GSH-S-transferases 

(Dixon et al., 2002). Glutathione has also been implicated in the plant defense response to 

pathogens, along with the many other defense compounds formed in response to different biotic 

stresses, for example camalexin and glucosinolates (Rausch and Wachter, 2005). Recently, these 

latter defense metabolites involved in insect protection have been demonstrated to be essential in 
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the plant response to microbial pathogens as well (Bednarek et al., 2009; Clay et al., 2009). In all 

of these bio-molecules, their sulfur moieties, which act as functional groups, are derived from 

Cys, indicating that their biosynthetic pathways are intimately linked. Another metabolite that is 

closely linked to cysteine is the hormone ethylene (Figure 1), which is involved in many aspects 

of the plant life cycle, including seed germination, root hair development, seedling growth, leaf 

and petal abscission, climacteric fruit ripening, organ senescence, and the modulation of plant 

responses to stresses. Ethylene is synthesized in the cytosol from methionine via S-adenosyl-L-

methionine (SAM), which is converted to 1-aminocyclopropane-1-carboxylic acid (ACC), and 

ACC is converted to ethylene (Bleecker and Kende, 2000). For the reasons mentioned above, we 

can conclude that Cys occupies a central position in plant primary and secondary metabolism. 

The final inorganic sulfur compound produced by the assimilatory reduction of sulfate by 

photosynthetic organisms is sulfide, which is then incorporated into an amino acid skeleton to 

form cysteine (Takahashi et al., 2011). The biosynthesis of Cys is accomplished by the sequential 

reaction of two enzymes (Figure 1): serine acetyltransferase (SAT), which synthesizes the 

intermediary product O-acetylserine (OAS) from acetyl-CoA and serine, and O-

acetylserine(thiol)lyase (OASTL), which incorporates the sulfide to OAS, producing Cys, 

requiring pyridoxal-5’-phosphate as cofactor. Together, these enzymes form the hetero-

oligomeric cysteine synthase complex, initially described in bacteria and later studied extensively 

in plants. Protein interactions within the complex strongly modify the kinetic properties of SAT, 

enabling this enzyme to more efficiently synthesize OAS. OASTL, by contrast, is active in its 

abundant free form and exhibits greatly reduced activity when in a complex with SAT (Droux et 

al., 1998; Wirtz and Hell, 2006). The formation of this complex, which provides an effective 

mechanism to modulate cysteine production, is dependent on the relative available amounts of 

sulfide and OAS, and has consequently been considered a sensor of the intracellular sulfur state 

of the plant (Yi et al., 2010).  

Plant cells contain different SAT and OASTL enzymes depending on their location in the 

cytosol, plastid or mitochondrion, resulting in the presence of a variety of isoforms and different 

subcellular Cys pools. The model organism Arabidopsis thaliana is the most widely investigated 

plant, and five SAT (Howarth et al., 2003) and nine OASTL genes (Wirtz et al., 2004) have been 

identified in its genome. An in silico search for gene orthologs in various photosynthetic 

organisms indicates the presence of multiple SAT and OASTL orthologs, suggesting their 

organization to be similar to that of A. thaliana (Table 1). Additionally, it is evident that there is 
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no agreement among the numbers of SAT and OASTL genes within the same species, as there is 

always a higher proportion of OASTL genes, even in simple organisms such as moss or 

unicellular algae. This observation calls into question whether all OASTL enzymes form 

complexes with their SAT partners, or if instead, some OASTL enzymes have functions outside 

of an involvement in the primary cysteine biosynthesis pathway, as has been demonstrated in 

Arabidopsis.  

In A. thaliana, the most abundant OASTL genes at the transcriptional level encode the 

cytosolic OAS-A1 (At4g14880), the plastidial OAS-B (At2g43750) and the mitochondrial OAS-

C (At3g59760) isoforms. These proteins are considered authentic OASTLs because they catalyze 

the synthesis of cysteine from OAS and sulfide (Table 2). Another property that defines a true 

OASTL is the ability to interact with SAT, which has been demonstrated using various 

approaches (Bonner et al., 2005; Heeg et al., 2008; Jez and Dey, 2013). Very recently, it has been 

reported that at least a functional one of these major OASTLs in the pollen is required for the 

successful fertilization (Birke et al., 2013). The OASTL enzyme family includes an additional 

highly expressed isoform located in the mitochondria, CYS-C1 (At3g61440), that actually 

functions as a β-cyanoalanine synthase (CAS) (Hatzfeld et al., 2000; Yamaguchi et al., 2000). 

This enzyme catalyzes the conversion of cysteine and cyanide to hydrogen sulfide and β-

cyanoalanine, and plays an essential role in the detoxification of cyanide in the mitochondria for 

the maintenance of appropriate levels of cyanide for signaling in specific plant processes (Garcia 

et al., 2010), as described below. One of the OASTL genes, OAS-A2, does not produce a 

functional protein due to the presence of an in-frame stop codon and an unspliced intron within 

its gene sequence.  

The remaining OASTL proteins, the cytosolic CYS-D1 (At3g04940), CYS-D2 (At5g28020) 

and DES1 (At5g28030) and the plastidic CS26 (At3g03630), all expressed at considerably lower 

levels than the aforementioned proteins, were identified by sequence homology upon completion 

of the A. thaliana genome sequence. These proteins are thought to have auxiliary functions with 

respect to the major isoforms. Recent investigations of DES1 and CS26, however, have shed light 

on their functions and the enzymatic reactions they catalyze (Gotor et al., 2010). DES1 is a novel 

L-cysteine desulfhydrase located in the cytosol that catalyzes the desulfuration of cysteine to 

sulfide plus ammonia and pyruvate (Table 2) (Alvarez et al., 2010). This enzyme is essential in 

regulating the homeostasis of cysteine, as well as in modulating the generation of sulfide in the 

cytosol for signaling purposes (Alvarez et al., 2012b; Gotor et al., 2013; Romero et al., 2013), as 
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described later. Meanwhile, CS26 exhibits S-sulfocysteine synthase activity and catalyzes the 

incorporation of thiosulfate to OAS to form S-sulfocysteine, and we propose in this review to 

rename as SCS (Table 2). This activity, which plays an important role in chloroplast function, 

was recently discovered for the first time in plants, although it had previously been reported in 

bacteria (Bermudez et al., 2010). This enzyme appears to be essential to proper photosynthetic 

performance under long-day growth conditions and is thought to act as a sensor of the chloroplast 

redox status (Bermudez et al., 2012; Gotor and Romero, 2013), as described below. 

In the following sections, we will describe the current knowledge concerning the importance 

of cysteine and its derivative molecules in Arabidopsis thaliana. With a focus on separate cell 

compartments, we will unravel the role of these compounds in both the signaling and control of 

different plant processes.  

 

CYSTEINE IN THE CYTOSOL 

 

Independent investigations of the Arabidopsis OASTL and SAT gene families have demonstrated 

that the cytosol is the major site of cysteine synthesis (Haas et al., 2008; Heeg et al., 2008; 

Lopez-Martin et al., 2008a; Watanabe et al., 2008a; Watanabe et al., 2008b). Cysteine 

concentrations in the cytosol are estimated to be greater than 300 μM, whereas the other cell 

compartments each contain less than 10 μM cysteine (Krueger et al., 2009). Therefore, the 

cytosolic OASTL isoform OAS-A1 is the major contributor in cysteine biosynthesis (Figure 2). 

Cysteine can, however, be a very toxic molecule when present at concentrations above a certain 

threshold, as a result of its high reactivity. Thiols are easily oxidized to form species with sulfur 

in higher oxidation states, which subsequently inhibit enzyme activity; furthermore, cysteine 

reduces ferric iron at an exceptional high rate and promotes oxidative damage through the Fenton 

reaction (Jacob et al., 2003; Park and Imlay, 2003). Consequently, cysteine homeostasis must be 

precisely maintained in the cytosol. The recent identification of DES1 as a novel L-cysteine 

desulfhydrase (Alvarez et al., 2010), which catalyzes the desulfuration of L-cysteine to produce 

sulfide plus ammonia and pyruvate, (Figure 2) has led us to propose that the maintenance of 

cysteine homeostasis occurs via the coordination of OAS-A1 and DES1 enzymatic activities 

throughout the life cycle of the plant.  

Our suggestion of the coordinated functions of OAS-A1 and DES1, and the subsequent impact 

of this connection on plant metabolism, is based on the phenotypes of their corresponding null 
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mutants. Biochemical characterization of the T-DNA insertion mutants oas-a1 and des1 reveals 

that the total intracellular cysteine concentration is reduced by approximately 35% in the oas-a1 

mutant and increased by approximately 25% in the des1 mutant, relative to the wild type. It is 

plausible to think that the range of change of 35-25 % of the total intracellular cysteine is the 

maximum possible not to reach the toxic threshold. Considering the enzymatic reactions 

catalyzed by OAS-A1 and DES1, these observations were expected (Figure 2). Interestingly, the 

oas-a1 mutant plants are oxidatively stressed as a result of an imbalance between the generation 

and removal of ROS (Lopez-Martin et al., 2008a), and accordingly, the des1 mutant plants show 

enhanced antioxidant defenses, indicated by a significant decrease in ROS production (Alvarez et 

al., 2010). These characteristic phenotypes can be observed in vivo in plant tissues by monitoring 

the production of hydrogen peroxide, observing a significant ROS production in roots of oas-a1 

mutant, which is not detectable in either wild type or des1 roots. Moreover, H2O2 is a signaling 

molecule in programmed cell death (Dat et al., 2003), and patches of dead cells are visible in the 

leaves of oas-a1 mutant that are not observable in the wild type or des1 mutant leaves. 

Altogether, these findings indicate that cysteine is an important determinant of the antioxidative 

capacity of the cytosol in Arabidopsis (Alvarez et al., 2010; Lopez-Martin et al., 2008a; Lopez-

Martin et al., 2008b). Consequently, cysteine levels in the cytosol should influence all plant 

processes in which redox signaling plays a regulatory role. Thus, the mutation in DES1 leads to 

premature leaf senescence as is visible when des1 mutant plants are grown side by side with wild 

type plants (Figure 3). This early senescence is also evidenced at the cellular and transcriptional 

levels. The des1 mutant shows increased expression of senescence-associated genes such as 

SAG12, NAP and PR1, a transcriptional profile that is generally compatible with premature 

senescence, as well as an accumulation of de novo senescence-associated vacuoles (SAVs) in 

mesophyll cells. By contrast, transcriptomic analysis of the oas-a1 mutant shows significantly 

reduced expression of senescence-associated genes such as SAG12 and SEN1; furthermore, the 

presence of SAVs is undetectable (Alvarez et al., 2012a; Alvarez et al., 2010; Lopez-Martin et al., 

2008a). 

The statement that OAS-A1 and DES1 have opposing functions with regards to regulating 

cytosolic cysteine for redox signaling is further corroborated by the observation of opposing 

phenotypes in the null mutants upon exposure to adverse conditions. Under abiotic stress 

conditions such as Cd stress, the oas-a1 mutant shows marked sensitivity to the presence of Cd, 

indicated by its compromised viability at concentrations as low as 75 to 100 μM (Lopez-Martin 
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et al., 2008a). On the contrary, the des1 mutant shows a significantly increased tolerance to Cd, 

compared to wild type plants, at the high concentration of 250 μM (Alvarez et al., 2010). Thus, 

levels of cysteine in the cytosol profoundly affect the plant’s defense responses to abiotic stresses, 

and it is evident that increased cysteine to levels below the toxic threshold, induce stress 

tolerance. These results were previously observed when OAS-A1 was over-expressed in 

Arabidopsis, demonstrating that increased cysteine availability is responsible for enhanced 

cadmium tolerance and accumulation (Dominguez-Solis et al., 2001; Dominguez-Solis et al., 

2004).  

Analysis of the responses of the oas-a1 and des1 mutants to pathogen attack confirm, once 

again, the essential role of cysteine homeostasis in the cytosol, and the involvement of these two 

enzymes (OAS-A1 and DES1) in the control of this homeostasis (Alvarez et al., 2012a). In fact, 

these mutants show an altered basal resistance to pathogens, such that increased cytosolic 

cysteine content (observed in the des1 mutant) is associated with enhanced resistance to 

pathogens, whereas decreased cytosolic cysteine content (observed in the oas-a1 mutant) is 

associated with decreased resistance to pathogens. In the case of the des1 mutant, its behavior 

resembles that of constitutive systemic acquired resistance mutants, characterized by high 

resistance to biotrophic and necrotrophic pathogens, salicylic acid (SA) accumulation and 

WRKY54 and PR1 induction. On the contrary, the oas-a1 mutant is more sensitive to both types 

of pathogens, displays indistinguishable SA levels and induction of PR1of those of wild type and 

several WRKY genes are repressed. Moreover, the oas-a1 mutant lacks the hypersensitive 

response (HR) associated with effector-triggered immunity, suggesting that cytosolic cysteine has 

an essential role in the initiation of the HR response (Alvarez et al., 2012a). An independent 

investigation has also confirmed the existence of an interaction between OAS-A1 and 

components of plant immunity, which highlights the emerging role of cysteine metabolism in 

plant immunity (Tahir et al., 2013).  

In conclusion, accurate regulation of cytosolic cysteine homeostasis by the action of OAS-A1 

and DES1 is critical for plant metabolism and stress responses. Thus, internal factors such as 

developmental stage, and environmental factors such as abiotic and biotic stress influence the 

ratio of cysteine / sulfide levels through the modulation of the activities of these two enzymes. 

Post-translational modification represents an important level of regulation of protein function 

in all living organisms, and is being increasingly investigated. A proteomic analysis revealed that 

the major cytosolic and plastidic OAS-TLs, OAS-A1 and OAS-B, are subject to N-terminal 
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acetylation (Wirtz et al., 2010). Further, phosphorylation of the plastidic SAT isoform from 

soybean has been reported (Liu et al., 2006); and in Arabidopsis it has been suggested for a 

cytosolic low abundant SAT isoform and also for the major OAS-A1, by interaction with 14-3-3-

proteins (Shin et al., 2011). Among the different post-translational modifications that have been 

characterized, those mediated by the action of nitric oxide (NO)-derived modifiers have recently 

attracted the attention of many plant biology researchers (Begara-Morales et al., 2013; Corpas 

and Barroso, 2013). A well-documented protein modification of a member of the OASTL family 

is the nitration of Tyr residues on the OAS-A1 protein, which modulates its activity (Alvarez et 

al., 2011).  Nitration of Tyr residues under physiological conditions is largely the result of the 

protein interacting with the strong nitrating agent peroxynitrite, which is formed by the reaction 

of NO with a superoxide anion (Szabo et al., 2007). After exposure to peroxynitrite, OAS-A1 is 

markedly more sensitive to nitration than the other OASTLs, leading to inhibition of this 

enzyme’s activity. Inhibition of OAS-A1 activity is a result of the specific nitration of the Tyr302 

residue, which drastically reduces both binding of the O-acetylserine substrate to the nitrated 

protein and stabilization of the pyridoxal-5’-phosphate cofactor through hydrogen bonds (Alvarez 

et al., 2011). Therefore, post-translational modification of OAS-A1 by Y-nitration may represent 

a rapid and efficient regulatory mechanism for controlling cysteine homeostasis in the cytosol 

under stress conditions that often lead to the production of reactive oxygen and nitrogen species.   

In recent years, emerging experimental evidence from numerous plant biology studies has 

shown H2S to be a signaling molecule of equal importance to NO and H2O2, an observation that 

is consistent with data previously shown in animal systems. In plants, H2S has been implicated in 

the protection against metal stress (Zhang et al., 2008; Zhang et al., 2010), and the regulation of 

photosynthesis (Chen et al., 2011) and stomatal movement (Garcia-Mata and Lamattina, 2010; 

Lisjak et al., 2010), for example. H2S is endogenously produced in mammalian tissues by 

enzymatic reactions of L-Cys, primarily via two cytoplasmic enzymes, cystathionine-γ-lyase and 

cystathionine-β-synthase, which both require pyridoxal-5’-phosphate as a cofactor. Ammonia and 

pyruvate are by-products of these reactions (Gadalla and Snyder, 2010; Wang, 2012). DES1 was 

found to have L-cysteine desulfhydrase activity, also dependent on pyridoxal-5’-phosphate, in the 

cytosol of Arabidopsis (Alvarez et al., 2010). To our knowledge, DES1 is the only enzyme that 

has an unequivocally established involvement in the degradation of cysteine and the concomitant 

generation of hydrogen sulfide in the plant cytosol. Accordingly, we conclude that DES1 is 

responsible for modulating the generation of sulfide for signaling purposes in the plant cell 
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(Romero et al., 2013). Uncertainty regarding this role could arise from the fact that in plants, the 

chloroplast is the main source of sulfide via sulfate reduction in the sulfur assimilation pathway 

(Takahashi et al., 2011). Although it has been proposed that H2S reaches the cytosol via diffusion 

through the chloroplast envelope membrane, hydrogen sulfide is weakly acidic and dissociates in 

aqueous solution into H+ and SH-, and this ionized form cannot permeate membranes (Kabil and 

Banerjee, 2010). Thus, at the pH of 8.5 that is maintained in the chloroplast stroma under 

illumination, sulfide is mainly present in its charged form and is therefore unable to be 

transported across the chloroplast envelope. Therefore, DES1 modulates the generation of the 

signaling molecule sulfide in the plant cytosol, irrespective of nutrient conditions (Romero et al., 

2013). 

Recent research in our lab has demonstrated that sulfide exerts a general effect on autophagy 

in plants through negative regulation of this process (Gotor et al., 2013). Autophagy is a universal 

mechanism with a pro-survival role in eukaryotic cells, involving the digestion of cell contents to 

recycle necessary nutrients or to degrade damaged or toxic components. The most important 

feature of autophagy is the de novo synthesis of double membrane-bound structures called 

autophagosomes, which engulf and deliver materials to the vacuole for breakdown. Proteins 

involved in the autophagy process (ATG proteins) have been used to monitor autophagic activity 

in plants, the most commonly used protein being ATG8, which is tethered to the autophagosomes 

by lipidation (recent reviews of (Li and Vierstra, 2012; Perez-Perez et al., 2012). The detailed 

characterization of des1 mutant has provided insight into the role of the sulfide generated from 

Cys in the cytosol as a signaling molecule regulating the process of autophagy. Mutations of the 

DES1 gene impede H2S generation in the cytosol and lead to the accumulation and lipidation of 

ATG8 isoforms in Arabidopsis, a landmark of autophagy activation. Restoration of the capacity 

of H2S generation eliminates phenotypic differences between the null mutants and the wild type 

plants, thereby reversing the autophagy activation. Interestingly, exogenous sulfide is also able to 

suppress the induction of autophagy caused by carbon starvation in wild type plants, whereas 

exogenous ammonium, a second product of DES1 activity, has no effect on autophagy (Alvarez 

et al., 2012b). In conclusion, DES1 is responsible for the generation of sulfide in the cytosol, 

which subsequently behaves as a signaling molecule, acting as a repressor of autophagy.  

 

CYSTEINE IN THE MITOCHONDRION 
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In Arabidopsis, both by the specific down-regulation of mitochondrial SAT by iRNA and by 

employing T-DNA insertion mutants of members of the SAT family, it has been demonstrated 

that mitochondria, not chloroplasts or the cytosol, are the dominant source of OAS in vivo for the 

bulk of cysteine synthesis in the cytosol (Haas et al., 2008; Krueger et al., 2009; Watanabe et al., 

2008b). Therefore, little attention has been given to the OASTL family members responsible for 

cysteine synthesis in the mitochondria. In A. thaliana, two highly expressed proteins exist in the 

mitochondria, the true OASTL, OAS-C, which catalyzes the incorporation of sulfide to O-

acetylserine to produce cysteine, and the β-cyanoalanine synthase, CAS-C1 (former CYS-C1), 

which catalyzes the conversion of cysteine and cyanide to hydrogen sulfide and β-cyanoalanine 

(Watanabe et al., 2008a) (Figure 2). Mitochondrial OAS-C contributes only 5% to the total 

OASTL activity, but it has been suggested that OAS-C plays a much more important role than 

previously assumed (Heeg et al., 2008). Recent results have allowed us to propose that the 

significance of both enzymes, OAS-C and CAS-C1, is related to their roles in proper sulfide and 

cyanide detoxification in the mitochondria (Alvarez et al., 2012c; Garcia et al., 2010). However, 

an independent investigation has suggested that the biosynthesis of cysteine by OAS-C in 

mitochondria contributes to the sulfide detoxification along with a novel mechanism independent 

of OASTL. In addition, the activity of OAS-C is not required for cyanide detoxification (Birke et 

al., 2012).  

In non-cyanogenic species, such as A. thaliana, the main source of cyanide is derived from the 

biosynthesis of the phytohormone ethylene and the phytoalexin camalexin. The first committed 

step of ethylene biosynthesis is the conversion of S-AdoMet to 1-aminocyclopropane-1-

carboxylic acid (ACC) by ACC synthase. ACC is then oxidized by ACC oxidase to form 

ethylene and cyanoformic acid, which is spontaneously degraded giving carbon dioxide and 

cyanide (Bleecker and Kende, 2000; Peiser et al., 1984). During the biosynthesis of camalexin, 

the tryptophan-derived intermediate indole-3-acetonitrile is conjugated with cysteine to act as a 

substrate for the cytochrome P450 enzyme CYP71B15. This enzyme catalyzes the formation of 

the thiazoline ring, as well as the release of cyanide and the subsequent oxidative decarboxylation 

of dihydrocamalexic acid to camalexin (Bottcher et al., 2009). Therefore, under certain 

developmental or environmental conditions, plant produce significant amounts of cyanide that 

may be harmful to their cells. In mitochondria, cyanide is a potent inhibitor of cytochrome c 

oxidase, which constitutes complex IV of the mitochondrial respiratory chain (Cooper and Brown, 

2008); therefore, cyanide accumulation must be prevented. The main cyanide detoxification 
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process described in plants is the conversion of cyanide to β-cyanoalanine, which is then 

converted to Asn, Asp, and ammonia by NIT4 class nitrilases, thus allowing for the recycling of 

nitrogen within the plant (Piotrowski, 2008). 

The mitochondrial CAS-C1 is primarily involved in the adequate detoxification of cyanide 

through the formation of β-cyanoalanine; however, a co-product of this CAS enzymatic activity 

is hydrogen sulfide, which also inhibits oxygen consumption via inhibition of the mitochondrial 

cytochrome c oxidase. In mammalian systems, both HCN and H2S are non-competitive inhibitors, 

with respect to oxygen, and show similar inhibition constants (Cooper and Brown, 2008). 

Accordingly, hydrogen sulfide produced during the detoxification of cyanide must be detoxified 

in the mitochondria by the authentic OASTL, OAS-C, which produces cysteine. Cysteine, in turn, 

could be used by CAS-C1 to detoxify cyanide, thus generating a cyclic pathway for cyanide 

detoxification in the mitochondria (Figure 2). Consequently, both CAS-C1 and OAS-C, by acting 

jointly, play an essential role in the modulation of cyanide levels in the mitochondria. This 

suggestion is reinforced by the similarity in the phenotypic characteristics of the corresponding 

null mutants (Alvarez et al., 2012c; Garcia et al., 2010).  

The loss of either a functional CAS-C1, or a functional OAS-C causes a significant 

accumulation of cyanide, in comparison to wild type plants, which is mainly observable in root 

tissues of plants, even under controlled growth conditions where ethylene production is low. 

Moreover, an increase in the alternative oxidase (AOX) pathway, as demonstrated by an increase 

in AOX1A gene expression in the mutants compared to the wild type is also detected. Plant 

mitochondria possess two different pathways of electron transport at the ubiquinone level: the 

cyanide- and sulfide-sensitive cytochrome pathway, and the resistant alternative pathway. The 

alternative oxidase is responsible for the latter and is not coupled to ATP synthesis, as is the case 

in the cytochrome pathway (Vanlerberghe and McIntosh, 1997). Therefore, the cyanide produced 

in the cas-c1 mutant uncouples the respiratory electron chain dependent on the cytochrome 

pathway and this uncoupling induces the AOX activity. The cyanide accumulation in the cas-c1 

mutant plants correlates with very interesting phenotypic characteristics. On one hand, a defect in 

root hair formation (Garcia et al., 2010), and on the other hand, an altered response to plant 

pathogens (Garcia et al., 2013). 

Phenotypic analysis of soil-grown cas-c1 plants reveals no apparent change in the 

development and growth of the aerial part of the plant. However, when the mutant is grown on 

vertical plates, we clearly observe that the root hairs begin to grow out and away from the root 
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surface but do not elongate to form normal hairs (Garcia et al., 2010). The loss of a functional 

OAS-C results in phenotypic characteristics very similar to those given by the loss of the CAS-

C1 enzyme, indicating that the oas-c null mutant is defective in root hair elongation (Alvarez et 

al., 2012c) (Figure 4). In both cases, genetic complementation of the cas-c1 and oas-c mull 

mutants with the corresponding CAS-C1 and OAS-C genes rescues the impairment of root hair 

elongation and restores the wild type phenotype, thus confirming that the observed phenotypes 

were indeed due to the mutations (Alvarez et al., 2012c; Garcia et al., 2010). Furthermore, the 

root hair defect is phenocopied in wild type plants by the exogenous addition of cyanide to the 

growth medium and is reversed by the addition of hydroxocobalamin, the most commonly used 

antidote for severe acute cyanide poisoning in humans (Garcia et al., 2010). In conclusion, our 

research has demonstrated that discrete accumulation of cyanide is not toxic to the plant but acts 

as a strong inhibitor of root hair elongation, and that the mitochondrial CAS-C1 and OAS-C are 

essential in maintaining a low enough level of cyanide for proper root hair development to occur. 

Related to plant-pathogen interaction, cas-c1 plants present an increased susceptibility to the 

necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas 

syringae pv tomato DC3000 bacterium and Beet curly top virus (Garcia et al., 2013). This altered 

response is completely dependent on cyanide, as demonstrated by genetic complementation or by 

treatment with the antidote hydroxocobalamin. In addition, the transcriptional regulation of the 

CAS-C1 gene during the three plant-pathogen interactions analyzed allows a differential 

accumulation of cyanide in each interaction, suggesting that CAS-C1 is involved in the signaling 

pathway, leading to resistance or sensitivity depending on the type of pathogen. Furthermore, 

cyanide accumulation and CAS-C1 gene expression are negatively correlated during compatible 

and incompatible plant-bacteria interactions (Garcia et al., 2013).  

All these data suggest that cyanide, a low-Mr and highly hydrophilic molecule acts as a signal 

in plants. In roots, the mechanism by which the cyanide molecule inhibits the elongation of root 

hairs is currently unknown, although several hypotheses can be made. For example, cyanide 

could trigger a repressing signaling pathway, generated in the mitochondria, that regulates the 

plasma membrane NADPH oxidase, an enzyme necessary for the establishment of the tip-based 

Ca2+ gradient, which is in turn essential for polar growth in root hair (Foreman et al., 2003). In 

the regulation of the plant immune responses, we hypothesize that cyanide could uncouple the 

respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling may 

induce the alternative oxidase activity and the accumulation of ROS, which would act by 
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stimulating the salicylic acid-dependent signaling pathway of the plant immune system. 

 

CYSTEINE IN THE CHLOROPLAST 

 

Arabidopsis chloroplasts contain two OASTL isoforms, OAS-B and SCS, which resemble the 

isoforms present in bacteria, encoded by the cysK and cysM genes, respectively (Byrne et al., 

1988; Hulanicka et al., 1986). The enzymes encoded by cysK and OAS-B are OASTL isoforms 

that catalyze the incorporation of sulfide to form cysteine; the enzymes encoded by cysM and 

SCS are S-sulfocysteine synthases that catalyze the incorporation of thiosulfate into OAS to form 

S-sulfocysteine (S-Cys) (Figure 2) (Bermúdez et al., 2012; Bermudez et al., 2010; Nakamura et 

al., 1984). In photosynthetic organisms, sulfate reduction occurs only in the plastid because the 

reductive steps catalyzed by adenosine 5’-phosphosulfate reductase and sulfite reductase are 

restricted to this compartment (Takahashi et al., 2011); however, according to data from knock-

out lines, OAS-B is not the main contributor to the total OASTL activity in leaves, as plants 

lacking this protein show no apparent phenotype when grown under long- or short-day 

photoperiods (Bermudez et al., 2010; Heeg et al., 2008; Watanabe et al., 2008a). This scene 

changes in the case of the enzyme SCS which, despite being a minor isoform, plays an essential 

role in chloroplast redox control (Bermudez et al., 2010). Detailed characterization of null 

mutants reveals that the loss of SCS function results in phenotypic differences depending on the 

light regime (Figure 5). Under long-day conditions (LD) the scs mutant plant exhibits a 

significant reduction in size and leaf paleness; by contrast, under short-day conditions (SD), the 

scs mutant plants are indistinguishable from the wild type plants. Genetic complementation of the 

null mutant with the SCS gene restores the phenotype of the mutant plants grown under LD 

conditions, thus verifying that the observed phenotype of the scs mutant is indeed due to the 

disruption of the SCS gene (Bermudez et al., 2010). Interestingly, accumulation of ROS, such as 

superoxide radicals and hydrogen peroxide, is detected in leaves of the scs mutant plants, 

observable under LD conditions (Bermudez et al., 2010). 

Photosynthetic characterization of the scs mutant under long-day growth conditions reveals 

significant reductions in most photosynthetic parameters, including net CO2 assimilation rate, 

mesophyll conductance, and mitochondrial respiration in darkness. However, under short-day 

growth conditions, the scs mutant behaves similarly to wild type, in terms of photosynthetic 

performance (Bermúdez et al., 2012). The mutant phenotype and the photosynthetic rates 
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observed in scs plants grown under LD but not SD conditions are indicative of severe damage to 

the photosynthetic machinery, resulting from failure of the photosystem repair mechanisms 

during periods of prolonged exposure to light. Because adaptation to high light requires that 

plants sense the light conditions and modify their transcript profile and metabolism to balance the 

production and detoxification of ROS (Lepisto and Rintamaki, 2012), the absence of S-

sulfocysteine synthase activity in the chloroplast disrupts this balance and prevents the plant from 

defending itself against photochemical damage to the photosystems and to the electron transport 

chain under a LD photoperiod. Therefore, under low light, the scs mutant behaves as through it 

were growing under high light conditions (Bermúdez et al., 2012). 

The OAS-B and SCS proteins have two important features that render them functionally 

different from one another. First, the SCS protein is located in the lumen, in contrast to the OAS-

B isoform, which is located in the stroma (Bermúdez et al., 2012). Second, the SCS  protein has 

S-sulfocysteine synthase activity, incorporating thiosulfate instead of sulfide, which is 

incorporated by the stromal isoform (Bermudez et al., 2010) (Figure 2). Based on current 

knowledge, we suggest that S-sulfocysteine synthase functions as a protein sensor in the 

thylakoid lumen in the following way: under conditions of excess light, the light absorbed by the 

chloroplasts exceeds their photosynthetic capacity and can lead to the production of ROS, which 

may either interfere with the reduction of sulfite, or oxidize sulfide to form thiosulfate. SCS  

detects the accumulation of thiosulfate and generates the S-sulfocysteine molecule that triggers 

protection mechanisms in the photosynthetic apparatus, acting as a mild oxidant in the lumen 

(Gotor and Romero, 2013). 

Despite their functional differences, OAS-B and SCS have something important in common: 

both depend on the same substrate, OAS, to incorporate sulfide or thiosulfate, respectively, and 

therefore compete for this substrate. Considering that the protein OAS-B is significantly more 

abundant than SCS, the availability of OAS for the synthesis of S-sulfocysteine in the lumen is 

likely limited by OAS-B activity within the stroma. Arabidopsis contains five SAT isoforms 

localized in the cytosol, mitochondrion and plastid, which are responsible for the synthesis of 

OAS. Analysis of single or multiple mutant combinations lacking SAT isoforms provides 

evidence that OAS can either diffuse, or be transported into and out of these organelles (Krueger 

et al., 2009; Watanabe et al., 2010). In this manner, quadruple SAT mutants whose total SAT 

activity is reduced up to 9% of the wild type level display a wild type-like growth phenotype. 

However, quadruple SAT mutants with less than 5% SAT activity show retardation of plant 
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growth, slight chlorosis and reduced chlorophyll content, thus resembling the phenotype of the 

scs mutant (Watanabe et al., 2010). Interestingly, the chloroplastic SAT isoform has been shown 

to interact with the cyclophilin CYP20-3, which may mediate the association of SAT and OAS-B 

to form the cysteine synthase complex within the chloroplast for OAS synthesis (Dominguez-

Solis et al., 2008).  The cyp20-3 mutant shows reduced cysteine synthesis and a severe stress 

phenotype under light or stress conditions; however, single oas-b or sat mutants are not sensitive 

to such stress conditions, as would be expected for a phenotype that is dependent on cysteine 

levels (Bermudez et al., 2010; Dominguez-Solis et al., 2008; Watanabe et al., 2008b). 

Furthermore, the phenotype of cyp20-3 resembles the observed in the scs mutant, suggesting that 

S-sulfocysteine synthesis and redox regulation within the lumen may be compromised in cyp20-

3; however, this point has not been studied. 

 

CONCLUDING REMARKS 

 

The enzymes belonging to the OASTL family have an essential role in plant metabolism and 

have traditionally been studied in the context of their involvement in the primary sulfate 

assimilation pathway. The main focus of previous research has been placed on the most abundant 

and authentic OASTL enzymes, whereas less attention has been given to the other enzymes that 

have different activities of cysteine biosynthesis. Such is the case for the minor enzymes, 

cytosolic DES1 with L-cysteine desulfhydrase activity and chloroplastic SCS with S-

sulfocysteine synthase activity, as well as for the major mitochondrial enzyme CAS-C1 with β-

cyanoalanine synthase activity. Recent investigation of these proteins highlights the importance 

of cysteine and several of its related molecules, such as sulfide, S-sulfocysteine and cyanide, as 

signaling molecules involved in regulating essential processes in the plant, such as photosynthesis, 

plant protection against adverse conditions, plant immunity, autophagy, and root development 

(Figure 6). Therefore, it is fundamental a change of concept for cysteine, from playing a mere 

role in metabolic function to a new concept of cysteine and related molecules performing 

signaling roles. This novel view of the metabolism of cysteine reveals new and very interesting 

areas for potential investigation, such as the specific function, targets, and regulation of these 

molecules involved in the signaling and control of different plant processes, as well as the 

mechanisms underlying. 

 



 17

FUNDING 

This work was funded in part by the European Regional Development Fund through the 

Ministerio de Economia y Competitividad (grant no. BIO2010-15201) and the Junta de 

Andalucía (grant no. CVI-7190). 

 

ACKNOWLEDGMENTS 

M.A.A. thanks the Consejo Superior de Investigaciones Científicas for economic support 

provided by the postdoctoral program of the Junta de Ampliación de Estudios part-financed by 

the European Social Fund. A.M.L-M. thanks the Ministerio de Economia y Competitividad for 

fellowship support through the program of Formación de Personal Investigador.  

  



 18

Figure Legends 

 

Figure 1. Enzymatic reactions involved in the biosynthesis of cysteine and overview of the roles 

of cysteine in plant metabolism.   

 

Figure 2. Subcellular localization of the different members of the OASTL enzyme family and 

reactions catalyzed by them in A. thaliana.  

 

Figure 3. Early-senescence phenotype of the des1 mutant plants.  

Wild-type Columbia-0 (Col-0) and des1-1 mutant plants were grown side by side in soil for 4 

weeks under long-day photoperiod (16h light/8h dark) and nutrient-sufficient conditions. A 

representative image is shown.  

 

Figure 4. Root phenotype of the cas-c1 and oas-c mutants. 

Upper panel: Bright field images of 2-week-old wild type and cas-c1 mutant seedlings, growing 

on vertical MS medium (Garcia et al., 2010) (www. plantcell.org; copyright American Society of 

Plant Biologists). Lower panel: Bright field images of roots from wild type and oas-c mutant 

seedlings, growing for 8 d on vertical MS medium (Alvarez et al., 2012c).  

 

Figure 5. Phenotypes of the scs and oas-b mutants and the complemented scs line. 

Plants grown on soil under long-day (LD, 16h light/8h dark) and short-day (SD, 8h dark/16h 

light) conditions for 3 and 4 weeks, respectively. Details in (Bermudez et al., 2010) (www. 

plantcell.org; copyright American Society of Plant Biologists). 

 

Figure 6. Processes regulated by cysteine and cysteine-related molecules in the Arabidopsis cell. 

 

  



 19

 

Table 1. Number of SAT and OASTL gene orthologs in photosynthetic organisms. 

 

Organism SATs OASTLs 

Chlamydomonas reinhardtii 2 4 

Physcomitrella patens 4 3 

Arabidopsis thaliana 5 9 

Brachypodium distachyon 4 8 

Carica papaya 3 7 

Glycine max 11 18 

Medicago truncatula 1 14 

Oryza sativa 6 13 

Populus trichocarpa 4 12 

Selaginella moellendorfii 3 4 

Sorghum bicolor 4 8 

Vitis vinifera 5 10 

Zea mays 5 11 

 

The ortholog search was performed using the Phytozome v6.0 database (www.phytozome.org) 
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Table 2. OASTL gene family in Arabidopsis thaliana 

 

Gene Locus Cellular localization 
of the encoded protein 

 

Enzymatic 
activity 

Reference 

OAS-A1  
 

At4g14880 Cytosol OASTL (Barroso et al., 1995; Hell et al., 1994; 
Jost et al., 2000; Wirtz et al., 2004) 
 

OAS-B 
 

At2g43750 Chloroplasts OASTL (Hell et al., 1994; Hesse et al., 1999; 
Jost et al., 2000; Wirtz et al., 2004) 
 

OAS-C 
 

At3g59760 Mitochondria OASTL (Hesse et al., 1999; Jost et al., 2000; 
Wirtz et al., 2004) 
 

CYS-D1 
 

At3g04940 Cytosol OASTL (Hatzfeld et al., 2000; Yamaguchi et al., 
2000) 
 

CYS-D2 
 

At5g28020 Cytosol OASTL (Hatzfeld et al., 2000; Yamaguchi et al., 
2000) 
 

CAS-C1 
 

At3g61440 Mitochondria CAS (Garcia et al., 2010; Hatzfeld et al., 
2000; Yamaguchi et al., 2000) 
 

SCS 
 

At3g03630 Chloroplasts SSCS (Bermudez et al., 2010) 

DES1 
 

At5g28030 Cytosol DES (Alvarez et al., 2010) 

 

OASTL: O-acetylserine(thiol)lyase; CAS: β-cyanoalanine synthase; SSCS: S-sulfocysteine 

synthase; DES: L-cysteine desulfhydrase. 
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