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The exact position analysis of a planar mechanism reduces to compute the roots of its
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mechanism. The use of kinematic loops to this end has seldom been questioned despite

Institut de Robotica i deriving the characteristic polynomial from them requires complex variable eliminations

Informatica Industrial (CSIC-UPC), and, in most cases, trigonometric substitutions. As an alternative, the bilateration method
Llorens i Artigas 4-6, has recently been used to obtain the characteristic polynomials of the three-loop Baranov
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no other tools than elementary algebra. This paper shows how this technique can be
applied to members of a family of Baranov trusses resulting from the circular concatena-
tion of the Watt mechanism irrespective of the resulting number of kinematic loops. To
our knowledge, this is the first time that the characteristic polynomial of a Baranov truss
with more that five loops has been obtained, and hence, its position analysis solved in
closed form. [DOI: 10.1115/1.4004031]
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1 Introduction While the standard closed-form position analysis leads to com-
plex systems of nonlinear equations derived from independent kine-
matic loop equations, the bilateration method avoids the computa-
tion of loop equations as usually understood. It has recently been
shown to be a powerful technique by obtaining the characteristic
polynomial of the three 3-loop Baranov trusses without relying on
variable eliminations nor half-angle tangent substitutions [7].

At the end of the 19th century, it was known that there were
only two six-link single degrees of freedom planar hinged link-
ages. At a suggestion of Burmester [8], these two linkages were
called the Watt linkage and the Stephenson linkage. Several Ste-
phenson linkages can be concatenated leading to what in Ref. [9]
was called a Stephenson pattern. Likewise, several Watt linkages
can be concatenated to obtain what can be called, for the same
reason, a Watt pattern (see Ref. [10] for their motion simulations).
If these concatenations are circular, the results are Baranov
trusses, which will be called Stepheson—Baranov and Watt—Bara-
nov trusses, respectively (Fig. 1).

The position analysis of the Stepheson—Baranov truss of four
loops has been solved in closed form at least in Refs. [11-14], and
more recently by Wohlhart in Ref. [15], thus reaching what the

The position analysis of planar linkages has been dominated by
resultant elimination and tangent-half-angle substitution techni-
ques applied to sets of kinematic loop equations. This analysis is
thus reduced to finding the roots of a polynomial in one variable,
the characteristic polynomial of the linkage. When this polyno-
mial is obtained, it is said that the problem is solved in closed
form. This approach is usually preferred to numerical approaches
because the degree of the polynomial specifies the greatest possi-
ble number of assembly configurations of the linkage and modern
software of personal computers provides guaranteed and fast com-
putation of all real roots of a polynomial equation and hence of all
assembly configurations of the analyzed linkage.

A nonoverconstrained linkage with zero-mobility from which
an Assur group can be obtained by removing any of its links is
defined as an Assur kinematic chain, basic truss [1,2], or Baranov'
truss when no slider joints are considered [3]. Hence, a Baranov
truss, named after the Russian kinematician Baranov [4] who first
stated it in 1952 [5], corresponds to multiple Assur groups. The
relevance of the Baranov trusses derives from the fact that, if the
position analysis of a Baranov truss is solved, the same process
can be applied to solve the position analysis of all its correspond-
ing Assur groups. Curiously enough, despite this importance, it is
commonly accepted that the Baranov trusses with more than nine
links have not been properly catalogued yet while all Assur groups
with up to 12 links have been identified (see Table 1) [3]. It is
worth mentioning here that Yang and Yao found that the number
of Baranov trusses with 11 links is 239 using an algorithm that [ ;¢ Loops Baranov trusses
certainly requires further attention [6].

Table 1 Number of Baranov trusses as a function of the num-
ber of links (alternatively, number of loops), and number of dif-
ferent Assur groups resulting from eliminating one link from
the Baranov trusses in each class [3,6]

Resulting Assur groups

3 1 1 1
5 2 1 2
'Some authors misspell it as Barranov. ; i 23 I;g
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Left column: the Stephenson linkage, the Stephenson pattern resulting from

concatenating four Stephenson linkages, and the Stephenson—Baranov truss result-
ing from the circular concatenation of four Stephenson linkages. Right column: the
Watt linkage, the Watt pattern resulting from concatenating four Watt linkages, and
the Watt-Baranov truss resulting from the circular concatenation of four Watt

linkages.

author considers to be the limit of Sylvester’s elimination method.
The position analysis of the Watt—Baranov truss of four loops was
solved in closed form by Han et al. in Ref. [16] and more recently
by Borras and Gregorio [17]. Elimination methods seem to reach
their limit with the analysis of Baranov trusses with four or five
loops, depending on their topology. Actually, the closed-form
position analysis of a Baranov truss with more than five loops has
not been reported to the best of our knowledge, and only the
closed-form position analysis of one five-loop Baranov truss has
been obtained [12,18]. In this paper, we address this challenge
and we push the loop limit further by solving the closed-form
position analysis of Watt—Baranov trusses, with up to six loops,
using the bilateration method.

This paper is organized as follows. In Sec. 2, the basic formula
required to apply the bilateration method is briefly reviewed.
Then, in Sec. 3, it is shown how the bilateration method can be
applied to obtain the characteristic polynomial of a Watt—Baranov
truss with an arbitrary number of kinematic loops. To this end, it
is first shown how to derive a single scalar radical equation, which
is satisfied if, an only if, the truss can be assemble and, then, how
the characteristic polynomial is derived by simply clearing radi-
cals. This last step is actually the only costly step in the whole
process. Two examples are analyzed in Sec. 4, including a six-
loop Watt—Baranov truss—whose characteristic polynomial is of
degree 126— with 76 assembly modes.

2 Bilateration

The bilateration problem consists of finding the feasible loca-
tions of a point, say Py, given its distances to two other points, say
P; and P;, whose locations are known. Then, according to Fig. 2,
the result, in matrix form, can be expressed as

Pic = Zijkpj M
where
1 D(i,j; i,k D(i, ], k
Zijj =—— (w’.l’.) TV .(l?j ) 2
D(i,j) | =£/D(i,j,k)  D(i,j;i,k)

is called a bilateration matrix, and
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with s = a2, = ||p; *, where p; =P — P = F,[_’; This determi-
nant is known as the Cayley—-Menger bideterminant of the point
sequences P; ,...,P; ,and P; , ..., P; and its geometric interpreta-
tion plays a fundamental role in the so-called distance geometry,
the analytical study of Euclidean geometry in terms of invariants
[19]. When the two point sequences are the same, it is convenient
to abbreviate D(iy, ...,in; i1, ...,i,) by D(iy,...,i,), which is sim-
ply called the Cayley—Menger determinant of the involved points.

Now, it is important to observe that this kind of matrices consti-
tute an Abelian group under product and addition and if v = Zw,
where Z is a bilateration matrix, then |v||* = det(Z)|w]||*. The
interested reader is addressed to Ref. [7] for a more detailed treat-
ment of bilateration matrices and some basic geometric operations
that can be performed with them.

3 Position Analysis of the General N-Link
Watt-Baranov Truss

Figure 3 shows the general n-link Watt—Baranov truss, a struc-
ture with k = (n — 1)/2 loops and v = 3/2(n — 1) revolute joints.

Py

Pik

>
P, Pij P;

Fig.2 The bilateration problem in R2
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Fig. 3 The general n-link Watt-Baranov truss has

k =(n—1)/2 loops and v =3/2(n—1) revolute joints. p,_;,
can be expressed as a function of p; 3 by computing 3k —2
bilaterations.

The k-ary link is defined by P1P4P7 ... P,_sP,_,, and the k ternary
links by the triangles P,P,P,, P4P3Ps, P7P¢Ps, ..., P, 5P, ¢P, 4
and P, P, 3P, ;. The position analysis problem for this structure
consists in, given the dimensions of all links, calculating all relative
possible transformations between them all. To solve this problem,
instead of directly computing the relative Cartesian poses of all
links through loop-closure equations, we will compute the set of
values of s;3 compatible with all binary and ternary links side
lengths. Thus, this procedure is entirely posed in terms of distances.

On the one hand, according to Fig. 3, p;4, P17:---» P1o_ss
Pi1.,_» can be expressed as a function of p, 5 using bilaterations as
follows:

Pia="7Z134P13 “)
Pi7=Z147P14a=2147Z134P13 )
Piio=21710P17=2Z1710Z147,Z134P13 (6)
Pros=Zivsv-s5Lip-110-8--Z1a7,2134P13 7

Pivo=Z1vsv2Z1p805--Z147,ZL134P13 ®)

On the other hand, for the ternary link P4P3Ps, we have
Pas =Za3s5Ps3
Pas +Pis=Zszs (Pss +Pi3) )
Pis=Pia+Zizs (P —Pia)

Likewise, for the ternary links P7P¢Ps, ...
P, ,P, 3P, 1, we obtain

, PysPy 6Py 4 and

Pis=Pi7+Zrse6 (Prs—Pi7) (10)
Pig=Pi7+ Zrss (Prs —Pi7) 1D
pl.,073 = pl,v72 + Z1>—27z7—4,t/‘73 (pl‘v—4 - plAv—2) (12)
Prot = Proa+Zo2o 301 (Pros = Proo2) 13)

Now, substituting Egs. (4)—(8) in Egs. (9)—(13) and then replac-
ing the resulting expression for p; 5 in that for p, 4, and the result-
ing expression for p, ¢, after this substitution in that for p, s, and
so on till an expression is obtained for p, ,_;, we get
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Pio1=Q,Pi3 (14)
Moreover, for the ternary link P, P,P,, we have
Py =2i120Z132P;; (15)
Finally, using Eqgs. (14) and (15), we get
Pty =P g0 +P,=(—Q,+Z12,Z132)p5 (16)
Therefore,
det(~Q, + Zi2e T 32) = )

The left hand side of the above equation is a function of the £ — 1
unknown squared distances s 3 and §5.7, 58,105 -+ » So—7,0—5> Sp—d,p—2-

Since using the same procedure to obtain Eq. (16) allows us to
obtain

Ps7=—Pi5tPi7=DuPis (18)
Psi0 = —Pi1g T P10 =Dn, P13 (19)
Po—70-5 = —P1s—7 + P15 = Dy P13 (20
Po—ap-—2= P14 TPy 2= anfz P13 21
Therefore,
S57 = det(D,,l) S13 (22)
sg,10 = det(D,,) 513 (23)
Sp—Tv-5 = det(Dm,g) $1,3 (24)
Sp—4p-—2 = det(D,,H) S13 25)

The substitution of Egs. (22)—(25) into Eq. (17) yields a scalar
equation in a single variable: sy 3. The roots of this equation, in
the range in which the signed areas of the triangles P,P,P3 and
PP3P, are real, that is, the range

[max{ (dip — d243)2, (dia— d3<4)2}7

mm{ (d1,2 + d2‘3)2, (d174 + d%4)2}:|

determine the assembly modes of the general n-link Watt—Bara-
nov truss. These roots can be readily obtained using, for example,
an interval Newton method for the 2* possible combinations for
the signs of the signed areas of the triangles PP, P3, P{P3P4, and
P7P5P6’ P10P8P9» (R P075P077Pv76, Pv—2P1774P1'73-

In order to obtain the characteristic polynomial, it just remains
to clear all square roots in the obtained scalar equation by isolat-
ing one at a time and squaring the result till no square root
remains. Using a computer algebra system, it can be seen that this
clearing process leads to

okl k=2 k-3 4 ) B
S13 857 58,10 +++ Sp—7,0-5 Sp—4p-2 A, =0

(26)
where A, is a polynomial in s 3 of degree 2*! — 2. The extrane-
ous roots at §;3 =0, ..., Sy_4,—2 =0 were introduced when
clearing denominators, so they can be dropped. For each of the
real roots of polynomial A,, we can determine the Cartesian posi-
tion of the v — k revolute pair centers of the ternary links, with
respect to the k-ary link, using Egs. (9)—(13) and (15), and the
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equation p; 3 = Z; 43p; 4. This process leads up to 2% combina-
tions of locations for P,_; and P,, and at least one of them must
satisty the distance imposed by the binary link connecting them.

4 Examples

4.1 Five-Loop Watt-Baranov Truss. Consider an 11-link
Watt—Baranov truss. Since in this case K = 5 and v = 15, Eq. (17)

det(—Qq +Zi215Z132) =

where

$14,15

27
$1.3

Qi =Z1,1013Z171021477L1 34+ 7131214 ZL13,11,12
(21710214721 34+ L0901 Z1039(Z1 4770 3487682756
(Zipa+Zass+(N—Zi34)— 214771 34)

reduces to —Z1710Z147Z2134) — 2110132171001 4771 3.4)
259 25 259 25
204 20 20 204
] 5] 5] o]
104 104 104 104 %
54 s 5] 5]
0 8 10 15 2'0 25 0 0 ; lIO 1‘5 2‘0 2'5 0 L £ 10 1‘5 20 2‘5 0 0 . 10 1'5 20 25

1,3 = 30.6486

51,3 = 47.1860

s1.3 = 48.6406

2] 2] ] 3]
5] 15 5] 5]
o 3 w0 5 » PR ; o ; 0 5 » PR : I s » %
51,3 = 69.9863 s1,3 = 77.3161 51,3 = 90.1506 s1,3 = 130.0000
s1,3 = 132.2178 s1,3 = 134.2206 s1,3 = 134.9836 s1,3 = 140.6611
21 » 21 »
2] 2] ] ]
15 15 5 5]
] 10 0] ol
o] ] o] ]
o ; w0 5 » PR : T 5 » 5 %% ; w0 5 » PR : o s » %

51,3 = 142.9286 s13 = 143.7773

1,3 = 148.1286

s1.3 = 151.6614

Fig. 4 The assembly modes of the analyzed 11-link Watt—Baranov truss
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and Egs. (22)—(25) reduce to

S57 = det(D”l) S13 (28)
sg,10 = det(Dyy,) 513 (29)
S11,13 :det(Dn;)Sls (30)

Dy, =—Ziss—Zazs (T —Zi34) + Z147Z134

Di,=-Z1477%34—Z16382756(Zi3s+Zs3s(X—Zi34)
—Zia7Z134) +Zi7102L14701 34

Dy, =~Zi710Z147Z134 — Zioo11 Ziogo(Z1a7Z1 34
+Z7682756(Z13a+Za3s(N—Z134) —Z1477134)
—Z1710Z21472134) + 21101321710 L1471 34

By expanding all the Cayley—Menger determinants involved in
Egs. (28)—(30), we get
ss7="Ai+'"N2A134 3D

1
Sg10 =~ — CAL+2A0A 34 +2A3 4756+ Mg A134A756) (32)
57

S11,13 = CAL+3A2A 34 +3A3 4756+ AgAroso
§5,7 88,10
+3AsA134A756 + A A134A1089 +7A7A756A1080
+3AsA134A756A1089) (33)
where
1 2 2
Ajzgs =+ 7 [51,3 — (das — day) } [(d4,3 +dsy) — 51,3}7
1

A756 == 5\/[&,7 — (des — d6,7)2] [(d6,5 + d6,7)2 - 55,7},

1
Alogy = = E\/[A‘S‘IO — (dog — d9,|0)2] [(dm + d()‘l())z - 58,10}

are the unknown areas of the triangles P,P3P4, P7PsPg, and
PoPgPy, tespectively, 'A;, 'Ay are polynomials in si3, 2A;,
i=1,...,4 are polynomials in s; 3 and s57, and A, i=1,...,8
are polynomials in sy 3, 557, and sg 10.

Similarly, by expanding all the Cayley—Menger determinants in
Eq. (27), we get

1 $14,15
. p =S (34)
$13% 85,7 58,10 S11,13 S13
that is,
W = 513557 58,10 511,13 514,15 (35)
where

V=" +W¥24125+ V34134 +VYsA756 + Vs Ai089
+ WA +¥Y7A1234134 +WsA103A756
+WoAin3A1080 +Yi0A123A1311,12 + P11 A134A756
+YWiAiz4A1089 + -+ V3141344756 A1089A13,11,12
+ W Ai23A1344756A1089A13,11,12

with W, i=1,...,25, polynomials in sy 3, §5.7, $3,10, and sy; 13.
Now, by expressing Eq. (35) as a linear equation in A3 11,12 —

ie., a+bAp;3112=0, properly squaring it—ie., a*—b?

A%“ 112 = 0, and replacing Eq. (33) in the result, a radical equa-

Journal of Mechanisms and Robotics

tion in sy 3, §57, and 5319 is obtained. Repeating this process for
Ao, and then for A7 56, we get the scalar radical equation
O+ DA 123 +DP3A134 +DPyA123A134=0 (36)
where @, ®,, @3, and @4 are polynomials in a single variable:
s1,3. If the last procedure is applied to Eqs. (31)-(33), we get poly-
nomials in s;3 and ss7, say Pi(s13,557), s13 and sg10, say
P>(s13,5s10), and sy 3 and s11 13, say P3(s13,511,13). respectively.
Finally, the square roots in Eq. (36) can be eliminated by prop-
erly twice squaring it. This operation yields

4 44 4 252 A4 2 22 A2 4
- (D4A1.2,3Al.,3‘,4 + 2(1)4(1)2’41,2,3’41.3.4 + 2(1)4(1)3‘4l.,2<,3Al,3,4
— DAY, 5 — DIAT 5, — D + (20505 — 8D, 03D, D; +20707)

X A%A2,3A%,3,4 + 2(I>%(I)§A%72,3 + 2(1)%(1)_%14%73,4 =0 (37
which, when fully expanded, leads to
S}?S P] (S|73, 0)8 Pz(S]s, 0)4 Pg (S|73, 0)2 A]] =0 (38)

6 8 4 2 _
$138575510571,13 A1 =0

where Aj; is a polynomial in sy 3 of degree 62. The extraneous
roots at s57 = 0, sg10 = 0 and 511,13 = 0 were introduced when
clearing denominators to obtain Eq. (35), so they can be dropped.
Finally, let us suppose that s;, =40, s14 =13, 517 = 26,
S1,10 = 34, S1.13 = 17, S1,15 = 13, $23 = 50, $2,15 = 17, §34 = 81,
§35 = 9, S45 = 90, S47 = 13, S§410 = 49, S$4.13 = 52, S56 = 125,
s67 =40, 568 =9, 578 =37, s7.10 = 20, 5713 =45, 539 = 136,
s9.10 =33, s911 =9, s10,11 =50, s1013 =17, s11,12 = 181,
S12,13 = 50, 812,14 = 9, §$13,14 = 65, and 814,15 = 29. Then, proceed-
ing as explained above, we obtain the characteristic polynomial
513% — 4091.5078 51 5°" + 8.3074 10° 5, 3% — 1.1186 10'° 5, 3%
+ 1.1260 10" 5, 3% — 9.0519 10" 5,37 4 6.0604 10'8 5, 3°
—3.4776 10%" 5137 4 1.7461 10** 5, 37* — 7.7894 10%° 5, 533
+3.1238 10% 5, 3°% — 1.1363 10°2 5, 3°" 4 3.7751 10% 5, 3°°
— 1151310 5,3% +3.2360 10% 5, 5* — 8.4044 10*' 5, 3%
+2.0208 10% 5, 3% — 4.5040 10% 5, 3% +9.3129 10™ 5, 3
— 1.787410°" 5, 3% +3.1855 107 5, 3** — 5.2730 107 5, 3*!
+8.109210% 5, 3% — 1.1589 100 5, 3% + 1.5391 10 5, 3%
— 1.9002 10% 51 3%7 +2.1807 10% 51 5 — 2.3265 10 5, 3%
+2.3073 10 5 3> — 2.1267 107 5, 3% 4 1.821510™ 5, 3**
— 14492107 5, 3*" 4+ 1.0704 1078 5, 3°° — 7.3366 107 5, 3%
+4.6623 108 5,328 —2.744710% 51377 4 1.495210% 5, 56
—7.5291 10% 5, 3% +3.499210% 5, 3% — 1.4987 107 5, 3%
+5.9041 107" 532 — 2.1353 10% 5, 3*' +7.073110™ 5, 3%
—2.1407 10" 513" +5.9032 1077 5, 3" — 1.4791 107 5,37
+3.35710'% 5, 3¢ — 6.881910'" 5,35 + 1.27110'% 5,31
—2.11110" ;3" +3.14910'% 5, 312 — 4.222610'% 5, 5!
+5.099710'7 5, 31 — 55526 10'% 5, 3 + 5.4328 10'? 5, 5°
—4.716610"% 5, 37 +3.5398 10" 5, 3¢ — 2.2029 10'% 5, 5°

+ 1.0721 10" 5, 3% — 3.7586 10" 5, 3% 4 8.4177 10" 5, 52
—1.0258 10"% 5, 3 +7.386210'* = 0

This polynomial has 16 real roots. The values of these roots as
well as the corresponding assembly modes, for the case in which
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Fig. 5 The assembly modes of the analyzed 13-link Watt—Baranov truss (Part 1)

Py = (12, IO)T, Py = (10, 13)T, P7; = (13, 15)T, P = (17, 13)T, 4.2 Six-Loop Watt-Baranov Truss. Let us consider a 13-
and P13 = (16,9)", appear in Fig. 4. link Watt—Baranov truss where 51, =58, s14 = 18, 517 = 40,

The coefficients of the above polynomial have to be computed 5119 = 53, 51,13 = 50, 51,16 = 20, 51,18 = 41, 523 = 52, 5018 = 13,
in rational arithmetic. Otherwise, numerical problems make s34 = 64, 535 =18, 545 =34, s47 = 10, 5410 = 41, 5413 = 68,
impracticable the correct computation of its roots. Although these 5416 = 50, 556 = 50, 567 = 74, 568 = 10, 578 =68, 5710 = 17,
coefficients are given here in floating point arithmetic for space li- 7,3 = 50, 57,16 = 52, s39 = 65, 5910 = 68, 911 =9, s10,11 = 89,
mitation reasons, they could be of interest for comparison with  s1913 = 13, 51016 =29, s11,12 =61, S1213 =65, s12,14 = 26,
other possible methods. s13,14 = 05, s1316 = 10, s1415 = 113, 51516 =40, $1517 = 13,
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Fig. 6 The assembly modes of the analyzed 13-link Watt—Baranov truss (Part 2)
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Fig. 7 The assembly modes of the analyzed 13-link Watt—-Baranov truss (Part 3)
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s16,17 = 81, and 517,13 = 68. Then, proceeding as explained in the
previous example, the following characteristic polynomial is
obtained

513120 —9.433610% s, 3'% +4.3965107 5, 3% — 1.3499 101 5, 51
+3.072710" 5, 3'%2 — 5.5326 10" 5, 3'*' +8.211210% 5, 3%
—1.033510% 5, 3" +1.1265 107 5, 3% — 1.080410% 5, 317
+9.233910% 5,316 — 7.105310% 5,315 +4.964510% 5, 3114
—3.172710% 513" + 1.8663 10* 5,312 — 1.0162 107 5, 3!
+5.148210% 53110 — 2438210725, 3'% + 1.084310% 5, 3%
—4.5474107 513" +1.805510% 5, 3% — 6.8124 10575, 3!
+2.450810% 513" —8.431910% 5, 3! +2.7813 107 5, 3!
—8.813910"% 5, 3" 4-2.6874 107 5, 3'% — 7.8923 107 5, 3%
+2.233710% 5, 3% — 6.094210% 5, 3”7 + 1.6026 10% 5, 37
—4.0606 1087 5137 +9.9090 10% 5, 3 — 2.327410%% 5, 3
+5.257910% 5 3%% — 1.1418 1077 5, 31 +2.381610% 5,37
—4.768810' 5, 3% +9.161310'% 5, 3% — 1.687710'% s, 5%
+2.980410'% 5, 3% —5.043410"05, 3% +8.1760 102 5, 3%
—1.269510'% 5, 5% +1.887910'"7 5, 5*2 — 2.6886 10" 5, 5%
+3.666510"" 51550 — 4.788410'% 5, 57 4 5.988710'5 5 37
—7.173310" 5,377 +-8.2296 10'% 5, 37© — 9.043510"3! 5, 37
+9.519910" 5137 —9.6005 10" 5, 37 +9.2758 10" 5 37
—8.586810' 5,37 +7.616310"" 5,37 — 6.4729 10" 5, 5
+5.271110" 5, 3% —4.112810' 5,357 +3.074610'% 5, 3%
—2.202010"" 5, 3% +1.5107 10" 5, 3% — 9.9266 10" 5, 5
+6.246210'% 5,352 —3.7628 10" 5, 351 +-2.169610'% 5, ;%
—1.196910"% 5, 3% +6.3154 10" 5, 3% — 3.1856 10'% 5, 5%
+1.535310'7 5, 3% —7.065010'%% 5, 355 4+3.102010'7 5, 5
—1.298410'% 5, 37 +5.1748 10 51 372 — 1.9615 10" 5; 5!
+7.059510"7 5,370 —2.407910'78 5, 3% +7.764110' 5, 3**
—2.359110"" 5157 +6.7261 10" 5 3% — 1.788610'% 5, 5*°
+4.3961 10" 5, 3% —9.844210'5 5, 3% 1 1.9561 10'%8 5, 3%
—3.255610"% 5, 3! +3.7746 10" 5, 5% +-3.7789 10" 5, ;%
—1.9038 10" 5, 3™ +7.1734 10" 5, 33" — 1.875110'% 5, 5
+3.883410"7 51 3% — 6.309910'% 51 33 + 6.6906 10" 5, 3
+2.038310% 5,332 —3.5351 10725, 33" +1.213510%M 5, 3%
—3.031610% 5, 3% +6.3595 107 5, 3% — 1.1749 10*% 5, 5
+1.953510%% 51326 —2.956010*' 51 3% +4.0962 10> 5, 32
—5.216210%% 51 3% +6.1146 10*13 5, 37 — 6.6023 10*!4 5, 3!
+6.565310% 5132 — 6.007310*'% 5, 3" +5.0514 10?7 5 3"
—3.897010*% 5, 37 +2.7528 10*75, 3¢ — 1.7765 10705, 517
+1.045010%" 5, 3" — 5.5886 107" 51313 +2.7106 10%2 5, 32
— 1.189310% 5, 3" +4.7079 10% 5, 30 — 1.6757 1075, 5°
453402107 5 3% — 1.513910% 5,37 +3.7811 107 5, 36
—8.203010% 5, 3° + 1.5138 10%° 5, 3* — 2.301010% 5, 5°
+2.726510% 51 3% —2.2556 107 513 +9.7893 10°% =0

This polynomial, which was computed using exact rational
arithmetic and is presented here only for comparison purposes of

Journal of Mechanisms and Robotics

eventual future works, has 76 real roots. The values of these roots
as well as the corresponding configurations, for the case in which
Py = (12, 8)T9 Py = (97 II)T’ P = (107 14)T’ P = (143 15)T,
Pi; = (17, 13)T, and Pys = (16, 10)T, appear in Figs. 5-7.

5 Conclusion

Given a Watt—Baranov truss, it has been shown how a scalar
radical equation—which is satisfied if, and only if, it is assembla-
ble—can be straightforwardly derived using bilaterations, inde-
pendently of the number of its kinematic loops. Clearing radicals
from this equation leads to the characteristic polynomial of the
corresponding Watt—Baranov truss. Although conceptually sim-
ple, this clearing operation is computationally costly as it yields
an exponential number of terms with the number of involved
bilaterations. The whole process has been carried out for Watt—
Baranov trusses with up to six loops and two examples have been
presented. Obtaining the characteristic polynomial of a Watt—Bar-
anov truss with more than six loops becomes a huge task. This
suggests the convenience of working with the compact expression
including radicals whenever possible, depending on the
application.
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