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Abstract

The computational bottleneck in all information-based algorithms for simultaneous localization and mapping (SLAM)

is the recovery of the state mean and covariance. The mean is needed to evaluate model Jacobians and the covariance

is needed to generate data association hypotheses. In general, recovering the state mean and covariance requires the

inversion of a matrix with the size of the state, which is computationally too expensive in time and memory for large

problems. Exactly sparse state representations, such as that of Pose SLAM, alleviate the cost of state recovery either

in time or in memory, but not in both. In this paper, we present an approach to state estimation that is linear both

in execution time and in memory footprint at loop closure, and constant otherwise. The method relies on a state

representation that combines the Kalman and the information-based approaches. The strategy is valid for any SLAM

system that maintains constraints between marginal states at different time slices. This includes both Pose SLAM,

the variant of SLAM where only the robot trajectory is estimated, and hierarchical techniques in which submaps are

registered with a network of relative geometric constraints.

Keywords: State recovery, Kalman filter, Information filter, Pose SLAM, Hierarchical SLAM

1. Introduction

Seminal solutions to the simultaneous localization

and mapping (SLAM) problem relied on the extended

Kalman filter (EKF) to estimate the mean absolute po-

sition of landmarks and the robot pose and their associ-

ated covariance matrix [1]. This has quadratic memory

and computational cost, limiting its use to small areas.

Instead of using the mean and the covariance, Gaus-

sian distributions can be parametrized in canonical form

using the information vector and the information ma-

trix. In SLAM, the information matrix turns out to be

approximately sparse, i.e., the matrix entries for distant

landmarks are very small and the matrix can be sparsi-

fied with a minimal information loss, trading optimality

for efficiency [2]. Efficiency without information loss

is possible by estimating the entire robot path along

with the map, an approach typically referred to as full

SLAM [3–5]. Exact sparsification is also possible if
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only a set of variables is maintained; either by keep-

ing a small set of active landmarks [6], by decoupling

the estimation problem maintaining the map only [7],

or as it is done in Pose SLAM, by maintaining only the

pose history [8, 9]. In Pose SLAM, landmarks are only

used to obtain relative measurements linking pairs of

poses. When working with sensors that are able to iden-

tify many landmarks per pose, Pose SLAM produces

more compact maps than the other exactly sparse ap-

proaches.

Due to their small memory footprint, sparse repre-

sentations enable SLAM solutions that scale nicely to

very large maps. Off-line information-based SLAM ap-

proaches [4, 10, 11] obtain the maximum likelihood so-

lution from the constraints encoded in the information

matrix. The optimization iteratively approximates the

mean by solving a sequence of linear systems using the

previously estimated mean as a linearization point for

the constraints. This process assumes data association

for granted, somehow limiting its applicability. On-

line information-based approaches rely either on vari-

ants of the batch methods [5] or, more commonly, on

filtering [8, 12] using the Extended Information Filter

(EIF) as the estimation tool of choice. These on-line
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systems not only have to recover the mean to evaluate

the Jacobians, but also need to address the data asso-

ciation problem. Data association might be tackled di-

rectly from sensor readings, without relying on the fil-

tered pose priors [13]. The process, however, is prone to

perceptual aliasing and it is often convenient to take ad-

vantage of the state estimates to limit the search space.

False positives can be avoided performing prior-based

data association tests that use cross covariances between

match candidates. Neither, the mean or the cross covari-

ances, are directly available from the estimates of the

information-based representations.

The EKF and the EIF applied to SLAM are differ-

ent in nature. While in the former the estimate includes

all the necessary data for linearization and data associ-

ation, the latter is advantageous from the point of view

of memory footprint. In this paper, we propose a com-

bination of these two filters with the aim of getting the

best of the two worlds: reduced memory complexity and

easy access to the mean and the relevant blocks of the

covariance matrix.

The work presented in this paper improves the for-

malization of the state estimation technique in [14],

where we adopted an extended information filter ap-

proach. Here, we abandon this paradigm and propose

a novel mixed Kalman-information filter. Moreover,

while the approach presented in [14] is limited to Pose

SLAM, here we exploit the properties of the new mixed

Kalman-information filter to generalize the approach

to both the Pose SLAM problem and to hierarchical

SLAM. For the sake of clarity, our presentation is se-

quential in order, first we introduce the new approach

in the context of Pose SLAM and latter we extend it to

hierarchical SLAM.

The paper is structured as follows. In Section 2, we

formalize the Pose SLAM problem and describe its so-

lution via EKF and EIF. In Section 3, we describe a

combination of the two filters that allows state estima-

tion in linear time and space complexities. Section 4

describes a refinement of the presented approach that al-

lows updates in constant time during open loop traverse.

This is relevant for approaches that carefully select the

loops to close in order to avoid inconsistency as much

as possible [12] or where previously mapped areas are

barely revisited [15]. In these contexts, the linear time

complexity of loop closure is amortized over long peri-

ods yielding an almost constant time state update. Sec-

tion 5 extends the approach to hierarchical SLAM and

Section 6 presents results both with simulated data and

with real data sets that validate the presented approach.

Concluding remarks are given in Section 7.

2. Pose SLAM Formulation

In the on-line form of Pose SLAM, the objective is to

estimate the trajectory of the robot, xn = {x0, . . . , xn},

with xi the robot pose at time i. The following ap-

plies for poses in SE(2) or in SE(3) and in Section 6

we particularize the approach to the planar case. Using

a Bayesian recursion, the trajectory, xn, is updated given

a set of observations, zn, of the relative displacement be-

tween the current robot pose and previous poses along

the path

p(xn|xn−1, zn) ∝ p(xn|xn−1) p(zn|xn).

The observations set zn can be split in two independent

groups zn = {un, yn} where un gives the displacement

between the current robot pose and the immediate pre-

vious one, and yn links the current pose with any other

pose but the previous one. With this, the probabilistic

model becomes

p(xn|xn−1, zn) ∝ p(xn|xn−1) p(un, yn|xn)

∝ p(xn|xn−1) p(un|xn) p(yn|xn)

∝ p(xn|xn−1,un) p(yn|xn). (1)

The estimation problem in Eq. (1) corresponds

to the SLAM operations of augmenting the state,

p(xn|xn−1,un), and updating the robot path using rela-

tive observations, p(yn|xn).

Assuming Gaussian distributions, the probabilities in

Eq. (1) can be parametrized either in terms of their

mean and covariance, xn ∼ N(µn,Σn), or in terms of

the information vector and matrix, xn ∼ N
−1(ηn,Λn),

with ηn = Λn µn, Λn = Σ
−1
n , and in which the estimation

workhorses are the extended Kalman and information

filters, respectively.

Note that simultaneous observations are independent

and, thus, observations linking the same pair of poses

can be fused before using them to update the filter. In

particular, we can assume the set un to include a single

element, un.

2.1. EKF Pose SLAM State Estimation

The observation un ∼ N(µu,Σu) is used to augment

the state with a new pose. In Pose SLAM, the state tran-

sition model is given by

xn = f (xn−1, un)

≈ f (µn−1, µu) + Fn (xn−1 − µn−1) +Wn(un − µu)

with Fn and Wn the Jacobians of f with respect to xn−1

and un, evaluated at µn−1 and µu. The EKF augments the
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state as

µn =

[

µn−1

xn

]

, (2)

Σn =

[

Σ1:n−1,1:n−1 Σ1:n−1,n−1 F
⊤
n

Fn Σn−1,1:n−1 Fn Σn−1 n−1 F
⊤
n +Q

]

, (3)

with Q =WnΣuW
⊤
n and where Σn−1 n−1 is used to denote

the block of Σn−1 corresponding to the (n − 1)-th pose,

and Σ1:k,1:k indicate the blocks ranging from the first to

the k-th pose.

Each set of measures yn = {y
i
n, . . . , y

k
n} constrains the

relative position of the last pose to some other poses

from the robot trajectory forming loops. The measure-

ment model for each of these constraints is

yin = h(xi, xn) + vn

≈ h(µi, µn) +H(xn − µn) + vn,

where h gives the displacement from xi to xn in the ref-

erence frame of xi, and H is

H = [0 . . . 0 Hi 0 . . . 0 Hn] , (4)

with Hi and Hn the Jacobians of h with respect to xi
and xn, and vn ∼ N(0,Σy) the measurement white noise.

The information from observation yin is merged into

the filter applying the following increments

∆µ = K (yin − h(µi, µn)), (5)

∆Σ = −KH Σn, (6)

to µn and Σn, respectively, where K is the Kalman

gain, K = Σn H
⊤ S−1, and S the innovation matrix,

S = H Σn H
⊤ + Σy.

Measurements yin result from the data association pro-

cess. Instead of directly comparing the sensor readings

for the current pose with those for all poses along the

trajectory, data association is generally tested on a lim-

ited region of the trajectory. To identify poses that are

close enough to the current one so that the correspond-

ing sensor readings are likely to match (i.e., to produce

yin observations), we can estimate the relative displace-

ment, d, from the current robot pose, xn, to any other

previous pose in the trajectory, xi, as a Gaussian with

parameters

µd = h(µi, µn), (7)

Σd = [Hi Hn]

[

Σii Σin

Σ
⊤
in
Σnn

]

[Hi Hn]⊤, (8)

where Σin is the cross correlation between the i-th and

the current poses. Only poses whose relative displace-

ment, d, is likely to be inside sensor range need to be

considered for sensor registration.

Whereas the EKF estimation maintains all the data

necessary for linearization and for data association, its

drawback is that storing and updating the whole covari-

ance matrix entails quadratic cost both in memory and

in execution time.

2.2. EIF Pose SLAM State Estimation

In the EIF form of Pose SLAM [8], the state is aug-

mented as

ηn =





















η1:n−2

ηn−1 − Fn
⊤Q−1 ( f (µn−1, µu) − Fn µn−1)

Q−1 ( f (µn−1, µu) − Fn µn−1)





















,

Λn =





















Λ1:n−2,1:n−2 Λ1:n−2,n−1 0

Λn−1,1:n−2 Λn−1 n−1 + F
⊤
nQ
−1Fn −F⊤nQ

−1

0 −Q−1Fn Q−1





















. (9)

The information from observation yin is fed to the fil-

ter by adding the following increments

∆η = H⊤ Σ−1
y (yin − h(µi, µn) +Hµn),

∆Λ = H⊤Σ−1
y H, (10)

to ηn and Λn, respectively.

Equation (9) defines a block-tridiagonal matrix and

Eq. (10) only adds off-diagonal elements to the posi-

tions corresponding to the two poses directly related by

the observation yin. In practice, due to limited sensor

range, only few nearby poses are related and Λ remains

sparse and, therefore, the memory requirements for the

information-based representation can be considered lin-

ear with the number of poses.

Notice, however, that the Jacobians above have to be

evaluated at the state mean which is not directly avail-

able in information form. Moreover, the displacement

measure in Eqs. (7) and (8) requires marginalizing out

some blocks of the covariance matrix (its block diago-

nal and the last column) which are also not available in

the information form.

The mean can be recovered by solving the following lin-

ear system

Λn µn = ηn .

Using sparse Cholesky factorization [16], this can be

solved in linear time, with the number of non-zeros en-

tries in Λ. Thus, it scales linearly with the number of

poses, except for densely connected degenerate cases.

The covariance can be recovered solving

Λn Σn = I,

with I the identity matrix. Sparse Cholesky factor-

ization allows to solve this system efficiently but with
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quadratic memory cost for storing full covariance ma-

trix Σn. This cost can be alleviated by solving n in-

dependent systems, one for each block column of the

covariance matrix, Ti, i ∈ {1, . . . , n}

Λn Ti = Ii, (11)

where Ii is the sparse block column matrix with an iden-

tity block at the position corresponding to pose i. In this

way, space complexity is linear, but time complexity is

increased due to the overhead of solving many linear

systems.

3. Pose SLAM with a Mixed Kalman-Information

Representation

To obtain a state recovery strategy that scales linearly

both in execution time and in memory usage we pro-

pose a mixed Kalman-information representation. We

store the state mean, µn, a block-vector Dn containing

the block diagonal terms of the covariance matrix, the

block-last column of the covariance matrix, Tn, and the

information matrix Λn. The mean is used to evaluate

Jacobians, Dn and Tn are used for data association, and

Λn stores in a very compact way the full set of correla-

tions between all poses, which are necessary to propa-

gate the effects of each loop closure to the entire trajec-

tory. Neither the rest of entries in Σn nor the information

vector ηn are maintained. The largest stored element is

Λn, which in practice scales linearly with the number of

poses. Therefore, the whole representation scales lin-

early.

During state augmentation, µn grows as shown in

Eq. (2). The new blocks of Dn and Tn are computed

using the corresponding parts from Eq. (3) and Λn is

extended as in Eq. (9). Augmenting the mean block-

vector, µn, and the block-vector of diagonal covariance

entries, Dn, can be done in constant time. However, state

augmentation produces a new block column Tn of cross

covariance terms with n − 1 elements. Therefore updat-

ing Tn has linear computational cost. Linear complexity

data association can be carried out at the same time Tn

is updated.

When establishing a link between the last pose and

any i-th pose from the trajectory, due to the sparse form

of the Jacobian H in Eq. (4), Eqs. (5) and (6) do not

require all entries of the covariance matrix but only Dn,

Tn and the i-th block columns of the covariance matrix,

Ti. However, Ti can be obtained in linear time in the

number of non-null entries in Λn by solving the system

in Eq. (11).

The last step is to update the state mean, the block

diagonal terms of the covariance, and the last block col-

umn of the covariance matrix. Applying Cholesky de-

composition to the inverse of the Kalman innovation

S−1 = V⊤V we define the block column matrix

B = Σn H
⊤V⊤,

that considering Eq. (4) becomes

B = [Ti Tn]

[

H⊤
i

H⊤n

]

V⊤.

With this, the mean is updated as in Eq. (5) with

K = B V. The block diagonal entries of the new covari-

ance matrix are updated adding the following increment

to Dn

∆D = −

























B1 B
⊤
1
...

Bn B
⊤
n

























,

where Bi is the i-th block row of B. Moreover, Tn is

updated with

∆T = −B B⊤n .

Finally, the information matrix is updated as in Eq. (10).

This process is applied for each loop closed at a same

time slice. In practice, and due to sensor limitations, a

bounded number of loops per step are closed and, there-

fore, the whole state update process scales linearly in

time and memory with the number of steps.

The new approach avoids quadratic memory require-

ments of an EKF by maintaining the correlations in in-

formation form while, at the same time, allowing direct

access to the mean and the covariance entries. In this

way, the proposed filtering scheme gets the best of the

two worlds; direct marginalization available in covari-

ance form and efficiency from sparse information repre-

sentation.

4. Open Loop State Recovery in Constant Time

The mixed Kalman-information approach presented

above can be applied regardless of the number of as-

serted loop closures, giving linear time execution per

time slice. However, in many cases loops are scarcely

closed. For instance in Pose SLAM, in order to delay

filter inconsistency as much as possible, it is desired to

close only highly informative loops [12]. In this case,

the robot operates most of the time in exploration mode,

where the most expensive step is that of updating the

last block column of the covariance matrix, Tn. This

last block column is composed by the cross covariances
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Σin between the current robot pose, xn, and any previous

pose xi, with i < n. As described in Eq. (3), when the

robot operates in open loop these cross covariances are

updated as

Σin = Σin−1 F
⊤
n .

Let us assume that a loop is closed at time l. At that

point, Tl includes all marginal Σil for i ≤ l and is ob-

tained using Eq. (11). With that, we can unfold the re-

cursive relation and factorize Σin as

Σin = Φi Li F F⊤n

with

Φi =















Σil 1 ≤ i ≤ l,

Σii l < i < n,
(12)

Li =















I 1 ≤ i ≤ l,

(F⊤
l+1
. . .F⊤

i
)−1 l < i < n,

and

F = F⊤l+1 . . .F
⊤
n−1,

where Fn is the Jacobian of the state transition func-

tion f at time n, and Σii is the i-th element of the block

vector Dn. Therefore, the new matrices Φi are com-

puted in constant time by copying the corresponding

block of Dn. F can also be updated in constant time

and, the new element Li is easily computed using F at

time i and Fi. With this factorization Tn is not needed

to be stored, since by book-keeping Φi, Li, and F, any

block of Tn can be computed in constant time anytime

required by the data association process. 1

This constant time open loop update scheme prompts

the necessity to perform data association in times better

than linear. This can be done, for instance, in logarith-

mic time per iteration using a tree structures [14, 18] or

even in constant time using grid techniques when co-

variances are bounded [19].

5. Extension to Hierarchical Mapping

A common approach to reduce the computational

cost of SLAM is to resort to hierarchical mapping [19–

24]. The idea is to build local maps that are integrated

into a global map. Local maps are limited to a bounded

number of poses/landmarks and thus, their estimation

1The factorization presented here is equivalent to that in [17] but

with a slight change in notation that facilitates its generalization to

hierarchical SLAM.

can be carried out in constant time. Consequently, hier-

archical mapping shifts the complexity to the map join-

ing phase. Seminal hierarchical SLAM approaches re-

lied on EKF’s both to build the local maps and to as-

semble the global one [20]. In the long run, the ap-

proach is affected by the same computational limitations

as EKF-based SLAM. The amortized execution time of

this approach can be alleviated by introducing more lev-

els in the hierarchy of maps [19], but memory usage re-

mains the same. More recently, the map joining stage

has been addressed using the information-based formu-

lation [24, 25]. In this way, the global map is sparse with

the consequent savings in memory usage. The draw-

back of using the information filter to representations

the global map is that the recovery of the global mean

and covariances, needed for submap matching, are com-

putationally expensive. The solution used in [24, 25]

was to recover the mean and only the necessary columns

of the covariance matrix solving a reduced number of

separate linear systems.

Next, we show how the information-based hierarchi-

cal mapping approaches can benefit from the proposed

mixed Kalman-information filter. The advantage of us-

ing our approach with respect to Kalman-based map

joining strategy is that we can overcome the quadratic

memory requirements imposed by the EKF. Conversely,

the advantage of the presented approach with respect to

information-based map joining is that we obtain a more

efficient state recovery.

Similar to [24] and [25], we assume local maps built

using a standard EKF. However, our representation of

the global map includes only the mean, the information

matrix, and the block diagonal and block last column

of the covariance matrix of the local maps. The differ-

ence with Pose SLAM is that here, blocks correspond

to submaps rather than poses. In other words, Pose

SLAM can be seen as a fine granularity hierarchical

SLAM where each local map includes only one robot

pose. From this point of view our approach is related to

the continuous submapping strategy suggested in [27].

State augmentation at the upper layer of the hierar-

chy amounts to adding a locally built map un to the

global map with the appropriate coordinate shift about

the robot pose in xn−1,

xn = f (xn−1, un). (13)

In Pose SLAM, the measurements link the current

pose to previous poses forming loops. In hierarchical

mapping, measurement updates register the last local

map with previous submaps. The registration is per-

formed by relating shared landmarks between submaps.
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Figure 1: Simulated trajectory when closing all possible loops. The

links generated from odometry are shown in red and the links forming

loops are overlaid in green.

Given that these are represented in global coordinates in

xn, if a landmark ln in the current submap is the same as

a landmark li in any previous submap i, one can define

the following measurement function

h(xn) = li − ln + vn = 0,

with vn ∼ N(0,Σy) the noise inherent to the observa-

tions. Then,

H = [0 . . . 0 I 0 . . . 0 −I 0 . . . 0] ,

where I is the identity matrix of the adequate size,

placed at the positions corresponding to landmarks li
and ln.

With this, the state update in Section 3 straightfor-

wardly generalizes to hierarchical mapping, with Ti

and Tn the block columns of the covariance matrix cor-

responding to submaps i and n, respectively. Notice that

all pairs of shared landmarks between two submaps can

be considered simultaneously by defining a measure-

ment function with as many outputs as the number of

paired landmarks. In any case, the number of paired

landmarks is always below the maximum number of

landmarks per submap, which is constant. Thus, con-

sidering all paired landmarks at a time only increases

the cost by a constant factor.

It is often the case, in hierarchical SLAM, that many

loops are formed inside local maps but few are formed

between maps. Thus, the robot basically operates in

open loop, and we can take advantage of a constant time

open loop state recovery strategy equivalent to that de-

scribed in Section 4. In this case, the last block column

of the covariance matrix, Tn, contains the cross covari-

ances Σin between the current map xn and any previous

map xi. These block cross covariances can be factorized

as

Σin = Φi

[

Li F F⊤n Li F G

0 0

]

, (14)
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(b) Memory footprint.

Figure 2: Execution time and memory footprint for different state re-

covery strategies when closing a loop in the simulated experiment.

where 0 is used to denote zero matrices with the ade-

quate size,Φi is defined analogously to that in Eq. (12),

but on submaps instead of poses. Li and F are the same

as those in Section 4, and G is a block row of the land-

mark Jacobians of f in Eq. (13) with respect to the robot

pose in submap xn−1

G =

[

∂ fl1 (xn−1, un)

∂rn−1

. . .
∂ flm (xn−1, un)

∂rn−1

]

,

where rn−1 is given in the global frame. Observe that,

when no landmarks are present, this cross-covariance

factorization reduces to that of Pose SLAM. The struc-

ture of the matrix used to compute Σin from Φi in

Eq. (14) indicates that, in open loop, the new submaps

are only related to the previous submaps through the

chain of poses from the last loop closure to the new

submap.

6. Experiments and Results

This section describes experiments that validate

the presented mixed Kalman-information filtering ap-

6



−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

x(m)

y
(m

)

Figure 3: Simulated trajectory when carefully selecting the loops

to close using information-based criteria. The links generated from

odometry are shown in red and the loop closure links in green.
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Figure 4: Amortized execution time when controlling the number of

loop closures in the simulated experiment.

proach, first using synthetic data and then using real data

sets.

In the first experiment, we simulate a robot moving

about 0.8 m per step looping around two concentric el-

lipses, the first with semi-axes 10 m and 6 m and the

second with semi-axes 20 m and 6 m. In the simula-

tion, the motion of the robot is measured with an odo-

metric sensor whose error is 5% of the displacement in

x and y, and 0.017 rad in orientation. A second sen-

sor is able to establish a link between any two poses

closer than ±3 m in x and y, and ±0.26 rad in orienta-

tion, respectively. This sensor has a noise covariance

of Σy = diag(0.2 m, 0.2 m, 0.009 rad)2. The simulation

is implemented in Matlab running under Linux on a In-

tel Core 2 at 2.4 GHz with 2 GB of memory.

Fig. 1 shows the estimated trajectory when incorpo-

rating all possible loop closure links. We compare the

loop closure state update proposed in this paper with

the two alternative methods described in Section 2.2.

Fig. 2 shows the execution time and the memory foot-

print for the three approaches. The blue dotted-lines de-

pict the time and memory requirements when recover-

ing the whole covariance matrix, Σn, as a function of

the size of the state at iteration n. The red dashed-lines

show the time and memory requirements for the strat-

egy which recovers each block column of the covari-

ance matrix solving one linear system at a time. The

results corresponding to the method introduced in this

paper are shown in green. In all cases, linear systems

are solved using supernodal sparse Cholesky factoriza-

tion [16] as implemented in [28]. Due to the extra cost

of defining the different linear systems to be solved, the

time needed to solve separate systems per block column

is bigger than that of recovering the whole covariance

matrix. However, the memory requirements to solve

the whole covariance matrix increase much faster than

when solving the systems column-wise. In contrast, the

execution time and memory usage of our strategy out-

performs the two other methods in both aspects, time

and memory usage.

The peaks in the execution time for the three ap-

proaches in Fig. 2(a) correspond to poses where many

loops are closed. When carefully selecting the loops to

be closed using an information-based criterion [12, 14],

the robot operates most of the time in open loop. Thus,

we can take advantage of the factorization proposed in

Section 4. Fig. 3 shows the result of a simulation of the

same experiment as that in Fig. 1 when using this strat-

egy. Fig. 4 shows the amortized cost, ci, at each iteration

i, computed as

ci =
1

i

i
∑

k=1

tk, (15)

where tk includes the time for filter related operations at

iteration k (the time to compute µ, D, Φ, and Λ, both

in open loop and when closing loops), disregarding the

cost of sensor registration. After an initial transitory, the

plot indicates that the amortized cost is nearly constant

for the entire experiment.

To test the performance of the proposed approach in

larger problems, we use the simulated Manhattan data

set [10] including 10000 poses in SE(2). For this exper-

iment we set Σu = Σy = diag(0.05 m, 0.05 m, 0.03 rad)2

Fig. 5 shows the final trajectory for this experiment,

when considering only the most informative loop clo-

sure links. In Fig. 6 we show the execution time and

memory footprint for this experiment using three state

recovery strategies. The plot for the strategy that re-

covers the whole Σ stops when the state dimension is

about 8000 because Matlab runs out of memory. This

clearly indicates that the method that recovers the whole

covariance matrix is too memory demanding to be ap-

plied to large mapping problems. Both the column-wise

7



Figure 5: Trajectory in the simulated Manhattan world. The links

generated from odometry are shown in red and the informative links

forming loops are shown in green.

and our strategy are much less demanding with respect

to memory use. However, as shown in Fig. 6(a), the

column-wise strategy is extremely demanding with re-

spect to computational time while our strategy is not.

Note that this simulation is intentionally loopy and that,

despite considering only the most informative loops the

cost using our strategy scales linearly, even when amor-

tized. As we show next, this situation is not likely to

happen in real experiments.

To test the performance of the proposed ap-

proach in real situations, we used the Intel data

set from [29]. This data set includes 13631 laser

scans and the corresponding odometry readings. The

laser scans are used to generate sensor-based odom-

etry and to assert loop closures aligning them us-

ing a scan matching algorithm [30]. Robot odom-

etry and laser scan matching are modeled with

noise covariances Σu = diag(0.05 m, 0.05 m, 0.03 rad)2

and Σy = diag(0.05 m, 0.05 m, 0.009 rad)2, respectively.

Finally, the covariance of the initial pose 2 is set to

Σ0 = diag(0.1 m, 0.1 m, 0.09 rad)2. Due to its large size,

this data set is typically pre-processed and reduced to

about 1000 poses with about 3500 loop closure links [5].

By carefully selecting the most informative loops [12]

we are able to reduce it to only about 100 links, without

exposing map accuracy. Fig. 7 shows the final estimated

2The main contribution of the paper is reduced computational cost.

This cost is given as a complexity bound which is not jeopardized

by the selection of values for Σ0 or any other initial parameter. We

give these parameter values explicitly throughout the text only to ease

replicability of results.
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(b) Memory footprint.

Figure 6: Execution time and memory footprint for different state re-

covery strategies when closing a loop in the Manhattan experiment.

trajectory.

Fig. 8 shows the execution time and memory foot-

print at each step using the three different state recov-

ery strategies discussed in the simulated examples. The

results confirm that for larger SLAM problems, our

method clearly outperforms the two other methods both

in memory usage and in execution time.

Fig. 9 shows the amortized time for the whole execu-

tion on the Intel experiment. The amortized cost for the

state estimation process, but without considering sensor

registration, is almost constant. Sensor registration can

be carried on in logarithmic time [14] and, with this,

the total amortized cost of the presented SLAM system

would be logarithmic.

We also applied our state recovery strategy to

the Victoria Park data set, a standard data set of-

ten used to test hierarchical SLAM algorithms [19,

23]. This data set includes about 6900 laser scans

with the corresponding odometry readings. The laser

scans are processed to detect the trunks of the trees

in the park that are used as landmarks. The hi-

erarchical SLAM state recovery method described

in Section 5 was implemented with initial condi-

tions Σ0 = diag(0.25 m, 0.25 m, 0.017 rad)2, and noise

8



Figure 7: Filtered trajectory using encoder and laser odometry of the

Intel data set. The blue arrow indicates the final pose of the robot and

the black ellipse the associated covariance at a 95% confidence level.

parameters Σu = diag(0.025 m, 0.025 m, 0.017 m)2, and

Σy = diag(0.1 m, 0.1 m)2. Local map sizes were arbi-

trarily limited to 20 landmarks each.

Fig. 10 shows the final trajectory estimate together

with the detected landmarks. At the end of the execu-

tion, the global map includes 29 submaps. The rect-

angles in the Fig. 10 bound the area covered by five

of these submaps. Note that since there is substantial

overlap among submaps, the number of landmarks in-

side a bounding box might be larger than 20. The tra-

jectory re-traverses many times the same areas and the

final graph of submaps includes 113 loop closure links

between submaps. Note that, in principle we could

form loop closure links when registering consecutive

submaps. In that case, the open loop state recovery strat-

egy described in Section 5 would be hardly applicable.

To avoid this, we anchor each new submap using the

landmarks from the previous submap rotated and trans-

lated to the new local reference frame. This only in-

creases the cost of building a submap by a constant fac-

tor and the result is a submap that is already properly

registered with respect to the previous map.

Fig. 11 shows the execution time and the memory use

for the whole execution of the Victoria Park data set for

the same three state recovery strategies analyzes before.

Our strategy clearly outperforms the other two strategies

both in memory use and in execution time.

The maps joining information matrix is rather sparse.

The 113 loop closure links amount to less than 15% of

the possible links between the 29 submaps produced.

0 500 1000 1500 2000 2500 3000 3500

0

2

4

6

8

10

12

14

State dim.

T
im

e 
(s

)

 

 

Column−wise

Whole cov. matrix

Our method

(a) Execution time.

0 500 1000 1500 2000 2500 3000 3500

0

20

40

60

80

100

120

140

160

180

State dim.

M
em

o
ry

 (
M

b
)

 

 

Column−wise

Whole cov. matrix

Our method

(b) Memory footprint.

Figure 8: Execution time and memory footprint for different state re-

covery strategies when closing a loop in the Intel experiment.
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Figure 9: Amortized execution time when controlling the number of

loop closures in the Intel experiment.

Since submaps only share a small amount of landmarks,

at the lowest level in the hierarchy, the information ma-

trix sparsity is even larger, including only 4% non-zero

entries. As shown in Fig. 12, the cost of state recov-

ery after closing loops is amortized over the periods

where the robot operates in open loop, and when the

local maps can be joined in constant time. The final re-

sult is that the state is updated in amortized constant
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Figure 10: Hierarchical mapping of the Victoria Park data set. The

rectangles bound the landmarks included in five of the submaps. The

blue line is the estimated trajectory, the red line under the trajectory

corresponds to the GPS ground truth, and the green ellipses indicate

estimated landmarks and their covariances.

time for local map management and their integration

in the global map, but disregarding the cost of sensor

registration. The amortized cost for this experiment is

higher than for the other two data sets due to the fact

that here, all basic map management operations are per-

formed over submaps instead of just on a single pose.

7. Conclusions

The problem of estimating a set of reference frames

with relative constraints between them is a fundamen-

tal problem in SLAM. It appears, for instance, in Pose

SLAM where reference frames are attached to each one

of the poses along the robot trajectory or in hierarchi-

cal SLAM where reference frames are attached to each

local map. When assuming Gaussian distributions, the

Kalman and the information filters are the two alter-

native filtering schemes that have been applied to this

problem. In the Kalman filter the mean and the co-

variance are directly available for linearization and data

association, but with quadratic memory cost and time

complexity. The information filter offers linear mem-

ory cost, but the mean and the covariance need to be

recovered from the information vector and the informa-

tion matrix by solving large linear systems, a process
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(a) Execution time.
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Figure 11: Execution time and memory footprint for different state re-

covery strategies when closing a loop in the Victoria Park experiment.
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Figure 12: Amortized execution time for global map management in

the Victoria Park experiment.

that is computationally too expensive for large prob-

lems. Sparse linear algebra tools alleviate either com-

putational time, by recovering the whole covariance ma-

trix, or the memory footprint, by recovering the covari-

ance matrix column-wise, but not both.

In this paper we proposed a mixed Kalman-

information approach which maintains the state mean,

the block diagonal and block last column entries of

10



the covariance matrix and the information matrix. The

mean and the covariance entries are used to linearize the

system when necessary and to perform data association,

while the information matrix stores in a very compact

way the whole set of correlations between poses. The

result is an estimation mechanism that scales linearly

both in memory and execution time.

Moreover, both in Pose and in hierarchical SLAM, it

is typical to operate most of the time in open loop while

exploring new areas or when defining new submaps, as

well as to establish only few constraints between the

current robot pose (or current submap) and previous

poses (or submaps). We have shown that this particu-

lar property can be exploited to derive a system whose

amortized cost per step is constant. The presented re-

sults using simulated experiments and standard SLAM

data sets validate the approach.
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