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The Octahedral Manipulator Revisited

Nicolas Rojas, Julia Borras, and Federico Thomas

Abstract— In most practical implementations of the Gough-
Stewart platform, the octahedral form is either taken as it
stands or is approximated. The kinematics of this particula
instance of the Gough-Stewart platform, commonly known as
the octahedral manipulator, has been thoughtfully studied It
is well-known, for example, that its forward kinematics canbe
solved by computing the roots of an octic polynomial and its
singularities have a simple geometric interpretation in tems
of the intersection of four planes in a single point. In this
paper, using a distance-based formulation, it is shown howhiese
properties can be derived without relying neither on variabe
eliminations nor trigonometric substitutions. Moreover, thanks
to this formulation, a family of platforms kinematically eq uiv- Clearly, it is advantageous to have multiple spherical
alent to the octahedral manipulator is obtained. Herein, two joints sharing the same center of rotation in a parallel
Gough-Stewart parallel platforms are said to be kinematicéy manipulator to simplify its kinematics. However, difficiel

equivalent if there is a one-to-one correspondence between I . . tructi h herical ioints. Th
their squared leg lengths for the same configuration of their always arise In constructing such spherical joints. ere
moving platforms with respect to their bases. If this conditon ~have been several attempts to construct them (see [4] and
is satisfied, it can be shown that both platforms have the same the references therein), but none of them use off-the-self
assembly modes and their singularities, in the configuratio  mechanical elements. Another disadvantage of this kind of
space of the moving platform, are located in the same place. joints is that the range of action of the leg actuators is
reduced because of the risk of mechanical interference. In
I. INTRODUCTION [5], kinematic substitutions are introduced to provide aywa

The Stewart-Gough platform consists of a fixed base anda{;ound this problem where is it shown, for example, that the

moving platform connected by six ball-ended extensibls le manipulator appearing in Fig. 2(a), that avoids the double-

: . . : . all-joints in the base, is kinematically equivalent to the
[2]. While the kinematics analysis of the general case,ithat ) . . : y €4 g
. : L o octahedral manipulator. This particular arrangement iot$o
that in which the ball-and-socket joints are arbitrarilgdted . : A
: . s also known as the triple arm mechanism [6].
on the base and the platform, is very complex, it gets greatly ) : . o
R o . Most implementations avoid the difficulty of construct-
simplified when some of these joints, either on the base or the . . o N .
; ing multiple spherical joints by approximating them with
platform, coalesce and/or are made to be collinear or copla- : : . o .
9 collection of single spherical joints with small offsets

nar. In other words, placing constraints on the geometric A
structure of the general Stewart-Gough platform offers th%etween them, as shown in Fig. 2(b). Such offsets change

. - ) i . kinemati f the mechanism, resulting in one of twi
opportunity for obtaining a simple formulation for its foand fre kinematics of the mechanis , resulting in one of two

kinematics and a simple geometrical interpretation for ithSSible problems, as pointed out in [4]. First, if the dfise
P g P are included in the kinematics of the mechanism, the kine-

singularities. The maximum simplification is obtained when__ .. :
- . . matic equations may become very complex and thus very
all the ball-and-socket joints coalesce into only threetipid e .
L . difficult to solve. Second, if the offsets are neglectedsthu
spherical joints both in the base and the platform. Onlyehre . " .. . . . . )
Lo . . .7 . simplifying the kinematic equations, errors arise. These e
possibilities arise whose topologies are representedgniFi

rors may hav ignificant im in precision lication
These three platforms are known as the three 3-3 Stewar?—.S ay have a signitica timpact in precision app ca}to S
. or in manipulators such as the Tetrobot [7] that consists in
Gough platforms for obvious reasons.

. stacking multiple octahedral manipulators resulting ie th
One of the 3-3 Stewart-Gough pI_atform; consists of S%ccumulation of errors if such offsets are introduced and
double-ball-ended legs thereby forming a zigzag patteon. F

. o . geglected.
symmetry reasons, this topology Is either taken as it stan SThe modification of the octahedral manipulator proposed
or is approximated in most implementations of the StewarE

Fig. 1. The three possible topologies for a 3-3 Stewart-Goplgtform.
The lower one corresponds to the octahedral manipulator.

. X e y Stoughton and Arai consist in separating the six double-
.G.OUQh platform. Since the 12 I|ne§ that join the double-bal all joints alternatively inward and outward radially [&s
joints can be interpreted as the eight triangular faces of

tahed the t tahedral oulat ined i Lhown in Fig. 2(c). Each double-ball-joint is separatedhsy t
F?S ?0 ?};:12’ it € terroctanedral manipulatowas coined N o5 je amount into a pair of spherical joints whose centers are

equidistant to the original center. In this paper, we shaat,th
, _ o . _ if this six double-ball joints are alternatively separateat
The authors are with the Institut de Robotica i Informatindustrial

(CSIC-UPC), Liorens Artigas, 4-6, 08028, Barcelona, Spéit 0j as, radially but following the edges of the base and platform
jborras, fthomas}@ri. upc. edu triangles, as shown in Fig. 2(d), the resulting manipulator
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Fig. 2. The triple arm mechanisfa), the standard approximation to the octahedral maniputhtar avoids all double-ball-jointé), the Stoughton-Arai
approximation intended to also improve the dexterity of tienipulator(c), and the Griffis-Duffy modificatior(d).

is kinematically equivalent to the original octahedral one
This fact was already acknowledged by Griffis and Duffy in
[9] (without giving an explicit formulation) but it has been
overlooked in subsequent publications where alternatwes
avoid these joints are discussed [5]. The formal prove e
this fact can be easily derived through a formulation of the
kinematics of the octahedral manipulator fully expressed i
terms of distances.

This paper is organized as follows. Section Il presents a
novel closure condition for octahedra, that is, a conditiat
is satisfied if, and only if, an octahedron can be assembled
with the desired edge lengths. Section Il briefly reviews th
proposed approaches to solve the forward kinematic of thgy. 3. An octahedron can be decomposed into two bananasese two
octahedral manipulator and shows how its characteristic oc bananas, the squared edge lengthg andss 4 are unknown, but for each
polynomial corresponds to the closure condition derived IfE™™ 21 be eessed a2 4 clomal Ecatng ot sotns
the previous section. Then, using this formulation, it isv8h  thus obtained. ’
that, when there is an affine relationship between the square
leg lengths of two platforms, a one-to-one-correspondence
exits between the coefficients of their characteristic polyyhere
nomials or, equivalently, between the solutions to their

forward kinematics. Section IV deals with the singulastie (1) 8,1‘ 8.1‘

of the octahedral manipulator and the relationship betweenp(;, . i..j\, ... .jn)=| . . e
the singularity locus of two platforms whose squared leg : : " :
lengths are affine linearly related. In Section V, the geoimet 1 si 0 -0 Singn
transformations that lead to affine relationship between t

squared of the leg lengths is derived. A family of parallel Dty in) = D(it,- -y inits - yin)

platforms kinematically equivalent to the octahedral rpani
ulator is thus obtained. One of its members has no doublate Cayley-Menger determinants; ; being the squared
ball-joints. Section VI analyzes this case through an examp distance betweer; and P; (see [1] for details on the
Finally, Section VII summarizes the main results. derivation of this formula).
Applying also this result to the banana in Fig. 3(right-
bottom), we get

II. DISTANCE-BASED CLOSURE CONDITION FOR AN D(3,5,1,2;3,5,1,6) = i\/D(?” 5,1,2)D(3,5,1,6) (2)

OCTAHEDRON Equations (1) and (2) depend on baths and s; 5, but
this dependency is linear fap 6. Then, by solving them for

. L sg.6 and equating the results, a scalar equation in a single
Let us consider the octahedron in Fig. 3(left). It can bgiaple s1.5, is obtained:

decomposed into two bananas (two sets of two tetrahedra
sharlng_ one face). Th_en, let us consider the banana 'nW{A&M Ws5196— As51 Vs 1406
Fig. 3(right-top). For this banana, it can be proved that —16A351 4514

+288 (£ As5.1,4 V512 Vasi6

D(5,4,1,2;5,4,1,6) = +1/D(5,4,1,2)D(5,4,1,6) (1) FAs51 V5142 ‘/5,1,476)} =0. (3



where 4, ;, = 1D(i,j, k) is the squared area of the Using the closure condition for an octahedron, derived in
triangle P, P Py, V; j k1 = % D(i,j,k,1) is the volume the previous section, and trilaterion [10], a simple pragsed
of the tetrahedro; P; P, P;, and ¥, ; 1. ;.. is a polynomial for solving the forward kinematics problem is obtained.
function ins; ;, sik, Si,i, Si;ms Sjk» Sjls Sj.ms Sk, andsy ., Indeed, consider the octahedral manipulator in Fig. 4 (the
Equation (3) is satisfied if, and only if, the consideredriangles P, >, P3 and P,P5Ps are the base and platform,
octahedron can be assembled with its assigned edge lengtigspectively). This robot can be assembled if, and only if,
Actually, the different real roots of this equation fer ; equation (3) is satisfied for real values of 5. Thus, the
correspond to the different ways in which the octahedrofpots of this equation determine the assembly modes of
can be assembled. Note that two other equivalent conditiotite considered manipulator. These roots can be obtained by
could be derived forsy s and s34 by decomposing the computing the roots of the 8th order polynomial that results

octahedron into different sets of bananas. after twice squaring it. For each of these real roots, we

can determine the spatial position of the three points of the

I1l. FORWARD KINEMATICS OF THE OCTAHEDRAL platform by computing, for example, the following sequence
MANIPULATOR of trilaterations: computing; 5 from p; » and p; 3, then

p1,4 from py » andp, 5, and finallyp; ¢ from p; 4 andp; 5.
This leads to up to eight locations fd#;. Those locations
that satisfy the distance imposed by the leg connecig
and P correspond to valid assembly modes.

Now, let us suppose that, for a generic configuration of
the moving platform with respect to the base, the location
of the joints are modified so that the lengths of the legs for

the new locations, sayii,mo, ..., mg, are related to those
of the original onesiy, Io, ..., lg, through the relation:
m 4
my 5
=A| .| +Db, 4)
mg I3

where A andb are a constant matrix and a constant vector,
Fig. 4. Octahedral manipulator and associated notatiore fflangles respegtwely. .Then’ if such a modification _On the location of
Py P, P3 and P, P5 P are the base and platform, respectively the joints exists, the resulting platform will have the same
forward kinematics as the original one in the sense thaether
will be a one-to-one correspondence between the coefficient
The forward kinematics problem is to find all poses 0bf their associated octic polynomials through (4). The atffe
the platform (relative to the base) that are compatible withf this kind of joint location modifications on the singulies

the six specified leg lengths. During the late 80’s and earlyf the moving platform is discussed in the next section.
90's several researchers successfully addressed it giving

numerical procedures that involve finding the roots of an IV. SINGULARITIES
eighth-degree univariate polynomial. In [11], Nane&al.
derived such a polynomial through resultant eliminatiod an
tangent-half-angle substitution techniques. A similasuit
based on three spherical four-bar linkages, was obtaindf
by Griffis and Duffy in [12]. An alternative method was

For a general Stewart-Gough platform, the linear actua-
tors’ velocities,(l1, s, . ..,ls), can be expressed in terms of
platform velocity vectofv, §2) as follows:

also developed by Innocenti and Parenti-Castelli in [13]. b

In all cases the polynomial variable is the tangent of one- diag(l le) ly _ v ®)
half the angle defined by the plane supportiRgP; P, b t0 Q)
(alternativelyP, P; Ps, or P3P, Pg) and the base plane. More i

recently, Akcali and Mutlu revisited the problem —also us-

ing resultant elimination and tangent-half-angle substih  whereJ is the matrix of normalized Plicker coordinates of
techniqgues— with the aim of reducing the computationahe six leg lines. The parallel singularities of the platfor
cost of evaluating the resulting univariate polynomial][14 are those configurations in which &} = 0. This algebraic
Finally, it is worth to mention that the forward kinematics o condition have a simple geometric interpretation for the
the octahedral manipulator has also been solved localhgusioctahedral manipulator. Indeed, according to Fig. 4, when t
Newton-Raphson iterative schemes. keiual. [15], Ku [16], supporting planes of the trianglé% P, Py, P> P3 P5, Ps Py Py,
and Song and Kwon [17] propose different formulations t@nd P, P; Ps intersect in a single point, the manipulator is
this end. in a singular pose [19]. Alternatively, this condition caa b



expressed as [21]: Stewart platforms kinematically equivalent to the octahéd
manipulator is thus obtained. Unfortunately, all membédrs o
D(1,2,4,5)D(3,4,5,6)D(1,2,3,6) this fgmily include at least one double-bally-joint. Newert
=D(1,2,3,4)D(2,4,5,6)D(1,3,5,6) less, it is interesting to realize that these offsets cao bés
Now, as in the previous section, let us suppose that tHatroduced simultaneously, not only sequentially. Theadet
location of the joints are modified so that the lengths of th@f how this operation is performed can be found in [20].
legs in their new locations are related to those of the oaigin 1heN: if an offset is simultaneously introduced for the six
legs through the relation (4). Differentiating (4) with pest sets of two legs sharing a double-ball-joint, all joints spét

to time and substituting (5) in the result, we get into single spherical joints. The result is the 6-6 platform
appearing in Fig. 6.
dy
. do v
dlaqdl, C ,dﬁ) . =AlJ (Q) . (6)
d
Then, if a modification in the location of the joints satis-
fying (4) exists, the singularities of the resulting platfoare
those configurations in which detJ) = det{A)det(J) = 0.
In other words, the resulting platform will have the same
singularities as the original one provided that(det # 0.
As a consequence, a modification in the location of the joints
satisfying (4) leaves the singularities of the moving pati

unaltered. Next section presents the geometric transforma
tions that satisfy the algebraic condition (4).

V. DERIVING KINEMATICALLY EQUIVALENT
MANIPULATORS

Fig. 6. Contrarily to what happens to the Stoughton-Arairagimnation,
the proposed modification lead to a 6-6 platform kinemdgicafjuivalent
P; to the octahedral manipulator.

According to Fig. 6 and the results in [20], the affine
relation between leg lengths of the resulting 6-6 platform
and the original octahedral manipulator can be expressed as

5 diz — & my i
P, ©P4 P, m% l%
. . - mil A B —p ®)
Fig. 5. The squared distaneg,s depends affine linearly om,3 andsz,3 mi [i
provided thatPy lies in the line defined byP; Px. m2 12
mg lg
Let us take two legs in an octahedral manipulator sharing\@here
double-ball-joint and let us introduce an offset in the koma din—b, 6y 0 0 0 0
of one of the other end spherical joints, as shown in Fig. 5. %2 Lz by 0 0 0
Since the Cayley-Menger determinant Bf, P>, Ps, and 0 W s s 0 0
P, vanishes because they are coplad(l, 2,3,4) = 0 or, A= o 0 o 552—354 s1 0
equivalently, 0 0 0 o dlgj—;‘«so ) o5 :
58273 + (d172 - 5)8173 — d128374 — d1726(d1,2 — (S) =0. (7) Kb}j 0 0 0 0 %669)
Note thatss 4 depends affine linearly om; 3 and s 3. and 5i(d 5
Then, if the spherical joint centered & is moved toFP;, 51(d12 - 51)
the resulting leg lengths, for any configuration of the mgvin 52(d45 B 52)
platform, can be expressed in terms of the original leg lemgt b= 53(d23 - 63)
as in (4). Thus, it can be said that the introduced offset 54( 56 _64)
does not change the kinematics of the original octahedral 5(das — 05)
d6(das — 06)

manipulator.
It is possible to repeat the above operation on the remain-If det(A) # 0, there is a one-to-one correspondence
ing couples of legs sharing a double-ball-joint. A family ofbetween(m?,...,m2) and (I%,...,(2). Remind thatA is



Then, substituting these values in (8), it can be verified tha
this problem is equivalent to solve the forward kinematits o
the octahedral manipulator defined By, . . ., P; (see Fig. 6)
with leg lengths

198
;] = — o =1 I3=1
1 10 3 2 87 3 85
149 178
4 7; 5 10 ) 6 10 3

which is the same problem as the one analyzed in [12].
Substituting the above values in equation (3) we get

1
100 (51,5725)(51’57841)(25 51’574761)(25 52’3716641)

(375625 57.5+2425914325 57 ; —2781440777549 57 ;

+929177720979831 51,5 —94994611164672840

£24 (25 51,5 —4761)(25 51,5 —16641) /52  —757 51 5+27325

Fig. 7. By properly choosing the offsetd; = 6; = d3 = &5 and /2220100 53 ; — 1689044183 51,5 4277445877004

Ay = §2 = 84 = d¢ in Fig 6, it is possible to reach architecturally 5

" - - Vo R . . +21600 (s1,5—25) (51,5 —841) /625 52 . —495325 51 5+85928301
singular platforms including the obvious situations in gthcouples of legs (51, s, )\/ 15 s1st
coincide and the architecturally singular Griffis-Duffyafbrm.

625 s? . —465550 s1,5+66028321 | =0. 10
V62557 5 , (

Twice squaring the above equation, the following 8th order

constant as it only depends on architectural parameters, NePolynomial is obtained
the resulting 6-6 platform is analyzed in more detail thioug 9 5790 5?,5  7719.9542 5175 £1.0078- 107 5?75

an example.
—7.4833-10° 57 5 + 3.4607 - 10'% 57 1)
VI. EXAMPLE —1.0220- 10" 53 | + 1.8843 - 10'7 2 ;
Let us consider a parallel _man.ipulator with the same  _ 1 gg54.10" s15 +9.1598 - 1020 = 0.
topology as the one depicted in Fig. 6 with the following
architectural parameterglis = doz = diz = 12, dye = This polynomial has six real root269.2, 328.7, 359.5,
dgs = dsg = 6, Ay = 6y = 93 = 5, and Ay = 6 = 463.6, 497.9, and513.0. Each of them leads to two mirror
d4 = Jd¢. Substituting these values in (9) and computing itposes with respect to the base plane. The resulting poses
determinant, we obtain for the case in whichP, = (0,0,0), P, = (6,1108,0)7,
and P; = (12,0,0)7, appear in Fig. 8 where the mirror
1 ) 1 ) reflections with respect to the base plane are not reprekente
detfA) = — ——ASA2 - — AN+ —A3A,
20736 10368 3456 Vil ©
1 1 1 . CONCLUSION
+ —ATAT+ ——A1A] — —— A}
5176 1864 11728 1 Stating the kinematics analysis of the octahedral manipu-
— — ANy — —AJAL - AL A2 lator in terms of poses introduces two major disadvantages:
96 48 216 48 .
1 1 1 1 (a) a reference frame has to be introduced, and (b) all
+ §A1A2 + EAg - ZAl - §A2 +1. formulas involve translations and rotations simultanéous

] ] This paper proposes a different approach in which, instead
Fig. 7 plots detA) as a function ofA; and A,. When ot girectly computing the sought Cartesian poses, a problem
A1 + Ay = 12, the introduced offsets lead to an architecyy|ly posed in terms of distances is first solved. Then, the

turally singular platform because dat) = 0. Now, let us  griginal problem can be trivially solved by sequences of
setA; = 22 andA; = £, and let us suppose that we wantyjjaterations.

to compute the forward kinematic solutions of the resulting e presented distance-based formulation also permits
robot for the following leg lengths to generate a family of Stewart-Gough platforms whose

6 6170 1 =319 members are kinematically equivalent to the octahedral ma-
my = 25 ’ ms = 5 ’ nipulator. One of this members has no double-ball-joints an
ol 6 hence, its important technological interest. Future dgwel
M5 =95 136210, m2=5 221, ments in which an octahedral manipulator is required but
1 1 -ball-joi i i i
ma == 674605, mo = = 3153, (rslé)suut:tle ball-joints have to be avoided can benefit from this
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Fig. 8. The forward kinematic solutions of the analyzed eplemThe mirror reflections with respect to the base planenateéncluded.
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