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The anomalous 〈V V P 〉 Green function and related form-factors (π0 → γ ∗γ ∗ and τ− → X−ντ vector
form-factors, with X− = (K Kπ)−, ϕ−γ , (ϕV )−) are analyzed in this letter in the large-NC limit. Within
the single (vector and pseudoscalar) resonance approximation and the context of Resonance Chiral
Theory, we show that all these observables overdetermine in a consistent way a unique set of compatible
high-energy constraints for the resonance couplings. This result is in agreement with analogous relations
found in the even intrinsic-parity sector of QCD like, e.g., F 2

V = 3F 2. The antisymmetric tensor formalism
is considered for the spin-one resonance fields. Finally, we have also worked out and provide here the
relation between the two bases of odd intrinsic-parity Lagrangian operators commonly employed in the
literature.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Chiral symmetry plays a crucial role in the structure of non-
perturbative light-quark interactions in Quantum Chromodynamics
(QCD). However, it becomes spontaneously broken, generating the
corresponding chiral (pseudo) Goldstones ϕa . Its low-energy inter-
action can be then described through an effective field theory (EFT)
which implements chiral symmetry and the discrete symmetries
of QCD, denoted as Chiral Perturbation Theory (χPT) [1–5]. The
Wess–Zumino–Witten (WZW) term reproduces the chiral anomaly
of QCD [6,7] and will provide the leading contribution to the
anomalous QCD amplitudes at low energies.

Resonance Chiral Theory (RχT) [8,9] describes the interac-
tions between the light-quark resonances and the chiral pseudo-
Goldstones based on chiral invariance and using the formal expan-
sion in 1/NC [10–12] as a guiding principle to sort out perturba-
tive computations, with NC the number of colours in QCD. In most
applications, one is forced to truncate the resonance spectrum and
just the lightest resonance multiplets are included.1

The RχT Lagrangian is built in such a way that it fulfills the
discrete symmetries of QCD and chiral symmetry. It contains an
even [8,9,15] and an odd intrinsic-parity sector [16,17], where the
latter produces contributions to anomalous amplitudes in QCD.

* Corresponding author.
1 The truncation of the infinite tower of large-NC resonances introduces in gen-

eral a theoretical uncertainty in our determinations and may lead to some issues
when a broader and broader set of observables is analyzed [13,14].
http://dx.doi.org/10.1016/j.physletb.2014.04.034
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
Nonetheless, it should be pointed out that, apart from the WZW
term, the RχT interactions are chiral invariant.

Although QCD fixes the hadronic couplings, these cannot be de-
termined based on chiral symmetry considerations alone. A priori,
they are free parameters of our RχT action and chiral symmetry
just provides relations between particular processes. However, de-
manding a short-distance behaviour in accordance with QCD and
its Operator Product Expansion (OPE) [18] will allow us to extract
important constraints between couplings like, e.g., the Weinberg
Sum Rules (WSRs) [19].

Along the last years, there has been an extensive program of
computation of Green functions and associated form-factors within
the RχT framework [8,9,13,15–17,20–23], where a key ingredient
has been the implementation of the high-energy QCD behaviour
prescribed by the OPE [18,24] and the quark-counting rules for
hadronic form-factors [25].

The difficulties to match the anomalous 〈V V P 〉 Green func-
tion (between two vector currents and one pseudoscalar density)
in the four-vector field representation for spin-one resonances [13,
20,21] triggered the research reported in Ref. [16]. Therein, the au-
thors included the chiral pseudo-Goldstones and the lightest vector
multiplet and showed that these issues could be solved in the an-
tisymmetric tensor field formalism for the vector resonances [8,9].
This will be the formalism used all along this letter.

As a result of that 〈V V P 〉 study [16], there were several subse-
quent analyses [22,23] where other Green functions that are order
parameters of chiral symmetry breaking were evaluated in an anal-
ogous way. Finally, a global understanding of the short-distance
constraints on these Green functions and related form-factors was
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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presented in Ref. [15], together with an exhaustive evaluation
of the resonance contributions to the χPT low-energy constants
(LECs) of the even intrinsic-parity sector up to O(p6).

However, the analysis of τ− → (K Kπ)−ντ decays [26] revealed
a set of high-energy constraints on the RχT couplings which was
at odds with the findings of Ref. [16]. Furthermore, an inconsistent
asymptotic behaviour for the π0 → γ γ ∗ pion transition form-
factor (TFF) was found [26] if the high-energy restrictions [16]
were considered. After that, Ref. [17] revisited the 〈V V P 〉 Green
function. It extended the odd intrinsic-parity resonance Lagrangian,
allowing for operators with multiple resonance fields, verified pre-
vious analyses of the saturation of odd intrinsic-parity O(p6) LECs
under integration of the resonances and performed a complete
study of the saturation to the full set of odd O(p6) LECs [4,5].
On the contrary to Ref. [16], the short-distance behaviours of the
pion TFF and the 〈V V P 〉 Green function were found to be com-
patible with QCD, provided the lightest pseudoscalar resonance
multiplet was also taken into account (it was not included in
the previous work [16]). Since the basis of Lagrangian operators
employed in both Refs. [16,17] was different, it still remained un-
clear whether all inconsistencies among the referred high-energy
constraints were fully solved by adding a pseudoscalar resonance
multiplet to the action or not.

The aim of this letter is to answer this question. We will show
that the odd intrinsic-parity RχT Lagrangian including the pseudo-
Goldstones and the lightest multiplet of pseudoscalar and vector
resonances [17] produces a unique consistent set of short-distance
relations for the 〈V V P 〉 Green function and the associated form-
factors studied so far in the literature, in an analogous way to the
agreement found in the even intrinsic-parity sector [15].

2. The odd intrinsic-parity resonance Lagrangian

The operators in the RχT Lagrangian can be classified according
to the number of resonance fields:

LRχ T = LG +
∑

R

LR +
∑
R,R ′

LR R ′ + ... (1)

with LG given by the operators with only pseudo-Goldstone fields
and external vector and axial-vector sources. It contains the even-
parity O(p2) χPT Lagrangian [2,3,8] and the WZW term [6,7,16,
17].

At leading order in the 1/NC expansion, the most general odd
intrinsic-parity resonance chiral Lagrangian for processes involving
one pseudo-Goldstone and two vector objects (two vector reso-
nances, or one external source and one vector resonance) was
derived in Ref. [16]:

Lodd
Rχ T ⊃

7∑
i=1

ci

MV
Oi

VJP +
4∑

i=1

diOi
VVP. (2)

The monomials Oi
VJP and Oi

VVP are provided in Table 1. The an-
tisymmetric tensor formulation is employed here to describe the
spin-1 fields [8,9]. Analogous analyses with the spin-1 fields given
in the four-vector (Proca) formalism can be found in Refs. [13,21],
although the present work only studies the antisymmetric tensor
representation.

We follow the notation and conventions of Ref. [15], where the
chiral tensors entering Lodd

Rχ T are defined. MV is the vector reso-
nance multiplet mass in the chiral and large-NC limits.

Within the same framework, and motivated by the analogous
work on the even-intrinsic parity resonance Lagrangian accom-
plished in Ref. [15], the authors of Ref. [17] constructed the most
Table 1
Monomials with one vector resonance field (Oi

VJP) and two vector fields (Oi
V V P ) in

the basis of Ref. [16].

i Oi
VJP i Oi

VVP

1 εμνρσ 〈{V μν, f ρα
+ }∇αuσ 〉 1 εμνρσ 〈{V μν, V ρα}∇αuσ 〉

2 εμνρσ 〈{V μα, f ρσ
+ }∇αuν 〉 2 iεμνρσ 〈{V μν, V ρσ }χ−〉

3 iεμνρσ 〈{V μν, f ρσ
+ }χ−〉 3 εμνρσ 〈{∇α V μν, V ρα}uσ 〉

4 iεμνρσ 〈V μν [ f ρσ
− ,χ+]〉 4 εμνρσ 〈{∇σ V μν, V ρα}uα〉

5 εμνρσ 〈{∇α V μν, f ρα
+ }uσ 〉

6 εμνρσ 〈{∇α V μα, f ρσ
+ }uν 〉

7 εμνρσ 〈{∇σ V μν, f ρα
+ }uα〉

Table 2
Monomials with one vector resonance field in the basis of Ref. [17].

i ÔV
iμναβ

i ÔV
iμναβ

1 i〈Vμν(hασ uσ uβ − uβ uσ hασ )〉 11 〈Vμν { f+αρ , f−βσ }〉gρσ

2 i〈Vμν(uσ hασ uβ − uβhασ uσ ) 12 〈Vμν { f+αρ ,hβσ }〉gρσ

3 i〈Vμν(uσ uβhασ − hασ uβ uσ )〉 13 i〈Vμν f+αβ 〉〈χ−〉
4 i〈[Vμν,∇αχ+]uβ 〉 14 i〈Vμν { f+αβ ,χ−}〉
5 i〈Vμν [ f−αβ , uσ uσ ]〉 15 i〈Vμν [ f−αβ,χ+ ]〉
6 i〈Vμν( f−ασ uβ uσ − uσ uβ f−ασ )〉 16 〈Vμν {∇α f+βσ , uσ }〉
7 i〈Vμν(uσ f−ασ uβ − uβ f−ασ uσ )〉 17 〈Vμν {∇σ f+ασ , uβ }〉
8 i〈Vμν( f−ασ uσ uβ − uβ uσ f−ασ )〉 18 〈Vμνuαuβ 〉〈χ−〉
9 〈Vμν {χ−, uαuβ }〉

10 〈Vμνuαχ−uβ 〉

Table 3
Monomials with two vector resonance fields (left hand side) and a pseudoscalar
resonance and a vector resonance field (right hand side) in the basis of Ref. [17].

i ÔV V
iμναβ

i ÔP V
iμναβ

1 i〈Vμν Vαβ 〉〈χ−〉 1 i〈{Vμν, P }uαuβ 〉
2 i〈{Vμν, Vαβ }χ−〉 2 i〈Vμνuα P uβ 〉
3 〈{∇σ Vμν, Vασ }uβ 〉 3 〈{Vμν, P } f+αβ 〉
4 〈{∇β Vμν, Vασ }uσ 〉

general resonance chiral Lagrangian in the odd intrinsic-parity sec-
tor that can generate chiral low-energy constants up to O(p6)

[4,5]. They considered the contribution from the lightest reso-
nance multiplets, in particular vector (V ) and pseudoscalar (P )
resonances. The latter was absent in the previous treatment in
Ref. [16]. The part of the odd intrinsic-parity Lagrangian relevant
for the 〈V V P 〉 Green function and the related form-factors studied
in this article is given by [17]

L̃odd
Rχ T ⊃

∑
i

∑
X

κ X
i εμναβÔX

iμναβ, X = V , V V , P V , (3)

where the corresponding operators can be read in Tables 2 and 3.
It is possible to rewrite the resonance Lagrangian from Ref. [16]

(Table 1) in terms of the basis of monomials in Ref. [17] (Ta-
bles 2 and 3) by means of partial integration and the Bianchi and
Schouten identities [5]. This exercise yields the following relations
between the L̃odd

Rχ T and the Lodd
Rχ T couplings:

κ V V
1 = −d1

8n f
, κ V V

2 = d1

8
+ d2, κ V V

3 = d3, κ V V
4 = d4,

−2MV κ V
5 = MV κ V

6 = MV κ V
7 = c6

2
,

MV κ V
11 = c1 − c2 − c5 + c6 + c7

2
,

MV κ V
12 = c1 − c2 − c5 + c6 − c7

2
, n f MV κ V

13 = −c2 + c6

4
,

MV κ V
14 = c2 + 4c3 − c6

,

4
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MV κ V
15 = c4, MV κ V

16 = c6 + c7,

MV κ V
17 = −c5 + c6. (4)

No high-energy constraint is considered for the derivation of these
relations.

The present study of the anomalous sector at high energies
also requires the following pieces of the even-intrinsic parity La-
grangian [8]:

Leven
Rχ T ⊃ F V

2
√

2

〈
Vμν f μν

+
〉 + idm〈Pχ−〉. (5)

3. High-energy constraints

3.1. 〈V V P 〉 Green function

We consider first the Green function 〈V V P 〉 between two vec-
tor currents Jμ,a

V (x) and Jν,b
V (y) and one pseudoscalar density

J c
P (z). In momentum space, the OPE prescribes a very precise

short-distance behaviour for Π
μν
V V P (λp, λq, λr) when λ → ∞ [24].

Matching the 〈V V P 〉 Green function prediction from the resonance
chiral Lagrangian Lodd

Rχ T in Eq. (2) and the previously referred OPE
asymptotic behaviour yields [16]

4c3 + c1 = 0, (6)

c1 − c2 + c5 = 0, (7)

c5 − c6 = NC

64π2

MV√
2F V

, (8)

d1 + 8d2 = − NC

64π2

M2
V

F 2
V

+ F 2

4F 2
V

, (9)

d3 = − NC

64π2

M2
V

F 2
V

+ F 2

8F 2
V

. (10)

If one incorporates pseudoscalar resonances and the ÔP V
i oper-

ators from Lagrangian L̃odd
Rχ T in Eq. (3), one now obtains [17]2

MV
(
2κ V

12 + 4κ V
14 + κ V

16 − κ V
17

) = 4c3 + c1 = 0, (11)

MV
(
2κ V

12 + κ V
16 − 2κ V

17

) = c1 − c2 + c5 = 0, (12)

−MV κ V
17 = c5 − c6 = NC MV

64
√

2π2 F V
, (13)

8κ V V
2 = d1 + 8d2 = − NC

64π2

M2
V

F 2
V

+ F 2

4F 2
V

+ 4
√

2dmκ P V
3

F V
, (14)

κ V V
3 = d3 = − NC

64π2

M2
V

F 2
V

+ F 2

8F 2
V

+ 4
√

2dmκ P V
3

F V
. (15)

The five constraints derived in Ref. [17] for κ V
14, (2κ V

12 + κ V
16), κ V

17,
κ V V

2 and (8κ V V
2 − κ V V

3 ) have been recast in the equivalent form
in Eqs. (11)–(15). The κ V

l and κ V V
m couplings have been rewrit-

ten in terms of the ci and d j couplings of the Lodd
Rχ T Lagrangian by

means of the relations in Eq. (4). This reproduces the first three
constraints derived from Lodd

Rχ T in Eqs. (6)–(8). Notice, however,
that the inclusion of the lightest pseudoscalar resonance multiplet
modifies the constraints (9) and (10).

2 We omit the prediction for the coupling of another operator which involves just
one pseudoscalar resonance field, as it does not affect our discussion.
3.2. τ− → (K Kπ)−ντ form-factors

A series of high-energy constraints were extracted from the
analysis of the τ− → (K Kπ)−ντ decays [26] after demanding
that the corresponding contribution to the spectral function of the
vector–vector correlator vanished asymptotically3:

MV
(
2κ V

12 + κ V
16 − 2κ V

17

) = c1 − c2 + c5 = 0, (16)

−MV κ V
17 = c5 − c6 = NC

192π2

F V MV√
2F 2

, (17)

κ V V
3 = d3 = − NC

192π2

M2
V

F 2
. (18)

In order to write the left-hand side of these equations we have
employed the relations (4). The relations involving the V ϕϕϕ cou-
plings (one vector field and three Goldstone fields) are omitted
since they are irrelevant for our discussion [26].

3.3. τ− → ϕ−γ ντ and π0 → γ ∗γ ∗ form-factors

The τ− → ϕ−γ ντ decay (ϕ− = π−, K −) is described by a
vector and an axial-vector form-factors F V (t) and F A(t), respec-
tively, which were computed in the RχT framework in Ref. [28].
The requirement that F V (t) vanishes at high momentum transfer
(t → ∞) [25] produces the constraints

MV
(
2κ V

12 + κ V
16 − 2κ V

17

) = c1 − c2 + c5 = 0, (19)

−MV κ V
17 = c5 − c6 = NC

32π2

MV√
2F V

+ F V√
2MV

d3, (20)

with d3 = κ V V
3 in L̃odd

Rχ T notation.

The π0(r) → γ ∗(p)γ ∗(q) TFF, Fπγ ∗γ ∗ (p2,q2), was studied
in Ref. [17] by means of the L̃odd

Rχ T Lagrangian. Requiring that

Fπγ ∗γ ∗ (0,q2), with one on-shell photon, vanishes at high momen-
tum transfer [25], yields precisely the two previous constraints in
Eqs. (19) and (20). One reaches this result if no further short-
distance constraints are applied (like, for instance, those from the
〈V V P 〉). Moreover, the requirement that Fπγ ∗γ ∗ (q2,q2), with both
photons off-shell, vanishes when q2 → ∞ [29] yields the addi-
tional relation

−MV κ V
17 = c5 − c6 = NC MV

64
√

2π2 F V
. (21)

Remarkably, although just the π0 → γ ∗γ ∗ TFF was constrained
to achieve this equation, it reproduces exactly the short-distance
〈V V P 〉 relation in Eq. (13).

Ref. [17], on the other hand, substituted the 〈V V P 〉 rela-
tions (13)–(15) and expressed the Fπγ ∗γ ∗ (0,q2) constraint in the
form

1 + 32
√

2F V dmκ P V
3

F 2
= 0. (22)

3.4. τ− → (ϕV )−ντ vector form-factor

The transition τ− → (ϕV )−ντ (with ϕ = π−,0, K −,0 and V =
ρ0,−,ω, K ∗0, K ∗0,−) is parametrized by one vector form-factor
V (t) and three axial-vector form-factors A1,2,3(t). It was computed

3 The two-point Green functions of vector and axial-vector currents were stud-
ied within perturbative QCD in Ref. [27], where it was shown that both spectral
functions go to a constant value at infinite momentum transfer.



P. Roig, J.J. Sanz Cillero / Physics Letters B 733 (2014) 158–163 161
in Ref. [30] by means of RχT for the case with two vector res-
onance multiplets. High-energy constraints where extracted after
demanding that these form-factors vanished for large momentum
transfer [25]. Restricting ourselves to the scenario with only one
vector resonance multiplet studied here the vector form-factor re-
lations turn into [30]

MV
(
2κ V

12 + κ V
16 − 2κ V

17

) = c1 − c2 + c5 = 0, (23)

−MV κ V
17 = c5 − c6 = − F V√

2MV
d3, (24)

with d3 = κ V V
3 in L̃odd

Rχ T notation.

3.5. Compatibility between constraints

In a first step, we find that the three τ− → (K Kπ)−ντ re-
lations (16)–(18) are compatible with the 〈V V P 〉 relations in
Eqs. (11)–(15) provided

1 + 32
√

2F V dmκ P V
3

F 2
= 0, (25)

F 2
V = 3F 2. (26)

The first relation, Eq. (25), was previously obtained in Ref. [17]
(Eq. (22)) after requiring the right short-distance behaviour for
both the 〈V V P 〉 Green function and the π0 → γ γ ∗ TFF.This condi-
tion obviously requires κ P V

3 �= 0, i.e., the presence of a pseudoscalar
resonance contribution.

The second relation, Eq. (26), was also found in the study of the
radiative τ− → ϕ−γ ντ processes in Ref. [28]. Ref. [26] pointed out
that, while the 〈V V P 〉 constraints (6)–(10) without pseudoscalar
resonances yielded a wrong high-energy structure for π0 → γ γ ∗ ,
the τ− → (K Kπ)−ντ conditions (16)–(18) ensured the proper
Brodsky–Lepage asymptotic behaviour for the π0 → γ γ ∗ TFF, pro-
vided that the constraint (26) is fulfilled.

It is noteworthy that the conditions (25) and (26) exactly agree
with the high-energy constraints for the τ− → ϕ−γ ντ vector
form-factor (Eqs. (19) and (20)), π0 → γ ∗γ ∗ TFF (Eqs. (19)–(21))
and the τ− → (ϕV )−ντ vector form-factor (Eqs. (23) and (24)).

4. Discussion and comparison with the phenomenology

In summary, we provide in the present letter the unique set of
consistent high-energy constraints in the odd intrinsic-parity sec-
tor

MV
(
2κ V

12 + 4κ V
14 + κ V

16 − κ V
17

) = 4c3 + c1 = 0,

MV
(
2κ V

12 + κ V
16 − 2κ V

17

) = c1 − c2 + c5 = 0,

−MV κ V
17 = c5 − c6 = NC MV

64
√

2π2 F V
,

8κ V V
2 = d1 + 8d2 = F 2

8F 2
V

− NC M2
V

64π2 F 2
V

,

κ V V
3 = d3 = − NC

64π2

M2
V

F 2
V

,

1 + 32
√

2F V dmκ P V
3

F 2
= 0,

F 2
V = 3F 2, (27)

compatible for the 〈V V P 〉 Green function [16,17] and a series
of related odd intrinsic-parity amplitudes: the τ− → X−ντ vec-
tor form-factors (X− = (K Kπ)− [26], ϕ−γ [28], (ϕV )− [30])
and the π0 → γ ∗γ ∗ TFF [17]. The consistent set of high-energy
relations (27) for these anomalous QCD amplitudes constitutes
the central outcome of this letter. Notice however that only the
pseudo-Goldstones and the lightest vector and pseudoscalar res-
onance multiplets have been considered here, so these relations
would change if we varied the resonance content of the theory.

The relations (27) also agree with the short-distance constraints
obtained in the analysis of other anomalous processes in the res-
onance region: the τ− → ηπ−π0ντ decay [31]; V → ϕγ (�) and
ϕ → γ γ (�) decays [32]; holographic studies of three-point Green
functions and associated form-factors [33]; e+e− → ϕπ+π− (ϕ =
π0, η) [34]; and the τ− → π−ντ �+�− decay [35].

Interestingly, an analogous set of consistent relations was ex-
tracted in the even intrinsic-parity sector in Ref. [15] (Eqs. (4.1),
(4.2), (5.7) and (5.12)) for the 〈VAP〉 Green function [22] and re-
lated form-factors [36,37], in combination with the ππ vector
form-factor constraint and the two V V − A A WSRs [9].

The last constraint in (27), F 2
V = 3F 2, is particularly interesting,

as it was also previously derived in the even intrinsic-parity sector
in an independent way. It was found in the high-energy analysis of
the ππ vector form-factor at NLO in 1/NC [39] if the scalar res-
onance effects are disregarded. Likewise, the combination of the
large-NC constraints for ππ vector form-factor (F V G V = F 2) [9]
and ππ -scattering (3G2

V = F 2 if the scalar resonance contributions
are neglected) [40] also reproduces the condition F 2

V = 3F 2. These
two relations from ππ VFF and scattering also show up in the
context of holographic models of QCD [33,41,42] when the derived
sum-rules are restricted to the single vector resonance approxima-
tion. Indeed, recent studies in that field [33] are pointing out an
interconnection between the even intrinsic-parity and anomalous
sectors of QCD [33,42,43]. It is also worth to note that this value
F V = √

3F = 3G V was found to be a low-energy fixed point of the
renormalized couplings F V (μ) and G V (μ) within the single vector
resonance approximation, being NLO corrections in 1/NC of the
order of Γρ/Mρ ∼ 20% [54].

The combined study of the ππ VFF and the π → γ �ν axial-
vector form-factor produces F V = √

2F = 2G V if operators with
two or more resonance fields are disregarded [9], although this is
no longer so when they are taken into full consideration [22]. The
large-NC study of the ππ partial-wave scattering amplitudes T I

J (s)

at high energies4 yields the generalized version of the KSRF rela-
tion [44] including the effect of scalar resonances [40],

2c2
d + 3G2

V = F 2. (28)

Nonetheless, Ref. [45] observed that this relation left a residual
logarithmically divergent behaviour in the T I

J (s) at high energies.
Moreover, Eq. (28) is incompatible with the ππ VFF constraint
F V G V = F 2 [9] and the odd-sector relation F 2

V = 3F 2 in Eq. (27)
if the scalar is taken into account and only the lightest multi-
plets are accounted for. On the other hand, phenomenologically,
it is found to be reasonably well fulfilled and violations are mild:
the resonance couplings extracted from pion and kaon scatter-
ing phase-shift fits to data were found to fulfill Eq. (28) within
15 ↔ 20% violations [46], regardless of taking or not the cd → 0
limit. This slight tension can be relaxed if one discards the ππ
partial-wave constraint in Eq. (28) when only the lowest reso-
nance multiplets are included. Alternatively, Ref. [45] advocated
that the forward ππ scattering amplitude could be well described
at large NC with just the lightest vector and scalar, obtaining the

4 A generalization of the KSRF relation was derived in Ref. [40] by demanding that
the T I

J (s) obeyed once-subtracted dispersion relations at large NC . The contribution
from the lightest vector and scalar resonance exchanges in the s, t and u channels
were computed therein, leading to the large-NC constraint given in Eq. (28).
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relation 2c2
d + G2

V = F 2. This stems from assuming that the ex-
pected power behaviour from Regge theory at high energies (or a
less divergent one). However, the latter constraint in combination
with the ππ VFF (F V G V = F 2) and odd-sector one (F 2

V = 3F 2)
leads to a scalar coupling cd = F/

√
3 ≈ 50 MeV, which is far too

large in comparison with previous phenomenological determina-
tions where cd � 30 MeV (see Refs. [46,47] and references therein).

A good probe of the F 2
V = 3F 2 relation are the τ− → (πππ)−ντ

decays, even though its check is not free of ambiguities related
to the treatment of the ρ(1450) resonance or the ππ rescat-
tering effects producing the σ resonance. In Ref. [37] only the
first contribution was included (phenomenologically) and fitting
the differential decay widths as a function of the three-pion in-
variant masses yielded a deviation of ∼ 13% with respect to this
prediction. The updated RχT TAUOLA currents [48] added also a
modelization of the σ effect and benefited from the two-pion in-
variant mass distributions measured by BaBar [49] to reach good
agreement with data [51]. The fitted value of F V is consistent with
the previous prediction at one sigma, which is remarkable since
the quoted error is slightly below 5%.

The consistent set of relations (27) can also be tested through
the lightest meson (π0/η/η′) TFF, which are an essential ingre-
dient for predicting the related pseudoscalar-exchange hadronic
light-by-light contribution to the muon anomalous magnetic mo-
ment. Refs. [17,52] obtain their best agreement with the π TFF
data violating only the prediction for κ P V

3 in Eqs. (27) by 4 ↔ 6%.
The current understanding of the η−η′ mixing in the double-angle
mixing scheme allows the prediction of the related η−η′ TFF [52],
which are found in good agreement with data as well.

We find, therefore, that the minimal hadronical ansatz [38] –
consisting on including as many resonance multiplets as needed
to achieve a consistent set of short-distance constraints – reduces
to the single (vector and pseudoscalar) resonance approximation
for the 〈V V P 〉 Green function and related anomalous form-factors.
One must be aware that the OPE constraints from the 〈V V P 〉
Green function in Section 3.1, where the three four-momenta p,
q, r are taken to infinity at the same rate, depend crucially on
the inclusion of both the lightest pseudoscalar and vector reso-
nances. For instance, the total absence of P resonances leads to
roughly a factor 2 difference with respect to alternative determina-
tions of d3 [50], far more important than the impact of considering
F V = √

2F or F V = √
3F . Obviously, the unique consistent set of

short-distance constraints (27) would be modified if the spectrum
of the theory is enlarged.

Despite we deal with the odd-intrinsic parity sector, the con-
straint F V = √

3F belongs also to the normal parity sector, where
one can test the impact of heavier states. Therein, the study of
two-meson vector form factors in hadronic tau decays has been
sensitive to the effect of excited resonances thanks to the very
good quality data taken at B-factories. In the discussion at the be-
ginning of Section 4 in Ref. [35] (see also references therein) it is
seen that the modifications induced by the excited resonances in
the short-distance relations obtained within the single resonance
approximation are – at most – of 5%.

This observation cannot be a priori generalized to the asymp-
totic relations involving couplings which describe interactions be-
tween more than one resonance field, where current data are not
precise enough to settle this issue, although large deviations are
not hinted by the time being.

In the anomaly sector, it is more difficult to quantify possible
deviations and the impact from heavier states, due to both the
higher complexity of the asymptotic constraints and the larger un-
certainty of the measurements. The addition of the first excited
vector meson multiplet does not change the analysis of asymp-
totic constraints derived from the V ϕ form factors [52]. How-
ever, it does modify the high-energy restrictions from the radiative
pion form factor (see Eqs. (A.9) and (A.10) in Ref. [53]). According
to [53], the first two relations in our Eq. (27) do not get modified
by the inclusion of the first excited multiplet.

Nonetheless, the next three relations in (27) do indeed change.
For instance, the (c5 − c6) constraint becomes [53]

(c5 − c6) + F ′
V MV

F V M ′
V

(
c′

5 − c′
6

) = NC MV

64
√

2π2 F V
, (29)

where the primed parameters refer to the excited vector V ′ and
are defined in analogy to the respective V couplings.

The second term on the left-hand side of Eq. (29) modifies our
original equation. Apart from dynamical reasons which might sup-

press c′
5 − c′

6 with respect to c5 − c6, the factor
F ′

V MV

F V M′
V

reduces

the effect of the former coupling combination by ∼ 0.3 [30]. More
complicated equations are found in [53] involving d3, d1 + 8d2 and
analogous and new excited resonances couplings. Likewise, there
is no significant tension between the phenomenological analysis
of the τ− → η(′)π−π0ντ data [31] and the short-distance con-
straints (27), which allows us to extract a conservative estimate of
the impact of excited multiplets as less than 20% (see Ref. [31] for
details).

New, more precise measurements of hadronic (radiative) tau
decays, e+e− hadroproduction, vector meson decays, meson TFF
and meson–meson scattering phaseshifts would be extremely
helpful tools in increasing our knowledge of the hadronization of
QCD currents in its non-perturbative regime and, in particular, in
ascertaining the role of excited resonance multiplets in the cor-
responding dynamics and its effect in the short-distance relations
obtained within the single resonance approximation. These are ex-
pected at Belle-II and forthcoming facilities.

Finally, we want to call the attention of the reader to the rela-
tions in Eq. (4), which provide a dictionary between the two RχT
bases Lodd

Rχ T [16] and L̃odd
Rχ T [17] that can be useful in future com-

parisons.
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